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Abstract: To extend the aim of vehicle positioning using data of low-cost sensors, several filtering algorithms 
including Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Particle Filter (PF) are 
studied and compared. These algorithms are compared in a highly non-linear prediction model and 
measurement model. The measurement noise is simulated by Gaussian and non-Gaussian distributions. The 
root mean square error is used as accuracy parameter. It is found that the PF is about five times and nine 
times more accurate than the UKF and the EKF, respectively. Although the accuracy of both the UKF and 
the EKF reduces approximately 1.5 times with using non-Gaussian distributed noise, the accuracy of the PF 
is not influenced by the probability distribution of the noise. In terms of computational time the EKF is the 
best solution followed by the UKF while the PF is the worst case. 

1 INTRODUCTION 

The estimation methods for non-linear systems 
widely used in vehicle navigation have been studied 
for many years. In 1960, Kalman proposed a well-
known algorithm called Kalman filter (Kalman, 
1960). The filter is applicable for linear models 
containing Gaussian noise. However, almost all real 
systems are characterized by non-linear phenomena; 
therefore, the KF technique cannot be used directly. 
To overcome this obstacle, Welch and Bishop 
(1995) developed a new method named Extended 
Kalman Filter by linearizing the non-linear systems 
at an operational point to achieve the linear models. 
But the disadvantage of the EKF is the divergence 
phenomenon in case of the highly non-linear model. 
A better method for dealing with the non-linear 
model without the linearization step is proposed by 
Julier and Uhlman (1997), named the Unscented 
Kalman Filter. Unfortunately, both the EKF and the 
UKF are only suitable for Gaussian noise. Therefore, 
the Particle Filter method is proposed to handle 
systems in case of measurements with non-Gaussian 
noise. This method is well-known as Bootstrap 
method (Gordon, 1993) and Sequence Monte Carlo 
method (Liu and Chen, 1998). 

Low-cost sensors have been installed in many 
applications of engineering navigation and geodesy 

for several years. Ramm (2008) developed three 
approaches for the KF for vehicle positioning in 
which the observation model includes the 
measurement of Global Positioning System (GPS) 
and of several low-cost sensors. Besides, Alkhatib 
(2008) introduced a comparison of three algorithms, 
the EKF, the UKF, and the PF for the non-linear 
state estimation. Here, the observations of low-cost 
sensors are simulated. In addition, Schweitzer 
(2012) compared the accuracy of position between 
two prediction models which are the straight line 
model and the circle prediction model. Both are 
integrated into the KF algorithm. In this case, the 
observations, using data measured by several vehicle 
sensors and GPS receivers, are linearly related to the 
introduced state parameters. Aussems (1999) also 
described a circle model using for tracking a vehicle 
trajectory. In the study, the coordinates of the 
vehicle are non-linearly related to the state 
parameters including the velocity, the angular 
velocity and the pitch angle. Several researches 
presented solutions for non-linear observation 
systems in navigation applications. For example, 
Sternberg (2000) demonstrated an observation 
system which is non-linearly related to its state 
parameters. In this case, the measurement consists of 
angles, distances, and point coordinates. 
Additionally, Julier and Uhlman (2004) invented an 
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alternative solution by using the unscented transform 
method to replace the KF according to the non-linear 
system. Moreover, the EKF, the UKF and the PF 
method used for this issue can be also found in 
Särkkä (2013).  

In this paper, the non-linear relationship will be 
not only assumed for the prediction model, but also 
for the observation model. This issue dealt with non-
linear observation models by Sternberg (2000), 
Julier and Uhlman (2004), and Särkkä (2013). On 
the other hand, it includes the investigation of the 
Gaussian distribution of measurement noise carried 
out by Alkhatib (2008) as well as Schweitzer (2012), 
so these situations will be expanded for both cases 
(Gaussian noise and non-Gaussian noise). 

Section 2 outlines the EKF, the UKF and the PF 
for non-linear systems. Section 3 investigates an 
approach for the vehicle positioning by the 
kinematic non-linear prediction model and the non-
linear observation model. In section 4, the accuracy 
of position and the computational time are analyzed 
and compared by means of a numerical experiment. 

2 MATHEMATICAL TECHNIQUES 

2.1 EKF Algorithm 

The Extended Kalman Filter method is used for a 
prediction process and a measurement process which 
are described by non-linear functions (Welch and 
Bishop, 1995): 
 

𝒚𝑘+1 = 𝜙(𝒚𝑘 ,𝒖𝑘,𝒘𝑘), (1) 

𝒍𝑘+1 = 𝜑(𝒚𝑘+1,𝒗𝑘+1), (2) 

 
where  𝒍𝑘+1 is the vector of measurement, 𝒚𝑘+1 is 
the state vector at epoch k+1, 𝒖𝑘 is the vector of 
acting forces, and 𝒘𝑘, 𝒗𝑘+1 are the process and 
measurement noise which are uncorrelated Gaussian 
noise. 𝜙, 𝜑 are the non-linear process and 
measurement functions, respectively. The EKF 
algorithm is performed in two steps: 
 
1. Prediction step 
The prediction of the state vector is expressed by: 
 

𝒚�𝑘+1 = 𝜙(𝒚�𝑘). (3) 
 

The covariance matrix of the predicted state 
vectors is computed in equation (4) (without acting 
forces): 

 

𝜮𝒚�𝑘+1𝒚�𝑘+1 = 𝑻𝑘𝜮𝒚�𝑘𝒚�𝑘𝑻𝑘
𝑇 + 𝑺𝑘𝜮𝒘𝑘𝒘𝑘𝑺𝑘

𝑇 , (4) 

 
by inserting the transition matrix 𝑻𝑘 =
�𝜕𝜕(𝒚𝑘,𝒖𝑘 ,𝒘𝑘)

𝜕𝒚𝑘
�, the matrix of distubance quantities 

𝑺𝑘 = �𝜕𝜕(𝒚𝑘,𝒖𝑘,𝒘𝑘)
𝜕𝒘𝑘

� and covariance matrices of the 
process noise 𝜮𝒘𝑘𝒘𝑘. 
 
2. Update step 
The transformation of the predicted state vector into 
the observation space 
 

𝒍̅𝑘+1 = 𝜑(𝒚�𝑘+1) (5) 
 
is used to calculate the vector of innovations 
 

𝒅𝑘+1 = 𝒍𝑘+1 − 𝒍̅𝑘+1. (6) 
 
To compute the corresponding covariance matrix of 
innovations equation (6) must be linearized. So the 
design matrix 𝑨𝑘+1 = �𝜕𝜕(𝒚𝑘+1,𝒗𝑘+1)

𝜕𝒚𝑘+1
� is determined 

and one gets: 
 

𝜮𝒅𝑘+1𝒅𝑘+1 =  𝑨𝑘+1𝜮𝒚�𝑘+1𝒚�𝑘+1𝑨𝑘+1
𝑇 +

𝜮𝒍𝑘+1𝒍𝑘+1  , (7) 

 
where 𝜮𝒍𝑘+1𝒍𝑘+1 is the covariance matrix of the 
measurement. 
The update value and the covariance matrix of the 
state vector are computed by the following 
equations: 
 

𝒚�𝑘+1 = 𝒚�𝑘+1 + 𝑲𝑘+1𝒅𝑘+1, (8) 

𝜮𝒚�𝑘+1𝒚�𝑘+1 = 𝜮𝒚�𝑘+1𝒚�𝑘+1
− 𝑲𝑘+1𝜮𝒅𝑘+1𝒅𝑘+1𝑲𝑘+1

𝑇 , (9) 

by inserting the Kalman gain matrix 
 

𝑲𝑘+1 = 𝜮𝒚�𝑘+1𝒚�𝑘+1𝑨𝑘+1
𝑇 𝜮𝒅𝑘+1𝒅𝑘+1

−1 . (10) 

2.2 UKF Algorithm 

The Unscented Kalman Filter equations, presented 
in Julier and Uhlman (1997), can be applied for the 
two processes shown in equation (1) and (2). The 
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UKF algorithm can be described by the following 
procedure: 
 
1. Generation of the sigma-points and the 

corresponding weights 
Generation of (2n+1) sigma-points by using the state 
vector and its covariance matrix is given by: 
 

𝜸𝑘 = �𝒚�𝑘      𝒚�𝑘 ± √𝑛 + 𝜆 ∙ �𝜮𝒚�𝑘𝒚�𝑘  �, (11) 

 
where n is the dimension of the updated state vector 
𝒚�𝑘 at the epoch k and 𝜮𝑦�𝑘𝑦�𝑘is covariance matrix of 
the updated state vector. 
Weighted sigma-points are defined as: 
 

𝑊0
(𝑚) = 𝜆 (𝑛 + 𝜆)⁄ , (12) 

𝑊0
(𝑐) = 𝜆 (𝑛 + 𝜆) + (⁄ 1 − 𝛼2 + 𝛽), (13) 

𝑊𝑖
(𝑚) = 𝑊𝑖

(𝑐) = 1 2(𝑛 + 𝜆)⁄  𝑖 = 1, … ,2𝑛, (14) 
 
in which the parameters are determined by the 
following method: 

The first parameter 𝛼 is set between 10-4 and 1 
determining the spread of the sigma-points around 
the mean value. The secondary scaling parameter 𝜅 
is usually set to 3-n. For a Gaussian distribution the 
third parameter 𝛽 is 2 (Wan and Van der Merwe, 
2002). √𝑛 + 𝜆  is a scalar scaling factor and 𝜆 is 
determined by: 
 

𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛. (15) 

 
2. Prediction step 
Each sigma-point passes through the non-linear 
prediction function 𝜙, as shown in (16): 
 

𝝌𝑘
(𝑖) = 𝜙�𝜸𝑘

(𝑖)�, 𝑖 = 0,1,2, … ,2𝑛.  (16) 

 
The mean value and the covariance matrix of the 

state vector can be expressed by using these sigma-
points after transforming them by the following 
equations (without acting forces): 
 

𝒚�𝑘+1 = ∑ 𝑊𝑖
(𝑚)2𝑛

𝑖=0 𝝌𝑘
(𝑖), (17) 

𝚺𝒚�𝑘+1𝒚�𝑘+1 = 𝑺𝑘𝜮𝒘𝑘𝒘𝑘𝑺𝑘
𝑇  

+∑ 𝑊𝑖
(𝑐)(2𝑛

𝑖=0 𝝌𝑘
(𝑖) − 𝒚�𝑘+1)(𝝌𝑘

(𝑖) − 𝒚�𝑘+1)𝑇. 
(18) 

3. Update step 
The sigma-points are transmited through the non-
linear measurement function 𝜑 
 

𝝍𝑘+1
(𝑖) = 𝜑�𝝌𝑘+1

(𝑖) �, 𝑖 = 0,1,2, … , 2𝑛 (19) 

 
where 𝝍 is a matrix of the output sigma-points. 
The predicted observations are calculated by: 
  

𝒍̅𝑘+1 = �𝑊𝑖
(𝑚) ∙

2𝑛

𝑖=0

𝝍𝑘+1
(𝑖)  (20) 

 
Julier and Uhlman (1997) described how the 
innovation covariance matrix is determined by 
adding the covariance of measurement noise 
𝜮𝒍𝑘+1𝒍𝑘+1  at epoch k+1 and the covariance matrix of 
the posterior sigma points as follows: 
 

𝜮𝒍̅𝑘+1𝒍̅𝑘+1 = 𝜮𝒍𝑘+1𝒍𝑘+1 

+�𝑊𝑖
(𝑐)

2𝑛

𝑖=0

�𝝍𝑘+1
(𝑖) − 𝒍̅𝑘+1��𝝍𝑘+1

(𝑖) − 𝒍̅𝑘+1�
𝑇
 

(21) 

 
According to the Kalman filter, the Kalman gain 
matrix K is defined by equation 10.  
Finally, the updated state vector and the updated 
covariance matrix of the state vector are computed 
by equation 8 and equation 9. 

2.3 Particle Filter 

The Particle filter (PF) is based on the Monte Carlo 
(MC) technique to estimate state variables. The 
posterior density function of the state vector is 
determined by optimal recursive Bayesian 
estimation using the available prior knowledge. 
There were several versions of PF developed over 
the last few decades. Gordon et al. (1993) proposed 
a Sampling Importance Resampling (SIR) method. 
This method is closely related to the Bootstrap 
procedure which was introduced by Efron in the late 
1970s (Efron, 1979). Pitt and Shephard (1999) 
introduced the Auxiliary Particle filter dealing with 
tailed measurement densities to enhance some 
limitations of SIR. Furthermore, Doucet et al. (2000) 
developed a novel extension of the important 
sampling technique named the Sequential 
Importance Sampling (SIS). The PF theory based on 
the SIR algorithm that is used as numerical example 
in section 4 will be described below. 
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A prediction probability density function 
𝑝(𝒚𝑘+1|𝒍1:𝑘) can be determined by using a 
probability model of state evolution 𝑝(𝒚𝑘+1|𝒚𝑘) 
which is described in equation (1) as follows: 
 

𝑝(𝒚𝑘+1|𝒍1:𝑘) = �𝑝(𝒚𝑘+1|𝒚𝑘)𝑝(𝒚𝑘|𝒍1:𝑘)𝑑𝒚𝑘 (22) 

 
where 𝒍1:𝑘 = {𝑙1, 𝑙2, … , 𝑙𝑘} and a filtering probability 
density 𝑝(𝒚𝑘|𝒍1:𝑘) for the Bayesian inference is 
given by: 
 

𝑝(𝒚𝑘|𝒍1:𝑘) =
𝑝(𝒍𝑘|𝒚𝑘)𝑝(𝒚𝑘|𝒍1:𝑘−1)

𝑝(𝒍𝑘|𝒍1:𝑘−1)  (23) 

 
The PF approximates the probability density 

function 𝑝(𝒚𝑘|𝒍1:𝑘) by a significant number of N 

independent particles �𝒚𝑘
(𝑖)�

𝑖=1

𝑁
 and their associated 

weights �𝑤𝑘
(𝑖)�

𝑖=1

𝑁
, where the sum of all weights is 

proportional to the unity. The PF updates the state 
vector and the corresponding weights recursively 
with each new measurement. In equation (23), the 
normalization factor 𝑝(𝒍𝑘|𝒍1:𝑘−1) is usually 
unknown. But this factor is not essential for this 
method, since the probability density function 
𝑝(𝒚𝑘|𝒍1:𝑘) can be sufficiently evaluated by: 
 

𝑝(𝒚𝑘+1|𝒍1:𝑘) ∝ 𝑝(𝒍𝑘|𝒚𝑘) ∙ 𝑝(𝒚𝑘|𝒍1:𝑘−1), (24) 

 
where, under assumption of Gaussian distribution, 
the likelihood function 𝑝(𝒍𝑘|𝒚𝑘) is computed by 
considering the measurement standard deviation 
(STD) 𝜎 
 

𝑝(𝒍𝑘|𝒚𝑘) =
1

√2𝜋𝜎
𝑒−

(𝒍𝑘−𝒚𝑘)2
2𝜎2  (25) 

 
and 𝑝(𝒚𝑘|𝒍1:𝑘−1) is approximated with particles 
which are known as the main idea of the PF method, 
according to 
 

𝑝(𝒚𝑘|𝒍1:𝑘−1) ≈
1
𝑁�𝛿 �𝒚𝑘 − 𝒚𝑘

(𝑖)�
𝑁

𝑖=1

, (26) 

 
where 𝛿(∙) is the delta-Dirac function. 

However, this approach suffers from divergence 
phenomena that almost all the particles’ weights 
have a value of zero except one non-zero weight 

after a few steps. This problem can be handled by a 
resampling step. Several resampling algorithms were 
analyzed and compared by Douc et al. (2005). The 
SIR algorithm or the Bootstrap algorithm is briefly 
described by the following procedure: 
1. N particles {𝒚0}𝑖=1𝑁  are drawn depending on the 
Gaussian distribution 𝑝(𝒚0) at epoch k=0. 
2. The weights 𝑤𝑘

(𝑖) = 𝑝�𝒍𝑘�𝒚𝑘
(𝑖)� are calculated by 

equation (25) and normalised weights can be defined 
 

𝑤�𝑘
(𝑖) = 𝑤𝑘

(𝑖)

∑ 𝑤𝑘
(𝑗)𝑁

𝑗=1
, 𝑖 = 1,2, … ,𝑁. (27) 

 

3. A new set of particles �𝒚́𝑘
(𝑖)�

𝑖=1

𝑁
 are rearranged 

from the current set �𝒚𝑘
(𝑖)�

𝑖=1

𝑁
 by the resampling 

method, where 𝑝𝑝𝑝𝑝 �𝒚́𝑘
(𝑖) = 𝒚𝑘

(𝑗)� = 𝑤�𝑘
(𝑗) (see 

figure 1). 

4. At epoch k+1, new particles �𝒚𝑘+1
(𝑖) �

𝑖=1

𝑁
are drawn 

which are based on the prediction function (equation 
1) as follows: 
 

𝒚𝑘+1
(𝑖) = 𝜙�𝒚́𝑘

(𝑖),𝒖𝑘
(𝑖),𝒘𝑘

(𝑖)�, 𝑖 = 1,2, … ,𝑁 

 
where the process noise 𝒘𝑘

(𝑖) is simulated by 
Gaussian distribution and the acting force 𝒖𝑘

(𝑖)is 
ignored. 
5. Increase epoch k:=k+1 and repeat from step 2. 
The update state vector and the covariance of the 
state vector of the SIR algorithm are computed by: 
 

𝒚�𝑘 = 𝐸(𝒚𝑘|𝒍1:𝑘) 

= �𝒚𝑘𝑝(𝒚𝑘|𝒍1:𝑘)𝑑𝒚𝑘 ≈  
1
𝑁
�𝒚𝑘

(𝑖)
𝑁

𝑖=1

 
(28) 

𝚺𝒚�𝑘𝒚�𝑘 = �(𝒚𝑘 − 𝒚�𝑘)(𝒚𝑘

− 𝒚�𝑘)𝑇𝑝(𝒚𝑘|𝒍1:𝑘)𝑑𝒚𝑘 

≈
1
𝑁
��𝒚𝑘

(𝑖) − 𝒚�𝑘�
𝑁

𝑖=1

�𝒚𝑘
(𝑖) − 𝒚�𝑘�

𝑇
. 

(29) 
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Figure 1: A graphical explanation of the systematic 
resampling method with ten particles (N=10). The random 
offset is chosen randomly from a uniform distribution over 
(0,1/𝑁] and the interval is proportional to 1/N. The 
vertical axis of the graph illustrates the weight 𝑤(𝑖) which 
is increased by the cumulative sum of the normalized 
weights 𝑤(𝑖) = ∑ 𝑤(𝑗)𝑖

𝑗=1 . For this situation, illustrated in 
this figure, particle number 6 is chosen three times, 
particle number 3 and 10 are chosen twice, particle 
number 2, 4 and 8 are chosen once. Thus, the resampled 
set consists of particle indexes 2, 3, 3, 4, 6, 6, 6, 8, 10, 10. 

3 APPROACHES FOR POSITION 
ESTIMATION OF VEHICLES 

3.1 The Kinematic Prediction Model 

This scenario illustrates a vehicle moving along a 
straight line trajectory. The corresponding prediction 
model has been developed by the Institute of 
Engineering Geodesy (IIGS) at the University of 
Stuttgart (figure 2). The state vector including the 
current horizontal coordinates x and y, the velocity v, 
the orientation 𝜑, and the angular rotation 𝛥𝜑 are 
defined in Schweitzer (2012): 
 

𝒚 = |𝑥 𝑦 𝜑 𝑣 𝛥𝜑|𝑇, (30) 
 
Assume that, firstly, the vehicle moves on a 

straight line between two sequent measuring points, 
and secondly, the prediction is an approximation 
from one measuring epoch to the next measuring 
epoch. Figure 2 shows how predicted coordinates 
can be determined by combining the coordinates of 
the previous epoch and the current angular 
orientation in a polar survey method. Thus the 
prediction of the state vector in equation (1) is 
realized by the following equations: 

 

 
Figure 2: Straight line kinematic model 

𝑥̅𝑘+1 = 𝑥�𝑘 +  ∆𝑆𝑘+1 ∙ 𝑐𝑐𝑐(𝜑�𝑘 + ∆𝜑�𝑘+1)   
= 𝑥�𝑘 + 𝑣̅𝑘+1 ∙ ∆𝑡 ∙ 𝑐𝑐𝑐(𝜑�𝑘 + ∆𝜑�𝑘+1), 
𝑦�𝑘+1 = 𝑦�𝑘 +  ∆𝑆𝑘+1 ∙ 𝑠𝑠𝑠(𝜑�𝑘 + ∆𝜑�𝑘+1)   

= 𝑦�𝑘 +  𝑣̅𝑘+1 ∙ ∆𝑡 ∙ 𝑠𝑠𝑠(𝜑�𝑘 + ∆𝜑�𝑘+1), 
  𝜑�𝑘+1 = 𝜑�𝑘 + ∆𝜑�𝑘+1, 
  𝑣̅𝑘+1 = 𝑣�𝑘, 

      ∆𝜑�𝑘+1 = ∆𝜑�𝑘. 

(31) 

 
The transition matrix T is expressed: 
  

10000
01000
10100

10
01

2,52,42,3

1,51,41,3

k

TTT
TTT

=T
, 

(32) 

with 𝑇1,3 = −𝑣̅𝑘+1 ∙ ∆𝑡 ∙ 𝑠𝑠𝑠(𝜑�𝑘 + ∆𝜑�𝑘+1), 
𝑇1,4 = ∆𝑡 ∙ 𝑐𝑐𝑐(𝜑�𝑘 + ∆𝜑�𝑘+1), 
𝑇1,5 = −𝑣̅𝑘+1 ∙ ∆𝑡 ∙ 𝑠𝑠𝑠(𝜑�𝑘 + ∆𝜑�𝑘+1), 
𝑇2,3 = 𝑣̅𝑘+1 ∙ ∆𝑡 ∙ 𝑐𝑐𝑐(𝜑�𝑘 + ∆𝜑�𝑘+1), 
𝑇2,4 = ∆𝑡 ∙ 𝑠𝑠𝑠(𝜑�𝑘 + ∆𝜑�𝑘+1), 
𝑇2,5 = 𝑣̅𝑘+1 ∙ ∆𝑡 ∙ 𝑠𝑠𝑠(𝜑�𝑘 + ∆𝜑�𝑘+1), 

 
where 𝛥𝛥 is time interval and the disturbance matrix 
S is given by: 
 

𝑺𝑘𝑇 = �
𝑆1,1 𝑆2,1 0 𝛥𝛥 0
𝑆1,2 𝑆2,2 𝛥𝛥 0 𝛥𝛥�, (33) 

with 𝑆1,1 = Δ𝑡2

2
𝑐𝑐𝑐(𝜑�𝑘 + 𝛥𝜑�𝑘+1), 

𝑆1,2 = −𝑣̅𝑘+1 ∙ Δ𝑡2 ∙ sin(𝜑�𝑘 + 𝛥𝜑�𝑘+1), 

𝑆2,1 = Δ𝑡2

2
𝑐𝑐𝑐(𝜑�𝑘 + 𝛥𝜑�𝑘+1), 

𝑆2,2 = 𝑣̅𝑘+1 ∙ Δ𝑡2 ∙ cos(𝜑�𝑘 + 𝛥𝜑�𝑘+1), 
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The process noise covariance matrix 𝜮𝑤𝑤  is: 
 

𝚺𝒘𝑘𝒘𝑘 = �
𝜎𝑎𝑤
2 0
0 𝜎𝜑𝑤

2 �, (34) 

 
where  𝜎𝑎𝑤 ,𝜎𝜑𝑤 are the STD of disturbance 
acceleration and disturbance rotational rate, 
respectively. 

3.2 The Measurement Model 

By way of example in this paper a simple 
observation vector is introduced. This observation 
vector comprises distances and bearings 
 

𝒍𝑘+1 = �𝑠𝑘+1
(1) 𝑠𝑘+1

(2) 𝜑𝑘+1
(1) 𝜑𝑘+1

(2) �
𝑇
. (35) 

 
In the corresponding measurement model, 
𝑠𝑘+1

(𝑖) , 𝜑𝑘+1
(𝑖)  are functions of the horizontal 

coordinates determined by the following equations: 
 

𝑠𝑘+1
(𝑖) = �∆𝑥𝑘+12 + ∆𝑦𝑘+12 , 

𝜑𝑘+1
(𝑖) = 𝑎𝑎𝑎𝑎 �

∆𝑦𝑘+1
∆𝑥𝑘+1

�. 
(36) 

 
Hence, the components of the design matrix A are:  
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(37) 

 
where ∆𝑥𝑘+1 = 𝑥𝑘+1 − 𝑋0

(𝑖),  ∆𝑦𝑘+1 = 𝑦𝑘+1 − 𝑌0
(𝑖) 

and �𝑋0
(𝑖),𝑌0

(𝑖)� are the known horizontal coordinates 
of the sensors with 𝑖 = {1,2} (see figure 3). Finally, 
the measurement noise covariance matrix is defined: 
 

,

000
000
000
000

2

2

2

2

11

ϕ

ϕ
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σ

σ
σ

S

S

kk
=

++ llΣ
 

(38) 

 
where σs and σ𝜑 are the STD of distances and 
bearings with the assumption that  𝜎𝑆1 = 𝜎𝑆2 = σs, 
and 𝜎𝜑1 = 𝜎𝜑2 = σ𝜑. 

 
Figure 3: A car runs in a curve line trajectory which is 
considered as a combination of many sequent straight 
lines. Each straight line is created by one measuring epoch 
to the next one. In this figure, the motion of a moving car 
at epoch k+1 is measured by two sensors which are 
located in reference points A and B. They are able to 
measure the distances 𝑠𝑘+1

(1) , 𝑠𝑘+1
(2)  and the bearings 

𝜑𝑘+1
(1) ,𝜑𝑘+1

(2) . 

4 NUMERICAL APPLICATIONS 

It is the aim of this section to compare the 
performance of different filtering algorithms which 
are presented in section 2 in terms of estimated 
accuracy and computational time. 

4.1 Comparison of Estimated Accuracy 

Root Mean Square Error (RMSE) of horizontal 
coordinates is used as accuracy parameter of the 
filtering algorithms. The RMSE computed for all 
measuring epochs is defined by: 
 

𝑅𝑅𝑅𝑅 = �∑ [∆𝑥2 + ∆𝑦2]𝑛
𝑖=1

𝑚
, (39) 

with ∆𝑥 = 𝑥𝑡𝑡𝑡𝑡
(𝑖) − 𝑥𝑒𝑠𝑠

(𝑖) , 
∆𝑦 = 𝑦𝑡𝑡𝑡𝑡

(𝑖) − 𝑦𝑒𝑒𝑒
(𝑖) , 

 

 
where m is the number of measuring 
epochs, 𝑥𝑡𝑡𝑡𝑡,𝑦𝑡𝑡𝑡𝑡 are horizontal coordinates of the 
true trajectory, 𝑥𝑒𝑒𝑒 ,𝑦𝑒𝑒𝑒  are horizontal coordinates 
of the estimated trajectory. 

In general, the measurements of low-cost sensors 
contain a high value of variance as well as unknown 
distributed noise. Besides, in reality the vehicle 
moves on a non-linear trajectory. Thus, the analysis 
of the three filtering algorithms for non-linear 



MCG 2016 – 5th International Conference on Machine Control & Guidance 
“Facing complex outdoor challenges by inter-disciplinary research” 

Vichy, France, October 5-6th, 2016  

P a g e  | 7 

models with respect to the high measurement 
variance is necessary. The measurement variances 
are simulated by increasing the STD of the distance 
and fixing the STD of the bearing. As an example, 
the results for three cases are shown in the 
following: (i) the measurements are affected by a 
small measurement noise of 0.1 m for distance and 
of 0.02 rad for bearing; (ii) those of medium noise 
behavior contain STDs of 0.5 m for distance and of 
0.02 rad for bearing; and (iii) those of high noise 
behavior consist of STDs of 1.0 m for distance and 
of 0.02 rad for bearing. On the other hand, the 
measurement noise is simulated based on Gaussian 
distribution and non-Gaussian distribution 
(triangular distribution). The following estimated 
results of the PF, the UKF and the EKF are carried 
out for 100 measuring epochs with a time interval of 
0.1 second within 1000 particles of the PF algorithm. 

Table 1 presents RMSEs associated with the 
three filtering algorithms with Gaussian distributed 
noise. The RMSE of the PF is about 1.2 times 
smaller than that of both the UKF and the EKF for 
the small variance. The RMSE values of the EKF 
and the UKF, in case of the medium variance 
measurements, are 2 times and 5 times larger than 
that of the PF, respectively. Likewise, the RMSEs of 
the UKF and the EKF, in case of the high variance 
measurement, are four times and six times as high as 
that of the PF, respectively. This shows that the 
function gets more non-linear if the variances rise. 

Table 1: The RMSE of estimated results in case of 
Gaussian noise. 

STDs of 
uncertainties for 

distance and bearing 

RMSE (m)  
Using Gaussian noise 

PF UKF EKF 
𝜎𝑠 = 0.1[𝑚]; 

 𝜎𝜑 = 0.02[𝑟𝑟𝑟] 0.1059 0.1265 0.1260 

𝜎𝑠 = 0.5[𝑚]; 
 𝜎𝜑 = 0.02[𝑟𝑟𝑟] 0.1740 0.3792 0.8920 

𝜎𝑠 = 1.0[𝑚]; 
 𝜎𝜑 = 0.02[𝑟𝑟𝑟] 0.2123 0.7614 1.3679 

Table 2: The RMSE of estimated results in case of non-
Gaussian noise (triangular distributed noise). 

STDs of 
uncertainties for 

distance and bearing 

RMSE (m)  
Using triangular distributed noise 

PF UKF EKF 
𝜎𝑠 = 0.1[𝑚]; 

 𝜎𝜑 = 0.02[𝑟𝑟𝑟] 0.1025 0.1500 0.1775 

𝜎𝑠 = 0.5[𝑚]; 
 𝜎𝜑 = 0.02[𝑟𝑟𝑟] 0.1802 0.6593 1.2325 

𝜎𝑠 = 1.0[𝑚]; 
 𝜎𝜑 = 0.02[𝑟𝑟𝑟] 0.2246 1.0502 2.0617 

 
Figure 4: The RMSEs of estimated results in case of 
Gaussian noise compared to those in case of the triangular 
distributed noise. 

Table 2 shows RMSEs for three algorithms by 
using triangular distributed noise. With respect to a 
small measurement variance, the RMSE value of the 
EKF is around 1.2 times and 1.7 times higher than 
that of the UKF and the PF, respectively. The RMSE 
of the PF is four times and seven times lower 
compared to those of the UKF and the EKF for the 
medium measurement variance. Similarly, in case of 
high measurement variance, the RMSE of the PF 
decreases five times and nine times as much as those 
of the UKF and the EKF, respectively. 

Figure 4 shows a distinction of RMSEs for the 
three algorithms in case of Gaussian noise and the 
triangular distributed noise that data is organized in 
table 1 and table 2. It is clear that the RMSE of the 
PF depends only on the proportion of measurement 
variance but not on the probability distribution of 
measurement noise. In contrast, the RMSE of the 
EKF and the UKF has been strongly affected not 
only by the proportion of measurement variance, but 
also by the probability distribution of measurement 
noise. 
 

4.2 Comparison of Computational Time 

The computational complexity 𝑂(∙) of each 
algorithm is considered as a combination of all 
computational processing steps. The EKF requires 
only one computational step of prediction and 
measurement function to obtain estimated values, 
while the PF demands N steps. 
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Figure 5: Computational time of PF varying by the 
number of particles using MATLAB R2014 running on 
Windows XP service Pack 3 with a 2.66GHz Intel Dual 
Core processor and 4GB RAM. 

Therefore, the first order approximation of the EKF 
for large 𝑛𝑥 (the number of total evaluation steps for 
both prediction and measurement function) is 𝑂(𝑛𝑥3) 
and PF is typically 𝑂(N𝑛𝑥2), (Gustafsson, 2002). N is 
the number of particles. The UKF propagates more 
than one point through the non-linear prediction 
function 𝜙 and observation function 𝜑. Therefore, 
the computational time of the UKF is about 𝑂(𝑛) 
higher than that of the EKF (Jose’, 2013) where n 
denotes the dimension of the state vector. A 
comparison of the PF, the UKF and the EKF in 
terms of the computational time is realized for the 
non-linear prediction and measurement model with 
Gaussian noise for 100 measuring epochs. Figure 5 
illustrates the computational time of the PF with 
respect to the change of the number of particles 
whereas the computational time of the EKF and the 
UKF is constant 7.5×10-4 seconds and 5×10-3 

seconds, respectively. 

5 CONCLUSIONS 

In terms of accuracy, the PF works more accurately 
than the UKF and the EKF when the non-linear 
model is affected by Gaussian noise as well as non-
Gaussian noise. While the PF is hardly influenced by 
the distribution of the measurement noise, the 
estimated results of the UKF and the EKF using 
Gaussian noise are about 1.5 times smaller than the 
results using non-Gaussian noise. Besides, the 
accuracy of filtering algorithms also depends on the 
proportion of the standard deviation of measurement 
noise. The PF obtains a significant improvement of 
the accuracy in comparison with the two remaining 

methods: If the measurement contains a larger 
standard deviation, the accuracy of the PF is about 
five times and nine times better than that of the UKF 
and EKF, respectively. The UKF also achieves an 
accuracy almost two times better than the EKF for 
the high measurement variance. But the accuracy of 
UKF and that of EKF is comparable in case of the 
small measurement variance. These results coincides 
with the theoretical base for the three approaches; 
thus delivering non-surprising results. The grade of 
non-linearity depends on the size of the variances for 
these non-linear functional relationships. For small 
variances, no linearity can be detected empirically. 

In terms of computational time, the EKF is the 
fastest method followed by the UKF while the PF is 
more time consuming because of the number of 
particles. 

In the future, the three algorithms will be 
investigated to identify the influence of the level of 
non-linearity as well as the probability distribution 
of the measurement noise on the estimated results. 
Furthermore, it would be valuable to reduce the 
computational time of the PF algorithm. 
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