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A B S T R A C T   

Copper is one of the valuable natural resources, and it was widely used in many different industries. The 
complicated fluctuations of copper prices can significantly affect other industries. Therefore, this study aims to 
develop and propose several forecast models for forecasting monthly copper prices in the future based on various 
algorithms in machine learning, including multi-layer perceptron (MLP) neural network, k-nearest neighbors 
(KNN), support vector machine (SVM), gradient boosting tree (GBT), and random forest (RF). The monthly 
copper price dataset from January 1990 to December 2019 was collected for this aim based on other metals and 
natural gas prices. In addition, the influence of currency exchange rates of the countries that have the largest 
copper production around the world was also taken into account and used as input variables for forecasting 
copper price. The different set of predictors (t, t-1, t-2, t-3, t-4. t-5) were considered to forecast monthly copper 
prices based on the mentioned machine learning techniques. The results revealed that the currency exchange 
rates of the countries that have the most abundant copper production around the world have a significant effect 
on the volatility of monthly copper prices in the world, and they should be used to forecast monthly copper prices 
in the future. A comprehensive comparison of various machine learning techniques shows that MLP neural 
network (with deep learning techniques) is the best method for forecasting monthly copper price with an MAE of 
228.617 and RMSE of 287.539. Whereas, the other models, such as SVM, RF, KNN, and GBT, provided higher 
errors with an MAE in the range of 308.691–453.147, RMSE in the range of 393.599–552.208. In this sense, MLP 
neural network can be used as a reliable tool to forecast copper prices in the future.   

1. Introduction 

Copper (copper ore) is one of the natural resources that was 
exploited early to serve various purposes of humans. Most of them are 
exploited from surface copper mines in the world and extracted in the 
form of copper sulfide (Sadowski et al., 2003). Some of the largest 
countries in exploiting and processing copper include Chile, United 
States, China, Australia, Peru and Indonesia (Kwakkel et al., 2013; 

Navarro Berdeal, 2019; Quiñones et al., 2020; Zhang et al., 2017). 
Copper is widely used in industries such as machine manufacturing, 
automobile manufacturing, agriculture, electronic components, house
hold appliances, and even musical instruments and spiritual monuments 
(bronze statues) (Berillis et al., 2017; Elshkaki et al., 2016; Ma et al., 
2019; Malandrakis et al., 2019). With the meager supply of copper 
compared to the high demand in reality, the prices of copper and its 
variants have undergone complicated fluctuations. Global copper 
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scenarios indicate that global demand for copper will increase by about 
2–3.5 times by 2050 (Zabala, 2018). This implies the complicated 
development of copper prices in the future, which significantly in
fluences many industries and economies of nations (Nguyen and Hoang, 
2020; Nguyen and Nguyen, 2020b). Therefore, an accurate forecast of 
copper price in the long term is of great concern to investors, policy
makers, mining enterprises as well as other related industries. 

To forecast the price of copper and some other metals, many scholars 
proposed different approaches, such as empirical methods, econometric 
models, and soft computing models (Gan et al., 2020; García and 
Kristjanpoller, 2019; Kriechbaumer et al., 2014; Ozozen et al., 2016), 
among which soft computing models that use machine learning algo
rithms and artificial intelligence (AI) are considered to be the most 
preeminent methods (Wang et al., 2019). They are not only employed to 
forecast the price of different metals but also widely used in policy, 
social, and financial forecasting (Ballestar et al., 2019; Lee et al., 2018; 
Wang et al., 2020; Nguyen et al., 2020a), and technical issues related to 
natural resources research (Fang et al., 2019a, 2019b; Guo et al., 2021, 
2019; Nguyen and Bui, 2019; Nguyen et al., 2019a, 2020a; Jian et al., 
2020, 2021a,b; Yingui et al., 2021). In other words, machine learning 
and AI techniques are recommended as robust techniques to forecast 
time series problems with high accuracy in the future (Nguyen et al., 
2018, 2019c, 2020d; Le, 2020). 

Regarding forecasting copper price, ARIMA and ANN models have 
been proposed and compared by Lasheras et al. (2015). Accordingly, 
they claimed that the ANN model could predict copper price better than 
the ARIMA model with lower mean forecast error and variance. Liu et al. 
(2017) also applied a decision tree model to forecast copper price for 
different horizon times and set of predictors. They concluded that the 
forecast models for short-terms are often more accurate than long-term. 
In another study, Carrasco et al. (2018) used the support vector machine 
(SVM) model for forecasting the fluctuation of copper price. Different 
structures of the SVM model were discovered and built for this aim. The 
Bat algorithm in machine learning was also applied to forecast copper 
prices with a superior result (Dehghani and Bogdanovic, 2018). Another 
approach based on hybrid and non-hybrid models was also conducted 

for forecasting copper price (García and Kristjanpoller, 2019). Finally, 
they found that the hybrid model (i.e., adaptive-GARCH-fuzzy inference 
system) forecasted copper price better than the other models. Using a 
similar hybrid approach, Alameer et al. (2019) also develop a hybrid 
model, namely GA-ANFIS, based on the optimization of the genetic al
gorithm and the fuzzy inference mechanism of an ANN system for 
forecasting copper price. A variety of other AI models, such as SVM, 
ANFIS, ARIMA, and GARCH, were also taken into account to assess the 
performance of the GA-ANFIS model. As a result, the GA-ANFIS was 
confirmed as the best model in their study with the most superior results. 
In another study, Díaz et al. (2020) considered the random walk and 
several other machine learning models for forecasting copper prices, 
such as simple regression tree, gradient boosting regression tree, and 
random forest (RF). Different horizons and set of predictors were taken 
into account in their study. Finally, they concluded that the daily copper 
prices can be forecasted by random walk model with the highest 
accuracy. 

According to the best review of the authors, although the AI methods 
have been proposed for forecasting copper price; nevertheless, they did 
not take into account the effects of the exchange rate of countries that 
have the largest copper producer in the world (e.g., Chile, U.S, China, 
Peru and Australia). Prior literature shows that only the Chilean ex
change rate was used to forecast metal prices by Brown and Hardy 
(2019). Furthermore, many machine learning algorithms, especially 
multi-layer perceptron (MLP) neural network with deep learning tech
niques, have not been applied in forecasting copper prices. Therefore, 
this study aims at solving two following novel problems: (i) evaluating 
the effect of the exchange rate of countries that have the largest copper 
producer in the world on the copper price (e.g., USD vs. CLP (Chile 
currency), USD vs. CNY (China currency), USD vs. PEN (Peru currency) 
and USD vs. AUD (Australia currency)); (ii) Comprehensive assessment 
of different machine learning techniques for forecasting monthly copper 
price, including MLP neural network, SVM, RF, k-nearest neighbors 
(KNN), and gradient boosting tree (GBT). The detail of the study is 
presented in the next sections. 

Fig. 1. Deep neural network with multiple inputs and outputs.  
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2. Machine learning-based methods 

2.1. Deep learning and MLP neural network 

The deep learning concept is introduced as a unique learning tech
nique that allows computational models to process multiple layers at the 
same time to achieve a more accurate level (LeCun et al., 2015). The 
state-of-the-art of AI models in real-life problems has been dramatically 
improved by deep learning. It is capable of detecting complex data 
structures and adjusting algorithm parameters to understand and 
represent complex data structures (Zhang et al., 2020). Unlike the more 
straightforward problems of regression and classification, time series 
problems are complex due to the temporal dependence between obser
vations or the complexity of the order (Längkvist et al., 2014). There
fore, deep learning for time series problems is considered a promising 
approach to solving this complex problem (Gamboa, 2017). They are 
known as the neural networks that are able to automatically learn 
complex mappings of datasets (i.e., from input variables to output var
iable), such as recurrent neural network, MLP, convolutional neural 
network, and long-short term memory neural network. Furthermore, 
they can support multivariate inputs and outputs (multiple inputs and 
outputs) (Brownlee, 2018). In this study, the deep learning for MLP 
neural network was taken into account for forecasting copper price in 
the world. 

MLP neural network for time series is known as a valuable and robust 
method for a number of the following reasons:  

(1) MLP neural network is robust to noise in input data, as well as in 
the mapping function. It even can process the data and predict the 
presence of missing values (Dorffner, 1996).  

(2) MLP neural network can well-explain the non-linear relationship 
of the dataset (Dorffner, 1996).  

(3) MLP neural network can support multivariate forecasting, 
whereas, the other simple techniques only support univariate 
forecasting (Sutskever et al., 2014).  

(4) MLP neural network can support multi-step forecasting for the 
time series dataset (Sutskever et al., 2014).  

(5) MLP neural network can fix the number of lag input and output 
variables. It is a challenge for deep neural networks because they 
require the inputs and output dimensional is known and fixed 
(Sutskever et al., 2014). 

For structure, in general, MLP neural network for time series has a 
similar structure for the other problems (e.g., classification or regres
sion). It includes three types of layers: an input layer, hidden layer(s), 
and output layer (Moayedi et al., 2019; Sharifi et al., 2019). A deep 
neural network includes multiple hidden layers. In each layer, neurons 
are the primary components that are connected through the weights. 
These weights can be computed and tuned via activation functions 
aiming to explain the relationship of the dataset (Nguyen et al., 2020c; 
Shang et al., 2020). Furthermore, for deep learning in MLP neural net
works, many components, such as nodes and layers, gradient precision 
with batch size, loss functions, learning rate, can be adjusted to 
dramatically improve the accuracy of the model. This study focuses on 
some components, such as nodes, layers, loss functions, and learning 
rate in deep learning for MLP neural network. The general structure of 
deep MLP neural network is illustrated in Fig. 1. 

2.2. Support vector machine 

SVM is introduced as a robust machine learning method based on the 
statistical theory which was proposed by Cortes and Vapnik (1995). 
Similar to MLP neural network, SVM can solve both classification and 
regression problems (Nguyen et al., 2019b). In time series forecasting, 
SVM can also perform well both the time series classification and time 
series for regression (Mukherjee et al., 1997). One of the advantages of 

SVM for time series forecasting is it can map the input variables to 
output variables through non-linear functions. Furthermore, like MLP 
neural network, SVM can solve the time series problems with multi
variate inputs and outputs (Cao and Tay, 2003), and time series fore
casting with multi-steps. The main idea of SVM is to split data according 
to the linear form by a hyperplane. Herein, support vectors are the data 
points located near the hyperplane (Fig. 2). For non-linear datasets, SVM 
uses kernel functions to map data from two-dimensional to 
higher-dimensional space; subsequently, a hyperplane is applied to 
separate data similar to the linear form (Fig. 3). As a type of neural 
network, SVM also uses vectors between layers to transfer the infor
mation from input variables, and weights are presented for the value of 
vectors (Nguyen et al., 2020b). Loss function was also applied in SVM to 
minimize the error of the model. The detail of SVM can be found in the 
following papers (Cortes and Vapnik, 1995; Ghorbani et al., 2016; 
Hearst et al., 1998; Noble, 2006; Zhang, 2019). 

2.3. Random forest (RF) 

RF is well-known as an ensemble algorithm in machine learning 
proposed by Breiman (1999). Whereas the SVM can build only one 
model from the dataset, the RF model can build a set of models based on 
the bootstrap technique and then combine them (Nguyen and Bui, 
2018), as illustrated in Fig. 4. In this way, RF can deal with complex 
problems with better performance (Lin et al., 2017). RF is also referred 
to as a type of decision tree algorithm, and for each bootstrap, an un
pruned regression tree is created. Subsequently, they were pruned and 
split at each node and calculated the average of the regression tree as the 
model’s output. Further details of the RF algorithm can be referred to in 
the literature (Breiman, 2001; Cutler et al., 2012; Genuer et al., 2017; 
Hastie et al., 2009; Pavlov, 2019). 

2.4. K-nearest neighbors (KNN) 

As a mature data mining technique, KNN is classified as a lazy al
gorithm in machine learning. Indeed, it does not learn anything from the 
training dataset. Instead, it considers the characteristics of the k-nearest 
neighbors on the training dataset and calculates the distance to them 
(Bui et al., 2019). In other words, if a point to be forecasted in the testing 
dataset, the KNN will consider it and all the near points in the training 
dataset. Then, it calculates the distance from the point to be forecasted 

Fig. 2. SVM algorithm and its components.  
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in the testing dataset to the near points to determine the nearest 
neighbor. Finally, it will assign the same attributes and features to the 
point to be forecasted, as shown in Fig. 5. Further details of KNN can be 
read in the literature (Batista and Silva, 2009; Bezdek et al., 1986; 
Ertuğrul and Tağluk, 2017; Peterson, 2009). 

2.5. Gradient boosting tree (GBT) 

The GBT model was introduced as a robust machine learning algo
rithm based on the combination of weak learners and the gradient al
gorithm (Ferreira and Figueiredo, 2012). Similar to the RF algorithm, 

Fig. 3. Mapping data to higher dimensional feature space of SVM.  

Fig. 4. RF algorithm for forecasting copper price.  

Fig. 5. Illustrating the mechanism of the KNN algorithm.  
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GBT is also classified to a decision tree algorithm, but the RF algorithm 
uses the bagging technique, and the GBT algorithm uses the boosting 
technique to improve the accuracy of the model (Dietterich, 2000; 
Sutton, 2005). Accordingly, the GBT focuses on the errors resulting at 
each step, combines weak learners, and repeats the learning until a 
stronger learner is obtained. The pseudo-code can describe the GBT al
gorithm in Fig. 6. Further details of the GBT algorithm can be referred to 

in the following papers (Bentéjac et al., 2021; Friedman, 2002; Guel
man, 2012; Touzani et al., 2018). 

3. Data analysis 

As mentioned above, this study aims to forecast the chaotic behavior 
of copper price in the long-term using deep learning for MLP neural 
network. Accordingly, the relationship between oil, gold, silver, and 
copper were considered and claimed (Bildirici and Türkmen, 2015). A 
variety of previous studies also used the price of oil, gold, silver as the 
input variables for forecasting copper price (Alameer et al., 2019; 
Dehghani and Bogdanovic, 2018; García and Kristjanpoller, 2019). In 
addition, the iron price also has a significant impact on copper price and 
a close relationship with copper price (Ewees et al., 2020; Konishi, 
2007). In addition to the above parameters, this study considers the 
relationship between copper price and the exchange rate of some 
countries with the largest cooper production globally, including Chile, 
China, Peru, and Australia. Correlation analysis and statistical signifi
cance of the exchange rate of Chile, China, Peru, and Australia countries 
and copper price were taken into account and conducted to interpret 
whether these variables should be used or not (Fig. 7). 

Based on the analyzed results in Fig. 7, it can be seen that the cor
relation of exchange rates (i.e., USD/CLP, USD/CNY, USD/PEN, and 
USD/AUD) and copper price are very interesting. Whereas, the USD/PCL 
and USD/PEN variables have a low correlation with the copper price (i. 
e., R = 0.14 and 0.15), the variables of USD/CNY and USD/AUD have a 
higher correlation with the copper price variable (i.e., R = − 0.37 and 
− 0.75). It is worth mentioning that all these variables are statistically 
significant (p < 0.05). Therefore, they should be considered and used for 
forecasting copper prices in this study. The detail of the time series 
dataset used in this study is shown in Fig. 8. 

Prior literature shows that the current price is the best predictor for 
forecast copper prices, and a random walk model is the best model for 
forecasting copper prices with such random walk data (Díaz et al., 2020; 

Fig. 6. Implementation of the GBT algorithm.  

Fig. 7. Correlation analysis of exchange rate of Chile, China, Peru, and Australia countries and copper price.  
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Fig. 8. Time series data of the copper price and other relevant indexes.  
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Liu et al., 2017). However, the dataset used in those studies is daily 
copper price, and the dataset was in the form of random walk data. In the 
present study, the monthly dataset was collected to forecast monthly 
copper prices. It is necessary to check whether the monthly copper price 
is random walk data. This step aims at considering whether the random 
walk model should be used in this study or not. In other words, the use of 
random walk analysis can help understand the predictability of the 
monthly copper price dataset. Thus, we have conducted various analyses 
of random walks, such as random series, random walk, and autocorre
lation, differenced random walk, and differenced random walk and 
autocorrelation, as shown in Fig. 9. 

Looking at Fig. 9, we can see that the copper price dataset used in this 
study is not a random walk (Adhikari and Agrawal, 2014; Litterman, 
1983). Therefore, a time series forecast model with random walk is not 

available for the monthly copper price dataset, as used in this study. In 
other words, it is much better to use non-random walk models through 
forecasting copper price in this study, such as MLP neural network, SVM, 
RF, KNN, and GBT, as mentioned above. The details of the development 
of these forecast models are presented in the next section. 

4. Results and discussion 

Before forecasting copper price, the time series data was divided into 
two parts: in-sample (80%) for training the models, and out-of-sample 
(20%) for testing the developed models (Fig. 10). The MinMax [-1,1] 
scale technique was applied to reduce the overfitting of the model. Mean 
absolute error (MAE), and root-mean-squared-error (RMSE) were used 
as the performance metrics to evaluate the accuracy and performance of 

Fig. 9. Random walk analysis 
(a) Random series; (b) Random walk and autocorrelation; (c) Differenced random walk; (d) Differenced random walk and autocorrelation. 

H. Zhang et al.                                                                                                                                                                                                                                  
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the forecast models. The equations for calculating MAE and RMSE are as 
follow: 

MAE=
1
n

∑n

i=1

⃒
⃒
⃒ycopper true − ycopper pred

⃒
⃒
⃒ (1)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
ycopper true − ycopper pred

)2
√

(2)  

where n stands for the total number of observations in the copper price 
database; ycopper true and ycopper pred are the actual and forecasted copper 
prices. 

As claimed by previous researchers (Díaz et al., 2020; Liu et al., 
2017), cooper prices forecasted in a short-term are typically more ac
curate than cooper prices forecasted in a long-term. Indeed, they 
demonstrated that the daily forecasted copper prices are more accurate 
than weekly, monthly, 6 months, 1 year and 2 years forecasted copper 
prices. Therefore, in this study, the main objective is the monthly copper 
price forecast since the monthly copper price dataset was collected, and 
long-term forecasts are often inaccurate, as recommended by previous 
researchers. In addition, in order to develop the monthly copper price 
forecast models in this study, different steps of the datasets were 
considered with the following configurations of the predictors (D), 
specifically: (1) D = 1 (using the current price to forecast the next price); 

Fig. 9. (continued). 
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(2) D = 2 (using from the current price until the 2nd lags of the pre
dictors); (3) D = 3 (using from the current price until the 3rd lags of the 
predictors); (4) D = 4 (using from the current price until the 4th lags of 
the predictors); (5) D = 5 (using from the current price until the 5th lags 
of the predictors). 

4.1. Development of MLP neural network model 

Once the materials were well-prepared, the mentioned monthly 
copper price forecast models were developed and implemented based on 
the in-samples (training dataset). For MLP neural network modeling, as 

Fig. 10. Splitting monthly copper prices to in-samples and out-of-samples.  

Fig. 11. MSE of the MLP neural network with different nhidden.  

Fig. 12. MSE of the MLP neural network with different nneuron.  
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stated above, this study focuses on the optimization of an MLP neural 
network using deep learning techniques. The following parameters of 
the MLP neural network are important that decide the accuracy of the 
model: topology network, loss function, and learning rate. Herein, MSE 
was selected as the loss function because it has no outlier predictions 
(Shcherbakov et al., 2013). 

To define the optimal topology network of the MLP model, a trial and 
error procedure for the number of hidden layers (nhidden) and neurons 
(nneuron) was performed with nhidden = [1, 5], nneuron = [9, 20]. Finally, 
the optimal topology network of the MLP model was selected with 3 
hidden layers and 20, 15, and 10, for the number of neurons in the first, 
the second, and the third hidden layers, respectively (Figs. 11 and 12). 

Once the MLP neural network structure was well-built, the deep 
learning technique was continuously applied to tune the learning rate of 
the MLP neural network, as shown in Fig. 13. It was claimed as a po
tential parameter that can be used to control the accuracy of an MLP 
model (Fang et al., 2005). Finally, the optimal learning rate for the MLP 
neural network is 0.0001, as observed in Fig. 13. Herein, the training 

and testing errors are approximate. Eventually, the optimal MLP neural 
network 9-20-15-10-1 was defined as the best MLP neural network for 
forecasting copper price. 

After the optimal configuration of the MLP neural network was 
selected, the MLP neural network model with different multi-steps was 
developed, as shown in Fig. 14. During the development of the MLP 
neural network models, the computational process was implemented 
with 1000 epochs to ensure the convergence of the forecast models. 
Throughout the performance curves in Fig. 14, it can be seen that the 
MLP neural network models were well-developed without overfitting 
or/and underfitting. 

4.2. Development of SVM model 

For the development of the SVM for forecasting monthly copper 
price, the radial basis function (RBF) was applied along with the 
following parameters: C = 1.0; kernel cache size = 200; degree = 3; 
epsilon = 0.1; gamma = “scale”; max inter = − 1; shrinking = “True”, 

Fig. 13. MSE of the MLP neural network with different learning rate.  
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and tolerance = 0.001. It is worth noting that the in-samples and out-of- 
samples used for the SVM development are the same as developing the 
MLP neural networks. The accuracy of the SVM model with different 
steps for forecasting monthly copper price is shown in Fig. 15. 

4.3. Development of RF model 

For RF modeling, the bootstrap technique was applied as one of the 

outstanding advantages of the RF model, and it used the MSE as the 
criterion. As mentioned above, the RF model was developed based on 
the decision tree algorithm, and it composed of many parameters of a 
tree that were set up as follow in this study: complexity parameter = 0.0; 
MSE was used to measure the quality of the trees split; the threshold to 
decrease of impurity was set equal to 0; minimum number of samples 
was set equal to 1 at each leaf node; an internal node was split with the 
minimum number of samples of 2, and the number of estimators was set 

Fig. 14. MLP neural network models with different steps and accuracies.  
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equal to 100. It is worth noting that the in-samples and out-of-samples 
used for the RF development are the same as developing the MLP neu
ral networks and SVMs. The accuracy of the RF model with different 
steps for forecasting monthly copper price is shown in Fig. 16. 

4.4. Development of KNN model 

To develop the KNN model, similar techniques were applied as those 
used for the SVM and EF models. Also, it is worth noting that the in- 
samples and out-of-samples used for the KNN development are the 

Fig. 14. (continued). 
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same as the development of the previous forecast models. Herein, the 
leaf size of KNN was set equal to 30, the number of neighbors equal to 5, 
‘minkowski’ was used as the distance metric to use for the tree with the 
power parameter of 2. In addition, the weight function used in predic
tion is ‘uniform’. The accuracy of the RF model with different steps for 
forecasting monthly copper price is shown in Fig. 17. 

4.5. Development of GBT model 

For the GBT development, an additive model was developed in a 
forward stage-wise fashion. GBT was developed based on a regression 
tree with the least-squares regression loss function. During development 
of the GBT model, the parameters were set up as follow: alpha = 0.9; 
complexity parameter for cost-complexity pruning = 0.0; the MSE that 
was improved by Friedman was used as the criterion to measure the 
quality of a split in the regression tree; learning rate of the model was set 
equal to 0.1; maximum depth of the estimators was set equal to 3; the 
threshold to decrease of impurity was set equal to 0; minimum number 
of samples was set equal to 1 at each leaf node; an internal node was split 
with the minimum number of samples of 2; the number of estimators 
(boosting stages) was set equal to 100; subsample = 1.0; tolerance =
0.0001, and validation fraction = 0.1. Besides, it is worth noting that the 
in-samples and out-of-samples used for the GBT development are the 
same as the development of the previous forecast models. The accuracy 
of the GBT model with different steps for forecasting monthly copper 
price is shown in Fig. 18. 

4.6. Comparison and evaluation 

Once the forecast models were developed, two measures of forecast 
errors were computed to evaluate the accuracy of the models on both in- 
samples and out-of-samples, i.e., MAE and RMSE, as described in 

equations (1) and (2). The accuracy of the forecast models was evaluated 
on both periods (i.e., in-samples and out-of-samples) to provide a 
comprehensive assessment of the models’ performance. Also, the accu
racies of the individual forecast models were considered with a different 
set of predictors (e.g., D = 1, 2, 3, 4, 5), as computed in Table 1. 

Considering the accuracy of the forecast models on the in-samples 
with D = 1, we can see that the RF, KNN, and GBT models are better 
than the MLP neural network model. However, it can observe that the 
MLP neural network is the best model with an RMSE of 287.539 for the 
out-of-samples. Whereas, the other models provided higher errors on the 
out-of-samples (i.e., SVM = 474.486, RF = 393.599, KNN = 552.208, 
and GBT = 518.959). This finding shows the unstable (even to be 
underfitting) of the RF, KNN, and GBT models for forecasting monthly 
copper price in this study with D = 1. Observing other sets of predictors 
(D = 2, 3, 4, 5), similar results were reported for the forecast models 
with unstable RF, KNN, and GBT models. In contrast, the MLP neural 
network model provided a high level of stability for forecasting monthly 
copper prices. 

Comparison between various sets of predictors shows that the ac
curacy of the forecast models is different. It does not appear to be a rule 
for the change (increase or decrease) of the number of predictors in 
forecasting monthly copper prices. For example, with the MLP neural 
network model, RMSE = 287.539 for D = 1, RMSE = 441.763 for D = 2, 
but RMSE = 377.427 for D = 3, and RMSE = 478.208, but RMSE 
increased with D = 5 (i.e., 388.004). Therefore, the number of set of 
predictors does not seem to be a reflection of the quality trend of the 
forecasting models. Overall review of scenarios with forecast models 
shows that the MLP neural network model with D = 1 provided the 
highest accuracy for forecasting monthly copper price with an MAE of 
228.617 and RMSE of 287.539 for the out-of-samples. Therefore, it 
should be used as the best forecast model for forecasting monthly copper 
prices under the set of predictors equal to 1 (D = 1). 

Fig. 14. (continued). 
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Fig. 15. Accuracy of the SVM model for forecasting monthly copper price with different steps.  
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Fig. 16. Accuracy of the RF model for forecasting monthly copper price with different steps.  
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Fig. 17. Accuracy of the KNN model for forecasting monthly copper price with different steps.  
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Fig. 18. Accuracy of the KNN model for forecasting monthly copper price with different steps.  
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5. Conclusion 

As copper is an essential metal that is widely used in various aspects 
in countries all over the world, the change in copper price may have a 
great impact on mining enterprises, investors, policymakers, copper- 
related industries, and copper-dependent countries. Thus, precisely 
forecasting copper price is important to stakeholders in making the right 
decisions. In this study, MLP neural network, SVM, RF, KNN, and GBT 
models were employed to forecast monthly copper prices based on the 
prices of oil, gold, silver, and iron ore, and four exchange rates, 
including USD/CLP, USD/CNY, USD/PEN, and USD/AUD. The analysis 
results confirmed the correlation between the four exchange rates and 
monthly copper prices and demonstrated that the forecasted monthly 
copper prices were close to the actual prices. Amongst, the MLP neural 
network was recommended as the best model for forecasting monthly 
copper price with the lowest error and the highest stable of the model. 
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Ertuğrul, Ö.F., Tağluk, M.E., 2017. A novel version of k nearest neighbor: dependent 
nearest neighbor. Appl. Soft Comput. 55, 480–490. 

Ewees, A.A., Elaziz, M.A., Alameer, Z., Ye, H., Jianhua, Z., 2020. Improving multilayer 
perceptron neural network using chaotic grasshopper optimization algorithm to 
forecast iron ore price volatility. Resour. Pol. 65, 101555. 

Fang, Q., Nguyen, H., Bui, X.-N., Nguyen-Thoi, T., 2019a. Prediction of blast-induced 
ground vibration in open-pit mines using a new technique based on imperialist 
competitive algorithm and M5Rules. Nat. Resour. Res. 29, 791–806. 

Fang, Q., Nguyen, H., Bui, X.-N., Tran, Q.-H., 2019b. Estimation of blast-induced air 
overpressure in quarry mines using cubist-based genetic algorithm. Nat. Resour. Res. 
29, 593–607. 

Fang, X., Luo, H., Tang, J., 2005. Structural damage detection using neural network with 
learning rate improvement. Comput. Struct. 83, 2150–2161. 

Ferreira, A.J., Figueiredo, M.A., 2012. Boosting Algorithms: A Review of Methods, 
Theory, and Applications. Ensemble machine learning, pp. 35–85. 

Friedman, J.H., 2002. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 
367–378. 

Gamboa, J.C.B., 2017. Deep Learning for Time-Series Analysis arXiv preprint arXiv: 
1701.01887.  

Gan, L., Wang, H., Yang, Z., 2020. Machine learning solutions to challenges in finance: an 
application to the pricing of financial products. Technol. Forecast. Soc. Change 153, 
119928. 

García, D., Kristjanpoller, W., 2019. An adaptive forecasting approach for copper price 
volatility through hybrid and non-hybrid models. Appl. Soft Comput. 74, 466–478. 

Table 1 
Measures of forecast errors of the developed models on the out-of-samples.  

D MAE RMSE 

MLP SVM RF KNN GBRT MLP SVM RF KNN GBRT 

In-samples 

1 195.639 503.355 78.758 158.252 71.110 335.053 554.640 136.139 271.325 103.124 
2 219.650 514.484 79.665 156.613 62.024 339.969 570.130 151.484 283.742 86.375 
3 240.153 518.913 79.593 158.126 59.708 370.788 577.519 139.530 274.392 79.500 
4 253.154 513.016 83.609 158.847 56.620 364.838 571.487 158.911 270.719 76.195 
5 266.016 496.896 76.021 160.764 53.757 406.538 556.027 135.103 283.698 72.137 

Out-of-samples 

1 228.617 399.512 308.691 453.147 402.024 287.539 474.486 393.599 552.208 518.959 
2 355.382 320.430 288.260 408.466 370.387 441.763 396.499 375.994 479.062 453.078 
3 289.759 330.558 283.576 358.129 516.541 377.427 407.215 377.974 424.009 618.314 
4 404.869 377.346 305.795 414.662 517.173 478.208 466.797 396.932 481.182 625.212 
5 333.528 396.116 303.645 485.760 561.217 388.004 490.236 407.362 567.105 663.313  

H. Zhang et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0301-4207(21)00203-8/sref1
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref1
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref1
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref2
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref2
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref2
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref3
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref3
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref3
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref4
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref4
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref5
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref5
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref6
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref6
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref6
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref7
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref7
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref8
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref8
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref8
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref9
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref10
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref11
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref11
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref12
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref12
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref13
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref13
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref13
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref14
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref14
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref15
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref15
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref15
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref16
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref17
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref17
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref18
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref18
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref19
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref19
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref20
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref20
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref20
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref21
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref21
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref22
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref22
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref23
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref23
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref24
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref24
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref24
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref25
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref25
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref25
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref26
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref26
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref26
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref27
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref27
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref28
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref28
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref29
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref29
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref30
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref30
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref31
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref31
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref31
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref32
http://refhub.elsevier.com/S0301-4207(21)00203-8/sref32


Resources Policy 73 (2021) 102189

19

Genuer, R., Poggi, J.-M., Tuleau-Malot, C., Villa-Vialaneix, N., 2017. Random forests for 
big data. Big Data Res. 9, 28–46. 

Ghorbani, M.A., Khatibi, R., Goel, A., FazeliFard, M.H., Azani, A., 2016. Modeling river 
discharge time series using support vector machine and artificial neural networks. 
Environ. Earth Sci. 75, 685. 

Guelman, L., 2012. Gradient boosting trees for auto insurance loss cost modeling and 
prediction. Expert Syst. Appl. 39, 3659–3667. 

Guo, H., Nguyen, H., Bui, X.-N., Armaghani, D.J., 2021. A new technique to predict fly- 
rock in bench blasting based on an ensemble of support vector regression and 
GLMNET. Eng. Comput. 37, 421–435. https://doi.org/10.1007/s00366-01 
9-00833-x. 

Guo, H., Nguyen, H., Vu, D.-A., Bui, X.-N., 2019. Forecasting mining capital cost for 
open-pit mining projects based on artificial neural network approach. Resour. Pol., 
101474 

Hastie, T., Tibshirani, R., Friedman, J., 2009. Random Forests, the Elements of Statistical 
Learning. Springer, pp. 587–604. 

Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B., 1998. Support vector 
machines. IEEE Intell. Syst. Their Appl. 13, 18–28. 

Jian, Zhou, Panagiotis G., Asteris, Danial Jahed, Armaghani, Binh Thai, Pham, 2020. 
Prediction of ground vibration induced by blasting operations through the use of the 
Bayesian Network and random forest models. Soil Dynam. Earthq. Eng. 139, 106390 
https://doi.org/10.1016/j.soildyn.2020.106390. 

Jian, Zhou, Yingui, Qiu, Danial Jahed, Armaghani, Wengang, Zhang, Chuanqi, Li, 
Shuangli, Zhu, Reza, Tarinejad, 2021a. Predicting TBM penetration rate in hard rock 
condition: a comparative study among six XGB-based metaheuristic techniques. 
Geosci. Front. 12 (3), 101091 https://doi.org/10.1016/j.gsf.2020.09.020. 

Jian, Zhou, Yingui, Qiu, Shuangli, Zhu, Danial Jahed, Armaghani, Chuanqi, Li, 
Hoang, Nguyen, Saffet, Yagiz, 2021b. Optimization of support vector machine 
through the use of metaheuristic algorithms in forecasting TBM advance rate. Eng. 
Appl. Artif. Intell. 97, 104015 https://doi.org/10.1016/j.engappai.2020.104015. 

Konishi, H., 2007. Selective Separation and Recovery of Copper from Iron and Copper 
Mixed Waste by Ammonia Solution. Graduate school of engineering, Osaka 
university. 

Kriechbaumer, T., Angus, A., Parsons, D., Casado, M.R., 2014. An improved 
wavelet–ARIMA approach for forecasting metal prices. Resour. Pol. 39, 32–41. 

Kwakkel, J.H., Auping, W.L., Pruyt, E., 2013. Dynamic scenario discovery under deep 
uncertainty: the future of copper. Technol. Forecast. Soc. Change 80, 789–800. 

Längkvist, M., Karlsson, L., Loutfi, A., 2014. A review of unsupervised feature learning 
and deep learning for time-series modeling. Pattern Recogn. Lett. 42, 11–24. 

Lasheras, F.S., de Cos Juez, F.J., Sánchez, A.S., Krzemień, A., Fernández, P.R., 2015. 
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