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Estimating Air Over-pressure Resulting from Blasting
in Quarries Based on a Novel Ensemble Model
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In this study, a coupling of generalized linear modeling (GLMNET) and nonlinear neural
network modeling with multilayer perceptrons (MLPNN), called GLMNETs–MLPNN
modeling, was conducted for predicting air over-pressure (AOp) induced by blasting in
open-pit mines. Accordingly, six GLMNET models were developed first. Then, their pre-
dictions were bootstrap aggregated as the new predictors, and an optimal MLPNN model
was developed based on these new predictors. To prove the improvement of the proposed
GLMNETs–MLPNN model, the conventional models, such as GLMNET, support vector
machine, MLPNN, random forest, and empirical, were considered and developed based on
the same dataset. The results of the proposed model then were compared with that of the
conventional models in terms of accurate prediction and modeling. The findings revealed
that the bootstrap aggregating of six generalized linear models (i.e., GLMNET models) by a
nonlinear model (i.e., MLPNN) could enhance the accuracy in predicting AOp with a root-
mean-squared error (RMSE) of 2.266, determination coefficient (R2) of 0.916, and mean
squared error (MAE) of 1.718. In contrast, the other stand-alone models provided poorer
performances with RMSE of 2.981–4.686, R2 of 0.597–0.860, and MAE of 3.156–1.990. Be-
sides, the sensitivity analysis results indicated that burden, stemming, distance, spacing and
maximum explosive charge per delay were the most important parameters in predicting
AOp.

KEY WORDS: Air over-pressure, Quarry, GLMNETs–MLPNN, Ensemble model, Soft computational
method.

INTRODUCTION

Blasting is the most widely used technique to
fracture rock and ore in open-pit mines to facilitate
loading, transporting, and crushing. The outstanding
advantages of this technique are the ability to break
rocks with high hardness, hydrated rocks, produce large
amounts of rocks, and low-cost (Huang et al. 2011; Bui
et al. 2019a; Nguyen et al. 2020b). However, the disad-
vantages of this method significantly affect the sur-
rounding environment. Large-scale explosions often
cause ground vibration, slope failure, and damage to the
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surrounding structures (Bakhtavar et al. 2017; Azimi
et al. 2019; Bui et al. 2019b; Chen et al. 2019; Yu et al.
2020; Nguyen 2020). Besides, air over-pressure (AOp)
has been warned as one of the adverse effects of blasting
(Fig. 1), and it can cause severe injuries to human
health, even leading to death (Rosenfeld et al. 2013; Bui
et al. 2019c; Nguyen et al. 2020c). At close distances, the
AOp induced by large-scale blasts can blow buildings or
breaking of glass windows (Remennikov and Carolan
2006; Ngo et al. 2007; Akande et al. 2014; Nguyen et al.
2018). In addition to ground vibration and AOp, fly
rock, dust, toxic gases, and psychological trauma are
also considered to be hazardous effects on the human
and surroundings (Rosenfeld et al. 2013; Armaghani
et al. 2018; Ding et al. 2019; Fang et al. 2019; Guo et al.
2019b; Nguyen and Bui 2019; Nguyen et al. 2019a). In
this study, AOp resulting from quarries and how to get
high accurate predictions are considered as the main
focuses.

To predict AOp induced by mine blasting, two
main approaches have been widely applied by
scholars, including soft computing (or artificial
intelligence, AI) and empirical modeling. Of those
approaches, empirical modeling is usually simple
and convenient. However, the limitations of empir-
ical modeling are low performance and reliability
because of the use of linear relationship between
monitoring distance and amount of explosive charge
per blast (Nguyen et al. 2019b). In contrast, soft
computing or AI modeling has been introduced and
confirmed with superior performance and accuracy
in predicting AOp. For instance, Khandelwal and
Kankar (2011) considered and predicted AOp in a
quarry mine using a support vector machine (SVM)
model. Subsequently, a generalized predictor equa-
tion was applied and compared with the developed
SVM model aiming to investigate the suitability of
this approach in terms of modeling and computa-
tion. Finally, they found that the SVM model for
predicting AOp had better results. Armaghani et al.
(2015) also developed an ANN (artificial neural
network) model for predicting AOp with optimiza-
tion of the imperialist competitive algorithm, called
ANN–ICA. A generalized predictor equation was
also considered in their study for comparison pur-
poses like the approach of Khandelwal and Kankar
(2011). Finally, their results demonstrated that the
ANN–ICA model can be used to predict and control
AOp with high reliability. Various nonlinear models
were also investigated by Hasanipanah et al. (2016)
for estimating AOp resulting, including ANN,
adaptive neuro-fuzzy inference system (ANFIS),

and empirical model. In another study, Hasanipanah
et al. (2017) developed a PSO–SVR model for
modeling and evaluating AOp induced by blasting
operations based on the SVM method for regression
problems (i.e., SVR) and the optimization by parti-
cle swarm algorithm (PSO). It is worth noting that
the role of the PSO algorithm is similar to the ICA
algorithm in the ANN–ICA model that was pro-
posed by Armaghani et al. (2015). However, the
optimization objective of the PSO algorithm, in this
case, is the hyper-parameters of the SVR model,
instead of the weights of the ANN model in the
study of Armaghani et al. (2015). Their PSO-based
SVR model provided a promising performance in
predicting AOp with a squared correlation coeffi-
cient (R2) of 0.997. Based on a similar approach,
Alel et al. (2018) proposed the PSO-ANN model for
predicting AOp in quarries with great accuracy
(root-mean-square error (RMSE) = 2.18 and
R2 = 0.970). Comparing different AI techniques
(e.g., GBM (gradient boosting machine), RF (ran-
dom forest), and Cubist) and empirical models,
Nguyen et al. (2020a) also demonstrated that these
AI models were superior to those of the empirical
models in predicting AOp. Based on the fuzzy
Delphi technique, a novel ANFIS–PNN (polynomial
neural network)–GA (genetic algorithm) model was
also developed for estimating AOp with a promising
result (Harandizadeh and Armaghani 2020). Atmo-
spheric conditions were also taken into account for
predicting AOp using an ANN model (Ozer et al.
2020). Ultimately, a high correlated exponential
relationship was found in their study with an R2 of
0.79. Based on the advantages of hybrid models,
Nguyen and Bui (2020b) also proposed the GA-
based boosted smoothing spline (BSTSM) model for
estimating AOp. Meteorological conditions, as well
as blasting parameters, were also investigated in
their study for the aim of evaluating the effects of
different input variables in predicting AOp. In
addition, various performance indices were applied,
especially the Taylor diagram, for comprehensive
assessment of model quality. In conclusion, high
accurate prediction with superior performance was
disclosed for the proposed GA–BSTSM model.

Over the past decade, various state-of-the-art
models have been developed and applied to predict
AOp with impressive performances and high accu-
racy. However, their performance has not been
confirmed as satisfactory in all areas/mines. Some
scholars recommended that the accuracy of the
introduced models may be poor in other mines, and
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they need to be reconsidered before using for pre-
dicting AOp, especially with different geological
conditions (Mohamad et al. 2016; AminShokravi
et al. 2018; Nguyen et al. 2019c). Moreover, the
improvement of the simple or existing models to
create new generations of prediction models with
that of higher accuracy is a big concern of re-
searchers and engineers. Thus, this study proposed a
new state-of-the-art model for predicting AOp
based on an ensemble of generalized linear model-
ing (GLMNET) and multilayer perceptron neural
network modeling (MLPNN), called GLMNETs–
MLPNN modeling. To prove the enhanced perfor-
mance of the proposed GLMNETs–MLPNN model,
the conventional models, such as GLMNET, SVM,
MLPNN, RF, and empirical were also considered
and compared with that of the proposed
GLMNETs–MLPNN model.

METHODOLOGY

As mentioned above, the principle objective of
the present work was to propose a novel state-of-
the-art model for predicting AOp by coupling of
linear and nonlinear models, i.e., GLMNETs–
MLPNN. Therefore, the main focus of this section
was on the background of the GLMNET and
MLPNN algorithms, as well as on how to develop

the GLMNETs–MLPNN model for predicting AOp.
Further details of the other methods (i.e., empirical,
SVM, RF) can be found in the literature (e.g., Zhou
et al. 2021; Cortes and Vapnik 1995; Breiman 2001;
Nguyen and Bui 2019; Moayedi et al. 2020; Tran
et al. 2020; Ngo et al. 2020).

Generalized Linear Modeling

GLMNET is a package based on the general-
ized linear model (GLM), which was developed by
Friedman et al. (2010). It uses the penalized maxi-
mum likelihood to fit the GLM and computes the
regularization path for the lasso or elastic-net pen-
alty at a grid for the regularization parameter (i.e.,
k) (Hastie and Qian 2016). The advantages of the
GLMNET include: (1) extremely fast; (2) exploita-
tion of sparsity in the input matrix x. The GLMNET
works effectively with Cox regression, logistic and
multinomial, linear, Poisson, even multi-response
linear regression models. The objective function of
the GLMNET for predicting AOp is described as:

min
n0;n

1

B

XB

i¼1

wikðAOpi; n0 þ nTÞ

þ k 1 � að Þ nk k2
2

2
þ a nk k1

" #
ð1Þ

Figure 1. The AOp phenomenon induced by mine blasting in surface mines.
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where B is number of blasting events, w is
weight of input variables, k(AOp, g) is the negative
log-likelihood contribution for AOp; AOp is the
output variable, and k and a are the parameters of
the GLMNET model. Of those parameters, a is the
mixing percentage, and it controls the elastic-net
penalty whereas k is the regularization parameter,
and it controls the overall strength of the penalty.

An assessment of the documentation shows that
GLMNET has been mentioned and used for blasting
problems, such as flyrock prediction (Guo et al.
2019a) and AOp prediction (Bui et al. 2019a, b, c, d).
Although the GLMNET model was introduced
earlier for AOp prediction, it was used only as a
stand-alone model. In this study, the GLMNET
model was also applied to predict AOp but under-
taken in another quarry. Moreover, a combination
of multiple GLMNET models and MLPNN model
was considered and conducted to generate a novel
robust intelligence model for predicting AOp.

Neural Network Modeling with Multilayer
Perceptrons

MLPNN is a type of ANN, and it consists of an
input layer, one or multiple hidden layers, and an
output layer. Of these layers, the input layer con-
tains the input data, and they are reflected through
the characteristics of the input data (i.e., dimensions,
data size, data type) and the number of neurons. The
output layer contains the output neuron(s). Between
the input and output layers is/are the hidden layer(s)
(Fig. 2). MLPNN is well-regarded as an effective
method to realize and predict/forecast complex
problems based on its structure and the algorithms
applied (Ojha et al. 2017). The underlying process-
ing units of MLPNN are artificial neurons and they
are communicated over a number of layers with fully
linked (Çaylak and Kaftan 2014). In MLPNN, the
neurons are pre-established according to a one-way
direction manner. The information is processed
based on the connections of the artificial neurons
through the layers described above. In MLPNN,
summation and activation functions are used on the
nodes to tune the rate of transformation of the
information (Isa et al. 2010). Accordingly, the sum-
mation function is used to attain the weights and
biases, thus:

Sumj ¼
XI

i¼1

wijxi þ bj ð2Þ

where I is number of input variables in each
MLPNN structure; xi is the ith input variable; bj is
bias at node j; and wij is the weight between ith and
jth nodes. Subsequently, an activation function can
be considered to adapt to the connections between
neurons. There are many activation functions that
can be applied to a MLPNN model. Some of the
often-used activation functions are the following:

Sigmoid function:

AOpjðSumjÞ ¼
1

1 þ e�Sumj
ð3Þ

Tanh function:

tanhjðSumjÞ ¼
eSumj � e�Sumj

eSumj þ e�Sumj
ð4Þ

ReLU function:

AOpjðxÞ ¼ maxð0; SumjÞ ð5Þ

Leaky ReLU function:

AOpjðSumjÞ ¼ 1ðSumj\0Þða:SumjÞ þ 1ðSumj

� 0ÞðSumjÞ ð6Þ

Maxout function:

AOpjðSumjÞ ¼ maxðwT
1 � Sumj þ b1;w

T
2 � Sumj þ b2Þ

ð7Þ

GLMNETs–MLPNN

Once the optimal structure of MLPNN is de-
fined, the training algorithm is set in motion to
compute and fine-tune the connections of the net-
work via weighting vectors. The weights are updated
during estimation of the outcome predictions to
minimize the total error of the network. Following
this, it is combined with multiple GLMNET models
to generate a novel model with the accuracy im-
proved.

To implement the idea of coupling the predic-
tions of the GLMNET and MLPNN models, the
AOp database was divided into two sections: 70%
(� 128 events) for developing the GLMNET and
MLPNN, as well as the GLMNETs–MLPNN mod-
els; 30% (� 52 events) for testing the performance
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of these models. It is worth noting that there is no
standard for dataset partitioning. Review of research
on data mining shows that 70/30 partitioning was
widely applied in many previous studies and many
researchers recommended using this ratio to avoid
the over-fitting phenomenon (Salarian et al. 2007;
Soni et al. 2011; Dehnavi et al. 2015; Pavlidis et al.
2019; Turgut et al. 2019).

To develop the GLMNETs–MLPNN model for
predicting AOp, the dataset is firstly preprocessed
with the application of normalization techniques
(e.g., Box–Cox, MinMax). Next, six GLMNET
models were developed based on the processed
training dataset, and they are called the sub-models.
Subsequently, the outcomes of these sub-models
were combined as the new predictors, and they were
then used to develop the MLPNN model. The
flowchart of the proposed GLMNETs–MLPNN
model is shown in Fig. 3.

Performance Evaluation Metrics

For a regression problem in machine learning,
this study used three performance metrics to assess
the performance of the AOp predictive models,
including RMSE, R2, and mean absolute error
(MAE). As an overall picture for the models� per-
formance, RMSE and MAE allow perception of the

total error of the network; meanwhile, R2 points out
how the AOp database fitted with the developed
models. The RMSE, R2, and MAE are defined as
follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

b

Xb

i¼1

ðAOpmeasured � AOppredictedÞ
2

vuut ð8Þ

R2 ¼ 1 �

Pb

i¼1

AOpmeasured � AOppredicted

� �2

Pb

i¼1

AOpmeasured � mean AOpmeasuredð Þð Þ2

ð9Þ

MAE ¼ 1

b

Xb

i¼1

AOpmeasured � AOppredicted

���
��� ð10Þ

where b is number of blasting events, and
AOpmeasured and AOppredicted are actual and model-

predicted values of AOp, respectively.

Figure 2. Illustrating the structure and algorithm of MLPNN for predicting AOp.
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STUDY AREA DESCRIPTION
AND DATASET USED

Study Site

For this study, a quarry in northern Vietnam
was selected to undertake blasting operations and to
collect AOp data. It is located within 105o53¢10¢¢E–
105o54¢00¢¢E longitudes and 20o25¢55¢¢N–20o26¢30¢¢N
latitudes (Fig. 4). The rocks in this quarry are mainly
limestone for cement production; the rest is used as
additives or construction aggregate in the case when
the cement production requirements are not met.
With hardness coefficient of 12, blasting is taken into
account as the most effective method for rock
breaking in this quarry. For blasting in this mine, the
non-electric delay blasting method (Davitt and Si-
mon 1983) with the electric blast-initiation system
was applied (Ewick et al. 1998). The borehole
diameter of 105 mm was used for blasting in this
mine. The ANFO explosive, a mixture was mixed
ammonium nitrate and fuel oil, was used as the
primary explosive for blasting at this mine. Besides,

emulsion explosive was also used for some wet
boreholes (containing water). At this mine,
4,000,000 tons of limestone were derived per year
for cement production, and the amount of explosives
required to break rock is up to 2 tons per blast.

Data Preparation

To reach the goal of this study, a data collection
plan was properly executed and in accordance with
existing practices. Finally, 180 blasts were collected
with AOp measurements as well as blasting param-
eters. Previous studies indicated that blasting
parameters, such as spacing (S), explosive charge per
delay (W), powder factor (P), stemming (T), burden
(B), and the monitoring distance (R) have significant
effects on AOp during blasting (Armaghani et al.
2015; Alel et al. 2018). Therefore, data for these
parameters were collected from blasting patterns
and used as the input variables in the AOp predic-
tion models. To measure R, a GPS receiver was used
with the distance measured in the range of 222–

Figure 3. Proposed GLMNETs–MLPNN framework for AOp prediction.
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805 m. For measuring AOp, the Micromate over-
pressure monitor unit manufactured by Instantel
was used with high reliability. The range of recorded
AOp was 83.2–118.8 decibels (dB) during the 180
blasts. The typical characteristics of the collected
data are listed in Table 1.

Before training and developing the models, the
collected data should be preprocessed and prepared
to avoid over-fitting, as well as to improve model

accuracy (Boland et al. 2019; Ebtehaj et al. 2020).
Accordingly, the correlations among input variables,
as well as the output variable were calculated and
evaluated. A correlation matrix of the collected data
is shown in Table 2.

Based on the correlation matrix (Table 2),
there is no doubt that correlations between input
variables are not too high. In particular, the cor-
relation between W and R is the highest with

Figure 4. The quarry for undertaking AOp measurements and predictions.

Table 1. Typical characteristics of collected data

Categories P (kg/m3) W (Kg) T (m) B (m) S (m) R (m) AOp (dB)

Min 0.290 37.000 1.500 1.100 2.300 222.000 83.200

1st Quartile 0.420 72.000 1.900 2.000 3.000 395.500 97.850

Median 0.480 90.500 2.100 2.400 3.300 484.500 103.530

Mean 0.482 87.560 2.128 2.322 3.292 494.100 103.690

3rd Quartile 0.540 103.250 2.400 2.600 3.600 571.000 109.330

Max 0.620 134.000 2.800 3.500 4.200 805.000 118.800
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correlation coefficient of 0.676, and a linear rela-
tionship can be expressed for this value. However,
it is neither too high nor too low, and their dif-
ferentiation may be reflected in the correlation
with the output variable. Therefore, these six input
variables were considered as the independent
variables to predict AOp in this study. Besides,
moderate or low correlations between AOp and
input variables are also defined. Remarkably, W
and R have an acceptable correlation with the
dependent variable (i.e., AOp), and they might be
having a linear relationship. Other input variables
seem to have a nonlinear relationship with the
output variable. Therefore, the GLMNET model
was selected to interpret the linear association, and
the MLPNN model was selected to express the
nonlinear relationship of the variables.

CONFIGURATION OF THE PREDICTIVE
MODELS

GLMNET Model

For the GLMNET modeling, the data were
normalized by a normalization technique named
BoxCox (Box and Cox 1964) to change the values in
the data to a common scale of [0, 1] without dis-
torting differences in the characteristics of the vari-
ables. In addition, a resampling procedure, named
cross-validation (CV) was applied with 10-folds and
three repeats to evaluate the model performance
with such a limited database of AOp. For configur-
ing, the parameters of the GLMNET model, mixing
percentage (a) and regularization parameter (k)
were fine-tuned with a grid search of [0,1] for a and

Figure 5. Configuration of the GLMNET model for AOp prediction based on the grid search and

repeated 10-folds CV techniques.

Table 2. Correlation matrix between the inputs and output of the collected dataset

P W T B S R AOp

P 1 � 0.120 � 0.110 � 0.001 0.026 0.164 � 0.061

W � 0.120 1 � 0.035 0.060 � 0.035 � 0.676 0.585

T � 0.110 � 0.035 1 0.116 � 0.011 � 0.009 � 0.096

B � 0.001 0.060 0.116 1 � 0.179 � 0.075 � 0.029

S 0.026 � 0.035 � 0.011 � 0.179 1 0.056 0.059

R 0.164 � 0.676 � 0.009 � 0.075 0.056 1 � 0.508

AOp � 0.061 0.585 � 0.096 � 0.029 0.059 � 0.508 1
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[0,5] for k. Finally, more than one hundred (i.e.,
1071) GLMNET models were established and their
performance was evaluated through RMSE (Fig. 5).
Ultimately, the best GLMNET model was defined
with a = 1 and k = 0.

MLPNN Model

Regarding the MLPNN modeling, the crucial
issue was designing the structure of MLPNN model
(e.g., hidden layers, nodes, and training algorithm).
The training time of the MLPNN model can increase
on condition that too many hidden layers are used in
the network. In addition, the MLPNN model may
over-fit if too many nodes in the hidden layer(s) are
used (Liu et al. 2019; Dou et al. 2020). Consequently,
‘‘trial-and-error’’ procedure was applied to design an
optimal structure of the MLPNN model to solve the
above problems. The feedforward algorithm was
applied to train the MLPNN structures, and the
Maxout active function was activated. To guard
against over-fitting, a powerful preventative mea-
sure was applied, named CV. In addition, the Min-
Max scaling method was utilized to normalize the
data in the range of [0,1] (Nguyen and Bui 2020a;
Zhang et al. 2020). All things considered, an optimal

Figure 6. The MLPNN model and its structure for AOp prediction.

Table 3. GLMNET models, their parameters and performances

on the training dataset

Sub-GLMNET models Parameters Performance

a k RMSE R2 MAE

Sub-model 1 1 5 6.045 0.812 5.081

Sub-model 2 1 4.9 5.962 0.812 5.012

Sub-model 3 0.95 5 5.897 0.812 4.957

Sub-model 4 1 4.8 5.880 0.812 4.943

Sub-model 5 0.95 4.9 5.821 0.812 4.893

Sub-model 6 1 4.7 5.799 0.812 4.874
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MLPNN structure with two hidden layers was de-
fined to predict AOp in this study (Fig. 6).

GLMNETs–MLPNN Model

For developing the GLMNETs–MLPNN mod-
el, the proposed flowchart in Fig. 3 was applied.
Firstly, six GLMNET models were developed and
they were selected from the previously developed
models. Note that these models were the sub-models
for the development of the GLMNETs–MLPNN
models, and their characteristics are listed in Ta-
ble 3. Next, the outcome predictions of the six
GLMNET models were combined to generate a new
dataset. Thus, a new dataset was generated with six
input variables involved, and they are abbreviated as
X1 to X6. Subsequently, an MLPNN model was
developed as a new generation of the previous
MLPNN model on the newly generated dataset, and
it is named GLMNETs–MLPNN model (Fig. 7).

It is worthwhile to mention that the structure of
the MLPNN and GLMNETs–MLPNN models are
the same. However, their weights (w) and biases (j)
are different, as illustrated by the lines in Figs. 6 and
7. For a neural network, w and j are possibly the
most important parameters because they are learn-
able parameters that can be adjusted to control the
error and accuracy of the network. They reflect the
connection between neurons as well as express the
relationships of the dataset. The results of the pro-
posed GLMNETs–MLPNN are presented and
evaluated in the next section.

SVM Model

As mentioned previously, the SVM model was
applied as the conventional model for comparison
with the proposed GLMNETs–MLPNN model.
Herein, the radial basis function (RBF) was applied
for the SVM modeling to predict AOp. Standard-

Figure 7. The proposed GLMNETs–MLPNN model for AOp prediction.
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Figure 8. RMSE values of the SVM model with different r and C.

Figure 9. RMSE values of the RF model with different rp.
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ization of data is also a common requirement for the
SVM estimator implemented in this study. Thus, the
‘‘center’’ scaling method (Parente and Sutherland
2013) was applied to scale the data to the [0, 1] range
for this aim. It is emphasized that the training da-
taset used for developing the SVM model is the
same as the one used for the MLPNN and
GLMNET models. Accompanied by the RBF
function, sigma (r) and cost (C) were considered as
the learnable hyper-parameters of the SVM algo-
rithm to configure the model accuracy. For instance,
r and C were set in the [0.1, 0.5] and [0.25, 100]
ranges, respectively. The tenfold CV method was
also applied to avoid over-fitting in this stage, and
the RMSE values of the SVM model are shown in
Fig. 8. Finally, the best SVM model was achieved
with an r of 0.1 and C of 2.75.

RF Model

As additional conventional model for compar-
ison with GLMNETs–MLPNN�s performance, the
RF model was developed with number of trees
(ntree) set to 5000 to ensure the enrichment of the
forest, as recommended by previous researchers
(Nguyen and Bui 2020a). In RF, ntree is considered as
the voters, and the average of these voters is the
outcome prediction of the RF model. Besides, the
number of random predictors (rp) was also used as
the main hyper-parameter of the RF model, and
they were selected in the range of 1 to 6 because the
number of input variables used herein was 6.
Afterward, similar techniques, such as data nor-
malization, repeated CV, were also applied during
developing the RF model. Finally, the best perfor-
mance of the RF model was found with ntree of 5000
and rp of 5 (Fig. 9).

Empirical Model

Regarding empirical model, the USBM (United
States Bureau of Mines) equation is well-known as
the most common empirical equation for estimating
AOp (Nguyen et al. 2018; Keshtegar et al. 2019). It is
defined as:

AOp ¼ kðRW�0:33Þ�b ð11Þ
where k and b are coefficients that depend on

the geological conditions of study site.
Based on the same training dataset used for the

above-discussed models, multivariate regression
analysis was applied to calculate the coefficients of
the USBM equation. Finally, an empirical equation
based on the form of the USBM equation was de-
fined for estimating AOp in this study, thus:

AOp ¼ 250:468ðRW�0:33Þ�0:188 ð12Þ
The accuracy of the developed empirical model

is shown and discussed in the next section.

RESULTS AND DISCUSSION

To perform a significant and extensive analysis
of the developed models, their performances and
accuracies were quantified using RMSE, R2 and
MAE. Accordingly, the lowest RMSE and MAE,
and highest R2 point out the best model. To evaluate
how well the developed models can generalize new
unseen data, their performances were quantified
against the test dataset. This evaluation aims to
recognize whether over-fitting occurred or not.

Table 4. Performance metrics of the developed AOp predictive models

Model Training Testing

RMSE R2 MAE RMSE R2 MAE

GLMNET 2.637 0.893 1.707 3.148 0.823 1.963

MLPNN 2.224 0.919 1.376 2.981 0.860 1.990

GLMNETs–MLPNN 1.948 0.945 1.601 2.266 0.916 1.718

SVM 3.155 0.848 2.021 3.029 0.843 1.874

RF 3.279 0.840 2.050 3.373 0.795 2.100

Empirical 4.266 0.703 2.967 4.686 0.597 3.156

c

Figure 10. Correlation charts on the testing dataset

(actual versus predicted values) of the developed

AOp prediction models.
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Therefore, errors between the trained models and
actual model, as well as the fitness of the developed
models in practice, are shown. The calculated
training and testing performances of the developed
AOp prediction models are given in Table 4.

Unquestionably, the poorest performance was
indicated by the empirical model on both training
and testing datasets. Remarkably, the R2 value of
the empirical model on the testing dataset suggested
comparatively poor model fit. In other words, the
empirical model has low ability for predicting AOp
in practical engineering. In contrast, the AI models
(i.e., GLMNET, MLPNN, GLMNETs–MLPNN,
SVM, and RF) provided much better performances
than the empirical model.

Considering the GLMNET, MLPNN, and SVM
models, it is clear that the MLPNN and SVM models
yielded better performances than those of the
GLMNET models. This finding indicates that the
AOp dataset used in this study tend to fit nonlinear
models (i.e., MLPNN, SVM). Nevertheless, not all
the nonlinear models provided better results than
the linear models in this study. For instance, the RF
model provided lower performance than the
GLMNET model even though the former is con-
sidered a nonlinear model. The justification can be

explained based on the construction of the RF
model. It was developed based on decision trees and
many linear boundaries. In other words, the RF
model was built as a decision tree based on the
combination of many linear and straightforward
trees (Rokach 2016).

For the proposed GLMNETs–MLPNN model,
unquestionably, its performances on both training
and testing datasets were the best in this study. Al-
though the sub-GLMNET models provided poor
performance (Table 4), their combined predictions
for the development of the MLPNN model resulted
in a model relationship among variables (e.g., inputs
and output) that is better than those of the
GLMNET or single MLPNN models. Besides, al-
though the combination mechanism of the proposed
GLMNETs–MLPNN model is similar to the RF
model (i.e., based on the linear models), the
GLMNET models-based MLPNN model can pre-
dict AOp more accurately than the RF model. This
technique is also known as the bagging technique in
machine learning for reducing the variance of a
decision tree and reaching a higher testing accuracy.
It enables the proposed GLMNETs–MLPNN model
to use different training algorithms (e.g., linear and
feedforward algorithms) for flexible training. Based

Figure 11. Comparison chart of the predicted values by the individual models and actual values.
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on the performance metrics in Table 4, it can be seen
that the accuracy of the proposed GLMNETs–
MLPNN model was significantly better than those of
the base models.

Further evaluations of the obtained results are
illustrated in Figs. 10 and 11, from which it is pos-
sible to see that, based on the testing dataset, the
convergence level and accuracy of the proposed
GLMNETs–MLPNN model are higher than the
other models. Specifically, the highest correlation
and accuracy pertain to the proposed GLMNETs–
MLPNN model followed by the MLPNN, SVM,
GLMNET, and RF models. In contrast, the pre-
dicted AOp values of the empirical model were not
as good as the AI models (Figs. 10 and 11); the
residuals of the predictions by the empirical model
are high, and so its reliability is low as well.

To further assess the proposed GLMNETs–
MLPNN model in terms of modeling, a sensitivity
analysis technique was applied to discover the role
of the input variables in modeling and the accuracy
of the model (Fig. 12). It is important to mention

that the partial derivatives method (Bellman et al.
1965; Baur and Strassen 1983) was used for this task.
As revealed by Fig. 12, there is no doubt that the B,
T, R, S, W variables, especially B and T, have crucial
role on the response variable (i.e., AOp). In con-
trast, the P variable has little to no effect in pre-
dicting AOp, and its standard deviation is lowest.
Therefore, the B, T, R, S, and W variables should be
considered as the main input variables for AOp
prediction in mine blasting.

CONCLUSION

Blasting is unquestionably the most effective
method for fragmenting rocks in open-pit mines.
However, its negative environmental impacts (e.g.,
ground vibration, AOp, flyrock, to name a few) can
be significant. In this study, AOp was evaluated and
predicted with high accuracy and reliability based on
the proposed novel ensemble model (i.e.,
GLMNETs–MLPNN). The performance of this

Figure 12. Sensitivity analysis results based on the input variables.
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proposed model, compared with those of the other
models (i.e., GLMNET, MLPNN, SVM, RF, and
empirical), indicated it to be the best model for
predicting AOp in this study. In addition, the capa-
bility of the combination of the GLMNET and
MLPNN models for predicting AOp with better
accuracy was also shown. Based on the results, the
proposed GLMNETs–MLPNN model can be intro-
duced and used as an alternative model to improve
the accuracy in predicting AOp.

However, the following limitations need to be
considered in future works. (1) To investigate the
effects of other independent variables on AOp, such
as elevation of the blast-face and measurement
points, geological conditions, meteorological condi-
tions, the cube root scaled distance, to name a few.
In particular, the cube root scaled distance should be
investigated in future works as one of the input
variables for predicting AOp because AOp depends
upon the cube root scaled distance, which was not
included in the present study. (2) To consider the
efficiency of the hybrid models with different num-
bers of the new input variables from the sub-models
(e.g., GLMNET models). (3) To test the efficiency
of the proposed GLMNETs–MLPNN model in
predicting AOp in other mines/areas.
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