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Abstract
The present paper’s primary goal is to propose a novel hybrid model with high reliability to predict peak particle velocity 
(PPV)—a ground vibration evaluation unit in mine blasting. This model is based on the coupling of the multivariate adap-
tive regression splines (MARS), particle swarm optimization (PSO), and multi-layer perceptron neural networks (MLP). To 
this end, a strategy of stacking the MARS models was applied. Multiple MARS models were developed first with different 
hyper-parameters. Subsequently, the outcome predictions from these MARS models were merged as a new data set. The 
MLP model was then developed based on the newly generated data set, called the MARS–MLP model. To improve the 
accuracy and reduction of the MARS–MLP model’s error, the PSO algorithm was applied in terms of optimization of the 
MARS–MLP’s weights, called the MARS–PSO–MLP model. The proposed MARS–PSO–MLP model was then compared 
with the stand-alone MARS, MLP, empirical models, and the hybrid PSO–MLP model (without stacking MARS models) 
using the same data set. The results revealed that the proposed strategies could significantly boost the MARS and MLP 
models’ performance with the PSO algorithm’s effective help. The proposed MARS–PSO–MLP model yielded the high-
est accuracy and reliability with a root-mean-squared error (RMSE) of 1.569, mean absolute error (MAE) of 1.017, and 
squared-correlation (R2) of 0.902. In comparison, the stand-alone models (i.e., MARS and MLP) and the hybrid model 
of PSO–MLP provided lower performances with an RMSE of 1.582 to 1.704, MAE of 0.941 to 1.427, and R2 of 0.871 to 
0.891. In contrast, poor performance with an RMSE of 5.059, MAE of 3.860, and R2 of 0.127 was found for the empirical 
model, and it is not a reliable method to predict PPV in this study. This work’s findings also indicated that explosive charge 
per delay, monitoring distance, spacing, powder factor, and burden have significant effects on PPV, the incredibly explosive 
charge per delay, and monitoring distance. Remarkable, the stemming variable has a minimal impact on PPV, and its role 
in the modeling of PPV is not exact.

Keywords  Ground vibration · Blasting · Machine learning · Hybrid model · Multivariate adaptive regression splines · 
MARS–PSO–MLP

1  Introduction

Safety issues in opencast mining are considered important 
issues, especially those related to blasting [1]. Serious side 
effects can occur during blasting, such as flyrock, ground 
vibration, slope failure, airblast, dust, and toxic [2–5]. 
Ground vibration is the biggest concern among those effects, 
and it was represented by peak particle velocity (PPV) 
[5–11]. Many scientists confirmed that the adverse effects 
caused by blasting, especially PPV, are mainly caused by 
the useless energy of explosives (accounting for 70–80%) 
[12–14].
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From the feedback of PPV on buildings and the surround-
ing environment, some baseline solutions such as increasing 
safety distance, increasing quality and standards for build-
ings, and applying existing blasting methods (e.g., creating 
barriers, blasting delays) have been involved in the 1990s 
[15, 16]. However, these methods are sometimes not very 
effective and increase the cost of blasting [17].

Based on the empirical approach, many scholars studied 
and proposed empirical formulas for predicting PPV, such as 
the United States Bureau of Mines (USBM) by [18], Lange-
fors, Kihlstrom [19], Ambraseys [20], Ghosh, Daemen [21], 
Roy [22], Ak, Konuk [23] and Simangunsong, Wahyudi 
[24]. The empirical equations are often simple and easy to 
calculate; nevertheless, their performance is not expected 
[25–30]. Therefore, the state-of-the-art methods are essential 
requirements with the purpose of accuracy improvement in 
predicting PPV. In this study, artificial intelligence (AI)—a 
remarkable achievement of information sciences in recent 
years—is considered to predict PPV. The structure of this 
work includes seven sections, as follows:

(1)	 Introduction
(2)	 Related works
(3)	 Methodology
(4)	 Study site and data acquisition
(5)	 Results
(6)	 Discussion
(7)	 Conclusion

2 � Related works

Indeed, information technology development, especially 
AI, has contributed to rapidly improving human life per-
formance and quality [31–36]. It helps computers smarter, 
more knowledgeable, and exceptionally capable of pre-
dicting real-world problems with high accuracy [37–41]. 
Regarding blast-induced ground vibration, AI has been 
widely applied for predicting the intensity of ground 
vibration. For example, Hasanipanah et al. [30] used the 
support vector machine (SVM) algorithm to predict PPV 
based on the charged explosive and PPV measurement 
distances. They obtained a superior performance with a 
variance accounted for (VAF) of 94.24, squared correla-
tion coefficient (R2) of 0.957, and root-mean-squared error 
(RMSE) of 0.34. In another study, Hajihassani et al. [42] 
embedded the PSO algorithm to an artificial neural net-
work (ANN) model that aims to improve the ANN model’s 
accuracy in predicting PPV. The PSO algorithm signifi-
cantly enhanced the ANN model’s accuracy with an R2 of 
0.89 and a mean squared error (MSE) of 0.038. A similar 
study on the hybridization of the imperialist competitive 
algorithm (ICA) and ANN for the prediction of PPV was 

also conducted by the same authors [28], and the obtained 
results are positive (i.e., R2 = 0.976; RMSE = 0.685).

By another approach, Armaghani et al. [43] success-
fully applied an ANFIS for solving the PPV prediction 
issue in an open-pit mine. Their outcome predictions 
indicated that the ANFIS model is a good candidate for 
predicting PPV with a VAF of 97.345, R2 of 0.973, and 
RMSE = 0.987. Amiri et  al. [44] combined ANN and 
k-nearest neighbors (k-NN) algorithm for predicting PPV 
in open-pit mines. They claimed that the outcome pre-
dictions from the ANN-k-NN model could be acceptable 
with the possibility of 87.84%. Hasanipanah et al. [45] 
applied the CART model to predict and evaluate PPV 
with an R2 of 0.950 and RMSE of 0.170. Similar to the 
PSO–ANN and ICA–ANN models that were developed 
by Hajihassani et al. [42],Hajihassani et al. [28], Taheri 
et al. [46] developed the ABC–ANN model based on the 
optimization of the artificial bee colony (ABC) algorithm 
and ANN model. The results obtained from this model 
were good, with an RMSE of 0.220 and R2 = 0.920. To 
optimize the prediction of PPV, Sheykhi et al. [47] applied 
a clustering technique (i.e., fuzzy C-means) to process the 
data set before developing the predictive model based on 
the SVM algorithm. Finally, they found that their model 
(FCM–SVM) could predict PPV with an acceptable per-
formance (RMSE = 1.800; VAF = 85.250; R2 = 0.853). 
Shang et al. [48] also developed a hybrid model based on 
the firefly algorithm (FFA) and ANN, named FFA–ANN 
for predicting PPV. The CART, k-NN, and SVM models 
were also employed as the baseline models for a compre-
hensive comparison of the proposed FFA–ANN model. 
Ultimately, the FFA–ANN was claimed with the most 
dominant performance, and it was introduced in practical 
engineering. A similar hybrid model based on the FFA and 
bagged SVM model (i.e., FFA–BSVM) was also applied 
for predicting PPV by Ding et al. [49]. Several types of 
ANN models were compared with that of the FFA–BSVM 
model, and they showed that the FFA–BSVM is the best 
model in the study of Ding et al. [49]. Itemset Mining 
(IM)–a machine learning algorithm for extraction of 
patterns were applied to select potential instances. Sub-
sequently, an ANN model was developed based on the 
selected instances, aiming to improve the ANN model’s 
accuracy in predicting PPV, and it was called IM–ANN 
hybrid model. Yang et al. [50] also applied two optimiza-
tion algorithms (i.e., PSO and GA (genetic algorithm)) 
for optimization of the ANFIS model in predicting PPV. 
They found that the GA–ANFIS model provided a bet-
ter improvement than the PSO–ANFIS model in terms of 
accuracy and error. In another study, Fattahi, Hasanipanah 
[51] developed two novel hybrid models, i.e., RVR (rel-
evance vector regression)–BA (bat-inspired algorithm) and 
RVR–GWO (grey wolf optimization), for predicting PPV. 
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The results demonstrated that the RVR–GWO is better 
than those of the RVR–BA model with an MSE of 7.920 
and correlation coefficient of 0.915.

Based on the referenced papers, it can be seen that the 
hybrid models based on optimization algorithms or clus-
tering algorithms tend to provide better performance than 
those of the single or conventional models in predicting 
PPV. Indeed, many researchers proposed hybrid mod-
els for predicting PPV with promising results, such as the 
PSO–XGBoost model (PSO–extreme gradient boosting 
machine) [52]; the MFA–SVR model (modified firefly algo-
rithm–support vector regression) [53]; the FFA–ANN model 
(firefly algorithm–ANN) [48]; the PSO–k-NN model [54]; 
the ICA–M5Rules model [55]; the GA–ANN model (genetic 
algorithm–ANN) [56]; the FCM–ANFIS model [57]; the 
ANFIS–GA model [50]; the HKM–CA model (hierarchical 
Kmeans clustering–cubist algorithm) [58]; the ICA–XGBoost 
model [59]; the HKM–ANN model [60]; the GA–SVR–RBF 
model [17], and the HHO–RF model (Harris Hawks optimiza-
tion–random forest) [61]. And they claimed that hybrid models 
tend to provide better performance than those of the single 
models. For this reason, we have developed a novel hybrid 
model for PPV prediction based on the multivariate adaptive 
regression splines (MARS), PSO, and multi-layer perceptron 
neural networks (MLP), namely, MARS–PSO–MLP model. 
The single models, such as MLP and MARS, and the hybrid 
model (i.e., PSO–MLP) were also developed for comparison 
purposes. Besides, the empirical equation of USBM was also 
considered to evaluate ground vibration’s intensity from the 
empirical point of view.

3 � Methodology

3.1 � Empirical

Empirical methods are often used as the rapid estimation 
methods to estimate PPV since their convenient and straight-
forward. Of the empirical equations, the USBM equation 
[18] is introduced as the most common equation for calculat-
ing PPV. Therefore, it was selected to implement the PPV 
predictions and described as follows:

where W is the maximum amount of explosive charged per 
delay (in Kg); D is the distance from blasts to seismograph 
(in m); k and � denote the site coefficients.

3.2 � MARS

MARS is a shortened name of the multivariate adaptive 
regression splines algorithm proposed first by Friedman 

(1)PPV = k

�
D

√
W

�−�

,

[62], and it was officially introduced in 1995 by Fried-
man, Roosen [63]. It is considered as a flexible algorithm 
to describe the relationships in a data set with a few vari-
ables [64]. Inspired by generalized additive modeling and 
the CART model’s recursive partitioning technique, MARS 
creates a continuous model based on the constant deriva-
tives. These tasks allow the MARS algorithm to find optimal 
variable interactions and transformations with the complex 
structure of the data [65].

By the use of the piecewise linear regressions method, 
MARS can build flexible models easily. It uses different 
regression slopes at different intervals of the independent 
variable space to approximate the nonlinearity of a model. 
It is worth noting that the regression slopes are flexible, and 
they depend on the intersection points. Another advantage 
of the MARS is the searching ability of variables one by one 
and their relation [66].

For the development of the MARS model, a two-stage 
process is applied, as follows:

(1)	 Different maximum number of basis functions are con-
structed to overfit the initial data set. The variables can 
be entered by categorical, continuous, or ordinal. They 
can interconnect with each other or be used as additive 
components.

(2)	 Basis functions are taken into account to delete based 
on their contributions. The order of least contribution 
is applied for this task using the criterion of generalized 
cross-validation (GCV). Based on the values of GCV, 
the importance of variables can be observed when a 
variable is removed from the model. Another vital point 
of the MARS is processing the data’s missing values 
using dummy variables. It can show the data’s missing 
values, and we can further process the model aiming to 
get higher performance.

Using the piecewise linear regressions method to gener-
ate flexible models and the two-stage process, MARS can 
track and solve the data with complex structure and high-
dimensional. In this study, MARS is investigated to predict 
PPV and combined with the PSO algorithm and MLP to 
enhance the model accuracy (i.e., MARS and MLP) in esti-
mating PPV.

3.3 � MLP

MLP was introduced as one of the ANN structures that 
has been widely applied in many fields [67–70]. Like 
those of the other ANN structures (e.g., feedforward 
neural networks, recurrent neural networks, single layer 
feedforward), MLP receives input signals and process 
them before sending them to other neurons in the hid-
den layer(s). At least one hidden layer is contained in the 
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structure of the MLP [71]. Hidden layers are called the 
intermediate layers, and they are often added to boost the 
networkability [72]. Typically, these intermediate layers 
are useful for non-linear problems.

For MLP, the number of neurons in the input and out-
put layers are prior knowledge. However, it is hard to 
previous understanding how many neurons are neces-
sary for the hidden layer. The network’s processing time 
would increase, and the over-fitting phenomenon may 
have occurred if there are too many neurons in the hid-
den layer. On the other hand, few neurons in the hidden 
layer would increase the network’s error [73]. Therefore, 
determining the optimal structure of an MLP, i.e., the 
appropriate number of hidden layers and neurons is one 
of the most crucial steps.

Furthermore, a suitable training algorithm is an essen-
tial and indispensable part of MLP. It is reflected through 
the processing time and the error of the network. In other 
words, a suitable training algorithm for MLP is the one 
that achieves the lowest error and sufficient training time 
(or shortens training time). In actual fact, the following 
algorithms are often used to train an MLP: feedforward 
back-propagation (FFBP), and Levenberg–Marquardt 
[74–76]. Herein, the FFBP algorithm is used to train the 
MLP for predicting PPV. The general architecture of the 
MLP model for this purpose is illustrated in Fig. 1.

3.4 � PSO algorithm

PSO is one of the nature-based algorithms which is applied 
for optimization problems. It was proposed by Kennedy, 
Eberhart [77] inspired by the behaviors of swarms, such as 
flock bird, ant, fish, to name a few. The PSO algorithm’s 
main idea is to share and update the information of indi-
viduals in the swarm, aiming to improve the foraging per-
formance [78]. Each individual is considered a particle in a 
swarm, and they fly/move with a specific velocity in a given 
searching space with high dimensional. For each position 
found during searching, they share the experiences and the 
places to other particles [54]. Based on the shared positions, 
the particles continuously search, share, and update if they 
found another better place. It is worth mentioning that par-
ticles’ fitness is evaluated by an objective function during 
searching and optimizing processes. In the PSO algorithm, 
each the best position found is called the local best (Pb), and 
the best solution in the swarm is called the global best (Gb). 
Further details of the PSO algorithm can be found in the 
following papers [52, 79–85].

3.5 � Hybridization of MLP, PSO, and MARS

In this section, the pattern of the PSO–MLP and 
MARS–PSO–MLP are proposed. Accordingly, the PSO 
algorithm is used as an extended feature to optimize the MLP 
model, i.e., weights. It enables the MLP model to expand the 

Fig. 1   Architecture of MLP 
model for predicting PPV with 
seven input variables and two 
hidden layers
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search domain of weights to find out the optimal performance. 
Furthermore, one of the most remarkable characteristics of the 
proposed MARS–PSO–MLP model is combining the predic-
tive values of the MARS models and the PSO–MLP model. 
For this task, the MARS approach is applied to predict PPV 
first, and several MARS models would be taken into account 
to get the PPV predictions. Subsequently, they are framed to 
develop the pattern of the MLP. The PSO algorithm is also 
involved in developing the MLP based on the predictive values 
of the developed MARS models aiming to optimize weights 
of the MLP. RMSE in Eq. (2) would be used as the objec-
tive function and stopping condition of the PSO–MLP and 
MARS–PSO–MLP models. The smallest fitness value of 
RMSE represents the best prediction accuracy. The frame-
works of the PSO–MLP and MARS–PSO–MLP models are 
proposed in Figs. 2 and 3.

3.6 � Model evaluation method

From the statistical viewpoint, it isn’t easy and not enough to 
make a comprehensive evaluation for a predictive model using 
only one performance index. Therefore, this study used three 
performance indexes to overcome the above drawback, includ-
ing RMSE, R2, and MAE. Whereas RMSE was used to express 
the results’ dispersion degree, MAE was used to indicate the 
deviation of the outcome predictions. Besides, R2 was used to 
measure the linear correlation of the measured and predicted 
PPVs. These indices are described as follows:

where nblasting_events is the total number of sample points (i.e., 
blasting events), PPVi and P̂PVi represent the ith actual and 
predicted PPV values, PPVi represents the average value of 
the measured PPV values.

4 � Study site and data acquisition

To carry out this study, blasts were designed and under-
taken at the Deo Nai open-pit coal mine, located in Quang 
Ninh province of northern Vietnam, as shown in Fig. 4. 

(2)RMSEPPV =

√√√
√ 1

nblasting_events

nblasting_events∑

i=1

(PPVi − P̂PVi)
2

(3)MAEPPV =
1
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|||
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|||
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�
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�
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�2
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This large open-pit coal mine in Vietnam with a maximum 
explosive charge is up to 10 tons per blast. Remarkable, 
this mine’s surroundings are residential and other open-pit 
mines, as illustrated in Fig. 4. In some cases, the dump-
sites of other mines are the slopes of this mine. There-
fore, ground vibrations are considered as the big concern 
herein. It can make instability of dumpsites and slopes as 
well as vibration of buildings.

Some seismographs were used to measure PPV inten-
sity induced by blasts in this mine, such as Micromate or 
Blast mate III (Instantel). They were placed in the sensi-
tive points that can be severely affected by blast-induced 
PPV. Finally, ground vibrations from 193 blasting events 
were measured in the range of 1.01 to 23.79 mm/s.

In mine blasting and controlling blast-induced ground 
vibration, many researchers indicated that blasting param-
eters significantly affect PPV [86]. They are categorized in 
the controllable parameters group, since they can adjust or 
change by blasting engineers [87–89]. On the other hand, 
the uncertainty parameters, such as geological and geo-
physical conditions, tensile strength, compressive strength 
of rock mass, rock quality designation, rock fracture 
parameters, to name a few, are classified in the uncontrol-
lable parameters [90–92]. Therefore, the historical data of 
blasting parameters of 193 blasting events, such as maxi-
mum amount of the explosive charged per delay (W), the 
length of borehole (HL), burden (B), spacing (S), stem-
ming (T), and powder factor (PF), were used as the input 
variables for PPV prediction in this study. In addition, the 
monitoring distance of PPV from blast sites to seismo-
graph (D) was calculated based on the blast sites’ locations 
and seismograph that were determined by a GPS receiver. 
The details of the data set are summarized through the 
histogram and density plots in Fig. 5.

5 � Results

A blast-induced ground vibration modeling is typically 
taken into account as a regression problem in which both 
input variables and outcome predictions are numeric. To 
prepare for such a predictive model, it is necessary to 
define two separate data sets for training and to test the 
model. To do so, 193 blasting events with the inputs and 
output were randomly divided into two different data sets. 
One for training the PPV prediction models with 80% of 
the whole data set (~ 157 blasting events), and one for 
testing the trained PPV prediction models (~ 36 blasting 
events). It is important to note that all the prediction mod-
els are developed and tested on the same data points as 
divided earlier.
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5.1 � Empirical model

For modeling the PPV by empirical approach, Duvall, 
Fogelson [3] proposed an empirical equation based on 
the characteristics of rock mass and scaled distance deter-
mined based on D and W, as described in equation (Eq. 1). 
This equation is also known as the USBM as an alternative 
name. In Eq. (1), k and d are the coefficients that present 
the characteristics of rock mass at the study site, and they 
can be determined by the multivariate regression analysis 
method [93]. Finally, the empirical model for PPV predic-
tion in this study was defined based on the training data 
set, as described in the following equation:

5.2 � MARS model

Given the importance of fine-tuning the MARS’s param-
eters to reach an optimal MARS model for PPV predic-
tion, a grid search for the parameters of the MARS model 

(5)PPV = 79.336

�
D

√
W

�−0.718

.

was established for the maximum number of basis func-
tions used and the penalty values, as shown in Fig. 6. It is 
worth noting that the statistical method of tenfold cross-
validation was applied to estimate the MARS model’s skill 
and select the best MARS model for a given predictive 
modeling problem (i.e., PPV prediction). The data set was 
standardized before developing the MARS model using the 
Box–Cox transformation method [94] to avoid overfitting.

In addition to the development of the MARS model to 
predict PPV, the predictive values of a series of the MARS 
models are also to propose the novel MARS–PSO–MLP 
model, as introduced above. Therefore, the seven best 
MARS models were selected based on the obtained 
results in Fig.  6 for the next step (developing the 
MARS–PSO–MLP model), and the performance of the 
seven MARS models are listed in Table 1. Herein, the 
MARS-01 model is the best, and it was used as a stand-
alone model to compare with the other models in the next 
sections. Note that there are two parameters used to con-
trol the MARS models’ performance, including penalty 
values (d) and the maximum number of basis functions (f).

Fig. 3   Framework of the MARS–PSO–MLP model for predicting PPV
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5.3 � MLP model

To develop the MLP model for PPV prediction in this mine, 
a structure with a single hidden layer of the MLP model 
was used to prevent the overfitting phenomenon, and this 
structure was also recommended for such a simple problem 
(i.e., PPV prediction) [95–98]. Subsequently, the trial and 
error procedure was applied to determine the best number of 
neurons. To avoid overfitting, the Min–Max scaling method 
was used with the normalized data values are in the range 
of – 1 to 1. The FFBP algorithm was applied to train the 

MLP model in this case. Eventually, an MLP model was 
developed for predicting PPV, as illustrated in Fig. 7.

5.4 � PSO–MLP model

As stated earlier, an MLP model’s primary problem is the 
network’s architecture, and it has been described above. 
However, in MLP, the information between neurons are 
represented by the weights, and they can fine-tune to reach 
an optimal MLP model for PPV prediction. Therefore, we 
applied the PSO optimizer to enhance the MLP model’s 

Fig. 4   Study area and its 
location on satellite imagery. 
a Location of the Deo Nai open-
pit coal mine; b Areal view of 
the mine
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accuracy through the weights’ fine-tuning, as proposed in 
Fig. 2. To do so, the parameters of the PSO algorithm were 
set up first, as follows:

- The weight of the bird: [0.4, 0.9];
- The effect of local best and global best: 1.2;
- Lower and upper bound: [– 1, 1];

- Population sizes: 50, 100, 150, 200, 250, 300, 350, 
400, 450, 500;

- Maximum number of iterations: 1000;
- Fitness function: RMSE (Eq. 2);
- Programming language: R (version 4.0.3).

Fig. 5   Histogram and density of the variables used for PPV prediction
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Next, the optimization process starts to optimize the 
MLP model weights for PPV prediction through the stop-
ping conditions, as shown in Fig. 8. Ultimately, the opti-
mal PSO–MLP model for PPV prediction in this mine was 
defined, and its architecture is shown in Fig. 9.

5.5 � MARS–PSO–MLP model

Whereas the empirical, MARS, MLP, and PSO–MLP mod-
els were developed using the same original training data 
set, the MARS–PSO–MLP model was developed based on 
the compilation of the original training data set and com-
bination of the predictive values from the MARS models 
in Table 1 (seven MARS models), as described in Fig. 3. 
Subsequently, the predictive values of these seven MARS 
models are merged to develop an MLP model. In other 
words, another MLP (with the same structure as the MLP 

and PSO–MLP models) was developed based on the alter-
native training data set from the predictive values of the 
seven developed MARS models. To optimize this new MLP 
model, the PSO algorithm was also applied as those applied 
for the PSO–MLP model with the same settings, and some 
exciting results are noticed in Fig. 10. Ultimately, the opti-
mal MARS–PSO–MLP model was developed, as shown in 
Fig. 11. It is important to note that despite the architecture 
of the MLP, PSO–MLP, and MARS–PSO–MLP are the 
same; however, their weights are very different (it can be 
observed through the lines in Figs. 7, 9, and 11) due to the 
optimization of the PSO algorithm and the contributions of 
the MARS models.

Once the PPV prediction models were well-developed 
as described above, PPV predictions, in this study, are done 
using five developed models, including empirical, MARS, 
MLP, PSO–MLP, and MARS–PSO–MLP. The results of 
PPV prediction using the five developed models are calcu-
lated in Table 2.

6 � Discussion

From the calculated results in Table 2, it is evident that 
all four AI models (i.e., MARS, MLP, PSO–MLP, and 
MARS–PSO–MLP) have relatively few errors, and their 
accuracy is acceptable. Of those, the MARS’s performance 
is slightly lower than the MLP’s performance on the train-
ing phase. However, it is somewhat higher than the MLP 
model on the testing phase. Remarkably, the MLP model’s 

Fig. 6   MARS models with dif-
ferent hyper-parameters for PPV 
prediction

Table 1   Selected MARS models for developing the MARS–PSO–
MLP model

Model d f RMSE MAE R2

MARS-01 1 5 1.719 0.994 0.865
MARS-02 1 6 1.720 1.001 0.866
MARS-03 1 4 1.737 0.925 0.857
MARS-04 3 3 1.737 0.951 0.857
MARS-05 1 7 1.813 1.066 0.858
MARS-06 1 8 1.845 1.091 0.855
MARS-07 2 3 1.864 1.038 0.845
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accuracy was boosted by the optimization feature of the PSO 
algorithm, and the performance of the PSO–MLP is higher 
than those of MLP (without optimization) and MARS mod-
els on all parts of the data set.

In this study, the stacking approach was applied to 
develop and propose the novel hybrid MARS–PSO–MLP 
model for predicting PPV. The results in Table 2 indi-
cated that the proposed hybrid MARS–PSO–MLP model 
yielded an outstanding performance with the highest accu-
racy. Its performance even is higher than the PSO–MLP 
model on all the data sets. This finding indicates that the 

combination strategy of stacking and optimization meth-
ods of MARS and MLP models provided an alternative 
training data set with a better normalization and regres-
sion. Therefore, the proposed MARS–PSO–MLP model 
better performed in predicting PPV. These results can be 
observed in Fig. 12.

In contrast to the AI models, the highest error and the 
lowest convergence were found in the empirical model 
provided, as shown in Table 2. This result indicated that a 
simple linear equation is not suitable for predicting PPVs 
in this mine. Instead, a non-linear equation or complexity 

Fig. 7   Architecture of the MLP model for PPV prediction

Fig. 8   Results of the optimization process of the MLP model by the PSO algorithm



	 Engineering with Computers

1 3

"black box" algorithms should be considered and used to 
predict PPV.

As shown in Fig. 12, on the training data set, the cor-
relation of PPV values (measured versus predicted) of the 
MARS, MLP, PSO–MLP, and MARS–PSO–MLP models 
is superior to the empirical model. Of those, the correla-
tion of the MARS and MLP are not too dissimilar. Nota-
bly, the optimization models’ correlation (PSO–MLP and 
MARS–PSO–MLP) is improved significantly, especially 
the proposed MARS–PSO–MLP model. On the testing 

data set, the optimization models’ regression level is bet-
ter than the other models as well, especially the proposed 
MARS–PSO–MLP model. For further assessment of the 
developed models in practice, the models’ residuals on the 
testing data set were computed and visualized in Fig. 13.

Taking a look at Fig. 13, it can be seen that the residual 
plots show a somewhat random pattern. Accordingly, the 
distributions of PPV predictions on the four developed AI 
models are symmetrical, have no obvious patterns, and 
tend to cluster towards the middle of the plots. Still, the 

Fig. 9   PSO–MLP model for PPV prediction

Fig. 10   Results of the MARS–PSO–MLP model for training PPVs
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residuals of the empirical model are not. Besides, the his-
togram of the models’ residuals is also an excellent metric 
to evaluate whether the models are valid or not. As shown 
in Fig. 13, we can see that the histogram of the empirical 
model is not normal (i.e., not bell-shaped), and it should 
not be a valid model for PPV prediction. In contrast, the 
four AI models provided normal histograms, especially the 
proposed MARS–PSO–MLP model. This indicates that the 
proposed MARS–PSO–MLP model is the best fit model 
for PPV prediction.

To better understand the mechanism of the proposed 
MARS–PSO–MLP model, as well as the role of the input 
variables in the modeling, the importance level of the input 
variables was investigated through a sensitivity analysis, 
as shown in Fig. 14. The results show that W, D, S, PF, 
and B have significant effects on PPV, especially W and D. 
Remarkable, the T variable has a minimal impact on PPV, 
and its role in modeling PPV is not exact.

7 � Conclusion

Ground vibration is one of the most damaging effects in 
mine blasting, and accurate prediction of PPV has an essen-
tial meaning in controlling and reducing the adverse impacts 
on the surroundings. The results showed that MARS and 
MLP are potential tools for predicting PPV with acceptable 
accuracy. Based on the stacking method’s flexibility strat-
egy, the MARS models and the PSO algorithm significantly 
improved the MLP model’s accuracy. In other words, by 
fully considering and combining the predictive values of 
seven MARS models and the robust optimization ability of 
the PSO algorithm, the proposed MARS–PSO–MLP model 
significantly improved the accuracy of the MARS, MLP, 
and PSO–MLP models in predicting PPV. In conclusion, the 
proposed MARS–PSO–MLP model is a reliable method for 
PPV prediction in mine blasting.

Fig. 11   MARS–PSO–MLP model for PPV prediction

Table 2   Performance indexes of 
the AI and empirical models for 
predicting PPV

Model Training Testing

RMSE MAE R2 RMSE MAE R2

Empirical 4.342 3.069 0.287 5.059 3.860 0.127
MARS 1.740 0.885 0.879 1.596 0.941 0.889
MLP 1.704 0.927 0.884 1.704 1.427 0.871
PSO–MLP 1.561 0.762 0.903 1.582 1.058 0.891
MARS–PSO–MLP 1.484 0.792 0.913 1.569 1.017 0.902
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Fig. 12   Correlation and regression possibility of the PPV prediction models
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Fig. 13   Residual results of the PPV prediction models
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Furthermore, the W, D, S, PF, and B variables are highly 
sensitive to PPV, especially W and D, and should be used 
and taken into account to predict PPV. In addition, the T 
variable has a minimal impact on PPV, and its role in the 
modeling of PPV is not exact.

Although the MARS–PSO–MLP is introduced as a novel 
intelligent model for predicting PPV with high accuracy; 
however, it should be considered to optimize the blasting 
parameters in future works based on the predicted results to 
reduce the intensity of ground vibration. In addition, char-
acteristics of rock mass and geological conditions are also 
challenges for future studies in predicting PPV.
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