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A B S T R A C T   

Wildfire is an environmental hazard that has both local and global effects, causing economic losses and various 
severe environmental problems. Due to the adverse effects of climate changes and anthropogenic activities, 
wildfire is anticipated more frequent and extreme; therefore, new and more efficient tools for forest fire pre
vention and control are essential. This study proposes a new deep neural computing approach for spatial pre
diction of wildfire in a tropical climate area. For this purpose, deep neural computing (Deep-NC) with a structure 
of 3 hidden layers was proposed. The Rectified Linear Unit (ReLU) activation function was adopted to infer 
wildfire dangers from the input factors. To search and optimize the weights of the model, Stochastic Gradient 
Descent (SGD), Root Mean Square Propagation (RMSProp), Adaptive Moment Estimation (Adam), and Adadelta 
optimizers were employed. Also, this study has established a Geographic Information System (GIS) database for 
Gia Lai province (Vietnam) to train and verify the newly developed deep computing approach. The twelve 
ignition factors, namely, slope, aspect, elevation, curvature, land use, NVDI, NDWI, NDMI, temperature, wind 
speed, relative humidity, and rainfall, have been used to characterize the study area with respect to forest fire 
susceptibility. According to experimental results, the Adam optimized Deep-NC model delivered the highest 
predictive accuracy (AUC = 0.894, Kappa = 0.63). Accordingly, this model has been employed to establish a 
forest fire susceptibility map for Gia Lai province. The proposed Deep-NC model and the newly constructed forest 
fire susceptibility map can help local authorities in land use planning and hazard mitigation/prevention.   

1. Introduction 

Wildfires are mostly unplanned vegetation ignitions, which can 
happen in forests, bushes, grassland, and other ecosystem areas (Gill 
et al., 2013). Although fires are vital components for maintaining the 
natural systems (Chuvieco et al., 2010a), in tropical areas, they may 
become destructive and unpredictable (Taufik et al., 2017; Wibisana, 
2019), i.e., fires occurring near populated areas without control (Barrera 

et al., 2018). In recent years, climate and weather conditions have 
become critical factors for wildfire occurrences in various areas (Lozano 
et al., 2017; Pereira et al., 2020). It is anticipated that wildfires will be 
more frequent and extreme in many areas due to changes in climate and 
anthropogenic activities (Opitz et al., 2020); therefore, it is essential to 
develop preventive measures for forest protection and management. In 
this context, accurately predicting wildfire and understanding its critical 
factors are crucial (Çolak and Sunar, 2020a; Di Virgilio et al., 2019; 
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Gibson et al., 2020; Mhawej et al., 2015; Mhawej et al., 2016). 
Since wildfires have both local and global effects, various models and 

tools have been developed for wildfire prevention and control strategy 
worldwide (Akinola and Adegoke, 2019; Chuvieco et al., 2010b; Chu
vieco et al., 2014; Çolak and Sunar, 2020b; Hernandez-Leal et al., 2006; 
Matin et al., 2017; McFayden et al., 2020; Pourghasemi et al., 2020; You 
et al., 2017). Chuvieco et al. (2014) provided detailed discussions of the 
fire prevention strategy, including definitions of fire vulnerability, fire 
hazard, fire risk, and fire danger. The last one should consider various 
driving factors such as climatic conditions, influencing agents, and 
possible damages. In other words, the fire danger should provide both 
spatial and temporal aspects of wildfire as well as its impact. Herein, the 
spatial prediction of wildfire danger, which is also called wildfire danger 
susceptibility mapping, is considered one of the most crucial tasks. 

With the rapid development of machine learning (ML) and the 
availability of remote sensing data (Koubarakis et al., 2017; Soille et al., 
2018), various advanced statistical and ML models have been developed 
for spatial prediction of wildfire danger. Herein, machine ML provides 
new and powerful algorithms (LeCun et al., 2015; Zdeborová, 2017) for 
inferring a danger index value from a set of input data, whereas the 
remote sensing technology provides rapid multi-source essential data, i. 
e., Landsat 8, Sentinel 1 and 2, VIIRS, and MODIS (Claverie et al., 2018; 
Liu et al., 2017; Mondal et al., 2020; Roy et al., 2019; Teodoro and 
Amaral, 2019) for deriving both wildfire locations and driving factors. 
Consequently, ML algorithms have been a hot trend for studying wildfire 
danger in the last decade, such as, to name a few, Chuvieco et al. (2014) 
integrated geospatial information and geographically weighted regres
sion for forest fire assessment in Spain. The result showed a significant 
correlation (R2 = 0.7) between the fire danger map and the fire occur
rence. Guo et al. (2016a) employed logistic regression, Ripley’s K- 
function, and geospatial information system (GIS) data for analysis of 
the spatial pattern of forest fires in China. The performance of the 
models was between 80% and 90%. Tehrany et al. (2019) used multi- 
source geospatial data and ensemble ML for predicting tropical forest 
fires in Vietnam. The highest performance (92%) belonged to the Log
itBoost ensemble tree model. In recent work, Naderpour et al. (2019) 
summarized studies from 2000 to 2018 on forest fires using geospatial 
data, statistical methods, multi-criteria techniques, ML and ensemble 
algorithms with the report that, the last group is capable of delivering 
the highest accuracy. Therefore, the exploration of new ML algorithms 
for forest fire modeling is essential. 

Deep learning models have been proposed and proven to outperform 
both traditional methods and popular ML algorithms in various domains 
(Bolton and Zanna, 2019; Jiang et al., 2018; Ross et al., 2019; Silva et al., 
2019). Deep learning, which is a sub-branch of ML, refers to learning 
processes with the use of “deep” neural network structures to infer 
outcomes from a set of input variables. Famous deep structures can be 
named a few, such as deep convolutional neural networks (CNN), deep 
learning neural networks (DLNN), and deep recurrent neural networks 
(RNN). A review of deep learning algorithms can be found in Guo et al. 
(2016b). In the field of forest fire evaluation, several attempts have been 
carried out with promising results, including exploration of reinforce
ment learning for spreading of forest fires (Ganapathi Subramanian and 
Crowley, 2018), investigations of CNN for forest fire susceptibility 
mapping (Zhang et al., 2019), smoke detections (Peng and Wang, 2019), 
and forest fire detections (Wang et al., 2019). 

Nevertheless, to our knowledge, an exploration of DLNN for forest 
fire susceptibility mapping has seldom been carried out. Thus, the aim of 
this work is to partially fill this gap in the literature by investigating the 
potential applicability of the GIS-based Deep-NC model for susceptibility 
mapping of forest fires. Herein, multiple optimization methods for Deep- 
NC are utilized. More concretely, Stochastic Gradient Descent (SGD), 
Root Mean Square Propagation (RMSProp), Adaptive Moment Estima
tion (Adam), and Adadelta optimizers are employed. The tropical forest 
of Gia Lai province in the Central Highland of Vietnam was selected as a 
case study to train and verify the models. This province has particularly 

faced the forest fire problem during the last ten years. Notably, this is 
one of the most sensitive provinces affected by the El Niño Southern 
Oscillation that caused severe droughts and forest fires in 2016 (CGIAR, 
2016). The subsequent sections of the article are organized as follows: 
The second section reviews the background of the employed method. 
The next part provides a general description of the study area. The 
proposed Deep-NC used for deriving the forest fire susceptibility is 
presented in the fourth section. The fifth section reports the experi
mental results of the study, followed by concluding remarks stated in the 
final section. 

2. Background of the algorithms used 

2.1. Deep neural computing 

One of the most important benefits of deep learning is the independent 
extraction of discriminatory features from raw data (Heaton, 2015). Deep 
learning has been used successfully in various applications, including 
spatial mapping of natural hazards (Nhu et al., 2020; Sankaranarayanan 
et al., 2020; Wu et al., 2020; Zhang et al., 2019). On the other hand, deep 
learning is a multi-level representational learning method that is achieved 
by composing nonlinear but straightforward modules that transform each 
representation on a single level (LeCun et al., 2015). By representing at a 
high level with an increasing degree of abstraction and combining such 
transformations sufficiently, a deep learning model can generalize very 
complex mapping functions. Particularly for classification tasks, the higher 
layers represent the input aspects that are important for discrimination and 
reinforce the suppression of irrelevant changes. 

Usually, a deep learning architecture consists of the following layers: 
one input layer, a number of hidden layers, and one output layer (refer 
to Fig. 1). The number of hidden layers determines the depth of the 
architecture. Depending on the type of hidden layers used, different 
nonlinear mapping functions can be learned by adapting the deep neural 
network structure (Singaravel et al., 2018). Fig. 1 presents a typical deep 
neural network architecture feasibly used for spatial mapping of forest 
fire danger. The input layer provides vectors of raw features that are 
used to describe the natural conditions (e.g., slope and rainfall) and 
human activity-related conditions (e.g., land use). The hidden layers 
progressively process the input information and create abstractions so 
that complex concepts can be learned more easily. In the final layer, the 
softmax activation function can be employed to derive the output class 
probabilities (Kim, 2017; Skansi, 2018). Herein, there are two output 
classes of “non-forest fire” and “forest fire”, in terms of probability 
indices. The probability indices of the forest fire will be used to generate 
a forest fire danger map. 

2.2. Optimization algorithms 

It is noted that Deep-NC models are able to perform high-level 
feature extraction during the training process autonomously (Hoang 
et al., 2018a). This high-level feature extraction is achieved via self- 
adaptions of the weights within the hidden layers of the models 
(Sugomori et al., 2017). 

It is notable that the capability of inferring high-level representations 
of the original features can be considered as a major advantage of this 
advanced ML method. Nevertheless, the capability of the high-level 
feature extraction in deep neural networks primarily depends on the 
optimization algorithms used for fine-tuning the networks’ weights. The 
process of weight adaptation is illustrated in Fig. 2. Herein, the well- 
known optimizers, namely, Stochastic Gradient Descent (SGD), Root 
Mean Square Propagation (RMSProp), Adaptive Moment Estimation 
(Adam), and Adadelta are reviewed. 

2.2.1. Stochastic gradient descent (SGD) 
Using the conventional batched gradient descent approach, the 

network weight (w) is adapted using Eq. (1) (Kim, 2017): 
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w = w − α∇L(w) (1)  

where α denotes the learning rate parameter;∇L is the gradient 
The batched gradient descent algorithm has been proved to converge 

to the global minimum for convex loss functions and a local minimum 
for non-convex ones (Goodfellow et al., 2016). Nevertheless, one major 
disadvantage of the conventional batched gradient descent is that the 
component gradient ∇Li for each sample in the dataset must be 
computed entirely. This fact can lead to a high computational expense 
for large-sized training datasets. In order to improve the performance of 
the batched gradient descent algorithm, stochastic gradient descent 
(SGD) is proposed (Goodfellow et al., 2016). 

The SGD is considered as a stochastic approximation of gradient descent 
optimization because it substitutes the actual gradient by an approximation 
gradient via sub-sampling of the whole training data. The equation used for 
updating the deep model’s weights is presented in Eq. (2). 

w = w − α∇Li(w) (2)  

2.2.2. Root mean square propagation (RMSProp) 
The RMSProp has been proposed by Tieleman and Hinton (2012), 

and it is designed to reduce the oscillating phenomenon via the 
employment of lessened learning rates for updating oscillating weights. 
Networks’ weights that are not subject to oscillating phenomena are 
updated with larger learning rates. Tieleman and Hinton (2012) intro
duced the concept of learning rate (α) scaling via the use of the term of 
νt

(j) which is the exponentially weighted moving average of squares of 
the associated gradients (partial derivatives), gt

(j)(Nhu et al., 2020). Eqs. 
(3) and (4) used for updating weights are described as follows: 

ν(j)
t = ρν(j)

t− 1 +(1 − ρ)
(
g(j)

t

)2 (3)  

w(j)
t+1 = w(j)

t −
α

̅̅̅̅̅̅

ν(j)
t

√

+ ε
g(j)

t (4)  

where t is the step in the SGD optimizer; j represents the associated 
component weight; ρ denotes a hyper-parameter of the algorithm (ρ of 
0.9 can be a good initial start); ε = 10− 8 denotes a small positive number 
used to avoid division by zero. 

2.2.3. Adaptive moment estimation (Adam) 
The Adam optimizer, first proposed by Kingma and Ba (2015a), 

Kingma and Ba, 2015b), has the feature of fine-tuning the learning rates 
for each network weight automatically. Moreover, this method uses a 
record of an exponentially decaying average of past squared gradients. 
The Adam can be considered as an integration of the aforementioned 
SGD and RMSprop algorithms. 

Besides the term νt
(j) (regarded as the second moment) used similarly 

in the RMSProp optimizer, the Adam algorithm calculates the mo
mentum (regarded as the first moment) as the exponentially weighted 
average of gradients (Nhu et al., 2020): 

m(j)
t = β1m(j)

t− 1 +(1 − β1)g(j)
t (5)  

ν(j)
t = β2ν(j)

t− 1 +(1 − β2)
(
g(j)

t

)2 (6)  

where the hyper-parameters β1 and β2 are recommended to be 0.9 and 
0.999, respectively (Kingma and Ba, 2015a; Kingma and Ba, 2015b). 

Fig. 1. The general structure of a deep learning model.  

Fig. 2. The general process of network weight adaptation.  
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Accordingly, the first and second moments are computed using Eq. (7). 

m̂(j)
t =

m(j)
t

1 − βt
1
, ν̂(j)

t =
ν(j)

t

1 − βt
2

(7) 

Finally, the deep neural network’s weights are adapted using Eq. (8): 

w(j)
t+1 = w(j)

t −
α

̅̅̅̅̅̅̅

ν̂(j)
t

√

+ ε
m̂(j)

t (8)  

2.2.4. Adadelta optimizer 
The Adadelta, first proposed by Zeiler (2012), is an advanced opti

mizer that aims at alleviating the phenomenon of monotonically 
decreasing the learning rate (Ruder, 2017). To achieve this purpose, this 
optimizer confines the window of accumulated past gradients to a 
certain fixed size. It is also noted that the Adadelta method does not 
require the setting of a default learning rate. The equations used to 
update the network’s weights are presented in Eq. (9). 

w(j)
t+1 = w(j)

t −
RMS[Δw]t
RMS[g]t

g(j)
t (9)  

where RMS denotes the root mean squared error of the parameter up
dates (Zeiler, 2012). 

3. The study area and GIS database 

3.1. Description of the study area 

Gia Lai province is situated in the south-central region of Vietnam, 
covering an area of 15,512 km2. Topographically, the highest altitude is 
1748 m at Kon Ka Kinh mountain, which belongs to K’Bang district, 
whereas the lowest altitude is 80 m at Krongpa district. The total pop
ulation of the province is 1,513,847 people in 2019, with the population 
density of 94 people/km2 (GSO, 2019). 

Regarding the economy of the province, according to the statistical 

yearbook of Vietnam 2018 (General Statistic Office, 2018), agriculture, 
forestry, and fishing accounted for 32.75% of the Gross Domestic 
Product (GDP). In contrast, industry and construction were 27.81%, and 
services were 35.96%. In 2018, around 93.13% was agriculture and 
forestry lands, whereas residential land was 1.22%. The total forest area 
was 632,200 ha, which accounts for 40.8% of the total study area. The 
areas with natural forest and planted forest were 5436 ha and 88,600 ha, 
and they account for 35.04% and 5.71% of the total area of the province, 
respectively (General Statistic Office, 2018). 

The province (Fig. 3) belongs to the tropical monsoon highland 
climate, with abundant humidity and a high amount of rainfall (Van 
et al., 2014). The climate is separated clearly into two distinct seasons: 
dry and rainy seasons. The rainy season usually starts in May and ends in 
October, whereas the dry season is from November to April in the 
following year. The annual average temperature is from 22 to 25 ◦C, 
whereas the annual average precipitation is 2100–2200 mm. 

Regarding wildfire, this province has been suffering from this hazard 
for the last ten years (Le et al., 2020). According to the department of 
forest protection of the province, currently, more than 270,000 ha of forest 
is highly sensitive to fire. Only in the first four months in 2020, two severe 
wildfire events occurred, namely, the fire occurred at the protective forest 
area of Ham Rong-Plei Ku destroying 2 ha of forest and the fire happened 
at Ia Grai district from April 4 to 9 destroying 17 ha of pine forest. 

3.2. Wildfire data 

The wildfire modeling using Deep-NC in this work is of supervised 
learning, where the model uses the data of historical forest fire locations 
(Fig. 3), and the inputs are ignition factors. Therefore, the collection of 
historical forest fires with high accuracy is a key task. In this research, a 
forest fire database, which consists of 2530 historical fire locations 
occurring during 2007–2016, prepared by Le et al. (2020) was used. 
These fire locations were derived from the fire database provided by the 
Ministry of Agriculture and Rural Development (MARD) of Vietnam and 
available at http://www.kiemlam.org.vn. 

Fig. 3. (a) and (b) Location of Gia Lai province in Vietnam; and (c) Gia Lai province and forest fire locations map.  
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Fig. 4. Forest fire ignition factors used in this study: (a) Overview map of Gia Lai province; (b) Elevation map; (c) Slope map; (d) Aspect map; (e) Curvature map; (f) 
Land use map; (g) NDVI map; (h) NDWI map; (i) NDMI map; (j) Temperature map; (k) Wind speed map; (l) Relative humidity map; and (m) Rainfall map. 
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Our statistical analysis showed that around 90% of these fires 
occurred in the dry months from January to May. Forest fires severely 
occurred in 2010, 2013, 2015, and 2016, which were strongly affected 
by the El Niño–Southern Oscillation (ENSO) activities causing prolonged 
droughts in the province. Herein, the rainfall was around 12% lower 
than that of average years (Sutton et al., 2019). In contrast, almost no 
fire was reported in years with La Nina events, e.g., 2011. 

3.3. Driving factors 

The occurrence of wildfire and its spreading have proven to be the 
result of various interactions of ignition sources and several factors, 
including topography, fuels, and climate patterns (Cary et al., 2009; 
Thach et al., 2018); therefore, the determination of driving factors is a 
crucial task in forest fire modeling. This section provides an overview of 
the driving factors used in this project. More descriptions of these factors 
can be found in Le et al. (2020). 

3.3.1. Topographical factors 
Topography influences both the indirect and direct behavior of wild

fires. The variation of topography in a large area can create different local 
climates, which relate to the temperature, land covers, and the distribution 
of tree species (Mermoz et al., 2005); therefore, it influences wildfires 
indirectly. Besides, the topography affects wildfires directly by accelerating 
the fire transfer in slope directions (Moreno et al., 2014). In this project, a 

30 m-resolution digital elevation model (DEM) for Gia Lai province was 
generated using the 1:50,000 scale topographic maps provided by the 
Ministry of Natural Resource and Environment (MONRE) of Vietnam. 
Then, four topography-related factors were generated: elevation (Fig. 4b), 
slope (Fig. 4c), aspect (Fig. 4d), and curvature (Fig. 4e). 

Terrain slope affects the spreading rate of fires directly (Dupuy and 
Maréchal, 2011), while aspect is related to solar radiation, temperature, 
wind speed, humidity, and vegetation that are important driving factors 
of wildfires (Bennie et al., 2008; Johansson et al., 2017). Therefore, both 
slope and aspect should be selected for wildfire modeling. Terrain 
elevation affects not only air temperature and humidity but also rainfalls 
and distributions of plant species (Brunello et al., 2019; Chen et al., 
2018); therefore, it should be considered as a driving factor for wildfire 
study. Regarding the curvature, this factor has proven to be a factor for 
the propagation of wildfires (Hilton et al., 2017), in which the higher is 
the local curvature, the faster is the fire spreading. 

3.3.2. Anthropogenic and environmental factors 
In both developed and developing countries, human activity is 

considered a leading cause of wildfires. Thus, due to population growth, 
anthropic pressures on natural resources lead to deforestation and 
intensification of land use, generating higher wildfire probabilities in 
some tree species (Kissinger et al., 2019; Viedma et al., 2017). Therefore, 
land use is an essential factor and should be considered for wildfire 
modeling. In this research, a land use map (Fig. 4e) with eleven groups 

Fig. 4. (continued). 
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was compiled from the national land use map at a scale of 1: 50,000 
provided by MONRE. 

Regarding the normalized difference vegetation index (NDVI), this is 
an indicator of the health status of vegetations (Carlson and Ripley, 
1997; Gamon et al., 1995), which relates to the fuel for wildfire; 
therefore, NDVI (Fig. 4g) was selected in this analysis. In addition to 
NDVI, the normalized difference water index (NDWI) (Fig. 4h) and the 
normalized difference moisture index (NDMI) (Fig. 4i) were also 
considered for the wildfire study because NDWI is an indicator of the 
water content in the trees, while NDMI is a proxy for the fuel moisture, 
which influence the behavior of wildfires. 

For this project, Landsat-8 OLI images with a 30 m resolution (ac
quired in 2016 at http://earthexplorer.usgs.gov) were used to compute 
NDVI (Tucker, 1979), NDWI (McFeeters, 1996), and NDMI (Wilson and 
Sader, 2002). It should be noted that the images have been calibrated into 
the Bottom of Atmosphere (BOA) values (surface reflectance values). 

NDVI = (NIR band − Red band)/(NIR band+Red band) (10)  

NDWI = (Green band − NIR band)/(Green band+NIR band) (11)  

NDMI = (NIR band–SWIR band)/(NIR band+SWIR band) (12)  

where NIR is the near-Infrared band, and SWIR is the Short-wave 
Infrared band. 

3.3.3. Climate factors 
Climate change has proven to interlink with the wildfire regimes 

significantly (Lacroix et al., 2020); therefore, climate-related factors 
should be used. In this project, four climatic factors, namely, tempera
ture, wind speed, relative humidity, and rainfall, were selected, as their 
data were available for the study area. In this analysis, the temperature 
map (Fig. 4j), the wind speed map (Fig. 4k), relative humidity map 
(Fig. 4l), and the rainfall map (Fig. 4m), which was prepared by Le et al. 
(2020) was used. Herein, these maps were compiled using the weather 
data from 2007 to 2014 (available at https://www.ncdc.noaa.gov/). 

Temperature is selected because it affects soil moisture and is 
directly related to the combustion of plants (Pourtaghi et al., 2016). 
Besides, the rising temperature also affects humidity and forest health, 
reducing the moisture content of the vegetation (Gillett et al., 2004), and 
therefore, causing developments of fires. Wind speed is used because it 
affects the spread of wildfires directly (Alexandridis et al., 2008). Also, 
wind speed could influence the fuel moisture, provide extra oxygen, and 
accelerate combustion. Regarding relative humidity and rainfall, they 
influence fuel moisture (Liu et al., 2013), which is a critical indicator for 
the ignition of wildfire. 

4. The deep-NC methodology 

This section describes in detail the proposed approach in this 
research. It should be noted that the processing of the wildfire data and 
12 driving factors was carried out using ArcGIS 10.6. Besides, the Deep- 
NC model was programmed by the authors in Python environment using 
the Keras Python deep learning API (Chollet, 2018). Moreover, the au
thors developed a Python tool to transform the predicted wildfire results 
into a raster map in ArcGIS. In the Python tool, the ASCII to raster in a 
geographic information system (Brown, 2014) was employed. 

4.1. Wildfire database 

Because the proposed Deep-NC used for spatial prediction of forest 
fire susceptibility is fundamentally a supervised learning method, it is 
required to establish a GIS database to train the model. The GIS database 
should include information regarding forest fire inventory and the 
affecting factors. The fire ignition factors consist of slope, aspect, 
elevation, curvature, land use, NDVI, NDWI, NDMI, temperature, wind 

speed, relative humidity, and rainfall. The constructed GIS database 
used in this study is illustrated in Fig. 5. 

Since the concept of the binary pattern GIS-based modeling (Bui 
et al., 2017) was employed in this research, which requires both forest 
fire and non-forest fire samples, a total of 2530 non-forest fire data 
points were randomly sampled from non-forest areas of the study area. 
Thus, the total number of samples used to train and verify the proposed 
Deep-NC was 5060. The whole data set was then randomly divided into 
two mutually exclusive sets: a training set (70%) and a testing set (30%). 

It is noted that the GIS database used for forest fire susceptibility 
mapping consisting of the 12 ignition factors and the fire inventory has 
been compiled in the ArcGIS 10.6 using the ESRI file geodatabase 
format. As mentioned earlier, the dataset consists of 5060 data points. 
Furthermore, regarding data normalization, the data of the influencing 
factors have been converted from categorical classes into real-valued 
numbers within the range of 0.01 and 0.99 (Bui et al., 2012). 

4.2. Assessment of the predictive importance of the driving factors 

In order to have an overview of the wildfire driving factors before 
going further to wildfire modeling using the deep learning approach, the 
predictive importance of these factors was assessed. This is because the 
12 driving factors were just heuristically selected based on the wildfire 
data analysis and literature review. In environmental modeling using ML, 
especially deep learning, it is reasonable to say that some factors may 
exist noises that could reduce the prediction capability of the wildfire 
model. Therefore, the predictive importance of these factors should be 
assessed. In this research, the average impurity decrease (AVID) (Hoa 
et al., 2019) was used to quantify all factors’ predictive importance. 
When ranking these factors, the AVID method also considered in
teractions between them. As a result, a factor with a zero AVID value 
should be removed from the modeling process. 

4.3. Objective function for training the deep-NC model 

The Deep-NC model training is a process of searching and updating 
weights of the model to minimize the difference between the predicted 
wildfires and the actual wildfires. In order to measure this difference, an 
objective function should be used. In this work, Mean Squared Error 
(MSE) objective function was selected Eq. (13). 

L(y, ŷ) =
1
N

∑N

i=1

(

yi − ŷi

)2

(13)  

where N denotes the number of data samples; yi, ŷi represent the actual 
and predicted output for sample i, respectively. 

4.4. Training and validating the deep-NC model 

Based on the training samples and ground truth labels obtained from 
the constructed GIS database, the Deep-NC model for spatial prediction 
of forest fire susceptibility mapping can be trained. The overall structure 
of the deep neural network employed in this study is provided in Fig. 6. 
The deep neural network consists of an input layer (with 12 input 
neurons to receive signals of the 12 forest fire influencing factors), a 
number of hidden layers, and an output layer that returning two-class 
outputs. The network consists of three hidden layers; each layer has 
64 neurons. The rectified linear unit (ReLU) activation function 
(Goodfellow et al., 2016) is employed for the neurons in the hidden 
layers. 

In order to optimize the weights of the Deep-NC model, SGD, 
RMSProp, Adam, and Adadelta optimizers are employed. Using the 
Deep-NC model, a decision boundary that divides the study area’s map 
into two separate categories of “non-forest fire” and “forest fire” can be 
generated. Subsequently, the Deep-NC prediction outcomes can be 
transformed into a raster format and analyzed by the ArcGIS package. 
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Fig. 5. The established forest fire GIS database.  

Fig. 6. The proposed Deep-NC model for the forest fire susceptibility in this study.  
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Finally, the outputs for all the points in the study area can be computed 
to create a forest fire susceptibility map for the study area. 

4.5. Quality assessment of the model 

Because the problem of forest fire susceptibility mapping is modeled 
as a binary classification task, the true positive (TP), the false positive 
(FP), the false negative (FN), and the true negative (TN) can be 
computed via comparisons between the actual and predicted class out
puts. Based on the four indices of TP, FP, FN, and TN, the Positive 
predictive value (PPV) or Precision, Negative Predictive Value (NPV), 
Sensitivity (Sen), Specificity (Spe), and Classification Accuracy Rate 
(CA) can be computed as follows: 

PPV =
TP

TP + FP
;NPV =

TN
TN + FN

; Sen =
TN

TN + FN
; Spe =

TN
TN + FP

(14)  

CA =
TP + TN

TP + TN + FP + FN
× 100% (15) 

In addition to the above indices, the Receiver operating characteristic 
(ROC) curve (van Erkel and Pattynama, 1998) and the Kappa index 
(McHugh, 2012) are often used to evaluate the predictive capability of deep 
neural network-based classifiers (Hoang et al., 2018b; Nhu et al., 2020). 

5. Results and discussion 

5.1. Predictive importance of the wildfire driving factors 

The predictive importance of each driving factor is shown in Table 1. 
The result shows that NDVI, NDWI, and NDMI have the highest pre
dictive values. The average impurity decrease (AVID) are 5.65, 2.28, and 
1.31, respectively. They are followed by humidity (1.00), temperature 
(1.00), wind speed (0.91), land use (0.85), rainfall (0.84), and elevation 
(0.81) (Table 1). The result is in line with the finding in Tien Bui et al. 
(2017), in which NDVI is the most important factor. Herein, NDVI is 
associated with a tree cover that affects fuel load variability, a major 
factor controlling the firing mechanism. In contrast, slope, curvature, 
and aspect have the lowest predictive values; however, the AVID value 
of 0.75 for these factors is still useful for predicting wildfire in this 
research. Overall, all factors are considered for the modeling process. 

5.2. Model performance and evaluation 

The structure of the Deep-NC model is shown in Fig. 6. The model 
consists of 206 neurons, which were organized in five layers, namely, 
one input layer, three hidden layers, and one output layer. A total of 
13,377 weights of the Deep-NC model were optimized by the Adam 
algorithm through the training process, and the result is shown in 
Table 2 and Fig. 7a. It can be observed that the Deep-NC model has an 
excellent performance where CA and Kappa values are 95.40% and 

0.908, respectively. In addition, the AUC value of 0.983 indicates that 
the model attained a high global performance. The sensitivity is 92.86%, 
the specificity is 98.26%, and the Kappa index is 0.908 indicating a high 
degree-of-fit between the training dataset and the estimated wildfires of 
the model. Thus, the Adam algorithm is capable of optimizing the 
weights of the model for the training data set at hand. 

Using the validation dataset, the prediction capability of the Deep- 
NC model was validated, and the result is shown in Table 2 and 
Fig. 7b. It could be observed that AUC is 0.894, denoting that the global 
prediction capability is 89.4%. The CA of 81.5% indicates a high clas
sification result of the model, whereas Kappa index of 0.630 denotes a 
satisfying result. 

The validity of the Deep-NC model was further assessed by 
comparing to those of the Support Vector Machine model (AUC =
0.786), the Relevance Vector Machine model (AUC = 0.793), and the 
Random Forest model (AUC = 0.790), which were carried out in the 
previous works of Le et al. (2020). The AUC value of 0.894 of the pro
posed Deep-NC model indicates that its prediction performance is better 
than those of the above mentioned models. 

5.3. Evaluation of the deep-NC model with different optimization 
algorithms 

Among the employed performance measurement metrics, the AUC 
index can reflect most accurately the predictive capability of a classifier. 
Hence, this measurement index is used to evaluate the performance of 
the proposed Deep-NC model optimized by different algorithms. Table 3 
shows the prediction performance of the Adam optimized Deep-NC 
model using ten random sampling cases as suggested by Nhu et al. 
(2020). The AUC index in Sample 1 has the highest value (0.933), and 
that of Sample 2 (0.817) has the lowest value. The average performance 
of the Adam optimized Deep-NC model is 0.893. 

The prediction performance of the SGD optimized Deep-NC model 
with ten random sampling cases is shown in Table 4. Herein, Sample 5 
has the highest AUC value (0.858), whereas Sample 1 has the lowest 
AUC value (0.807). The average AUC value of the SGD optimized Deep- 
NC is 0.839. The performances of the RMSprop optimized Deep-NC and 
Adadelta optimized Deep-NC models are reported in Table 5 and 
Table 6, respectively. The average performances of these two models are 
0.822 and 0.828, respectively. Thus, it can be concluded that the Adam 
optimized Deep-NC model has achieved the highest accuracy for forest 
fire prediction with an average AUC value of 0.893. 

5.4. Generation of a forest fire danger map 

Since the Deep-NC model is capable of providing the high prediction 
capability of forest fire occurrence, the model was then used to calculate 
wildfire danger indices for the whole province. The predictive outcomes 
are transformed into a raster format and opened in ArcGIS. Subse
quently, the forest fire susceptibility map (Fig. 8) was derived and 
visualized with six categories, namely, No forest fire (0–0.086), Very low 
(0.087–0.282), Low (0.283–0.498), Moderate (0.499–0.710), High Table 1 

Predictive importance of the wildfire driving factors.  

Driving factor Average impurity 
decrease 

Number of nodes 
used 

Ranking 

NDVI 5.65 21,255 1 
NDWI 2.28 24,352 2 
NDMI 1.31 35,128 3 
Humidity (%) 1.00 21,919 4 
Temperature (o) 1.00 23,845 5 
Wind speed (m/s) 0.91 27,402 6 
Land use 0.85 35,785 7 
Rainfall (mm) 0.84 30,147 8 
Elevation (m) 0.81 46,863 9 
Slope (o) 0.75 59,574 10 
Curvature 0.75 52,101 11 
Aspect 0.75 72,394 12  

Table 2 
Performance of the proposed Deep-NC model.  

Metrics Training dataset Validation dataset 

TP 1742 673 
TN 1637 564 
FP 29 86 
FN 134 195 
PPV (%) 98.36 88.7 
NPV (%) 92.43 74.3 
Sensitivity (%) 92.86 77.5 
Specificity (%) 98.26 86.8 
CA (%) 95.40 81.5 
Kappa 0.908 0.630  
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(0.711–0.894), and Very high (0.895–1) using the Natural Break method 
in ArcGIS 10.6 (Bui et al., 2017). 

A visual interpretation of the wildfire danger map in ArcGIS shows 
that very high probabilities of wildfire are at the forests of Ia Grai, Chu 
Pah, Duc Co, Chu Prong, Ia Pa, and Dak Doa. In these districts, a total 
number of 8 wildfire events occurred only in 2019, destroying a total 
amount of 91.35 ha of forests. Therefore, these areas should receive more 
attention when designing measures for forest prevention and control. In 
contrast, forest areas in Mang Yang, Chu Se, Phu Thien, and Ayun Pa have 
a lower probability of wildfire (Fig. 8) due to new-planted forests with 
low fuel accumulation. 

6. Concluding remarks 

This work proposed and validated a new approach for the spatial 
prediction of wildfire danger using deep neural computing with four 
different optimization algorithms: SGD, RMSProp, Adaptive Adam, and 
Adadelta. Deep neural computing (Deep-NC) is a sub-branch of ML, 
which has proven to be very promising in environmental modeling; 
however, it has not been yet explored for wildfire study. A tropical forest 
database at the Central Highland (Vietnam) with 12 driving factors and 
2530 historical wildfire locations was used to train and verify the pro
posed models. Based on the findings, some conclusions are given below: 

Fig. 7. ROC curve and AUC of the Deep-NC model using (a) the training dataset and (b) the validation dataset.  

Table 3 
Prediction performance of the Adam optimized Deep-NC model with ten random sampling cases.  

Statistical metrics Ten random sampling cases Statistics 

1 2 3 4 5 6 7 8 9 10 Min Max Mean STD 

TP 642 570 571 589 639 640 593 658 661 662 570 662 622.5 35.58 
TN 661 537 586 615 584 592 636 600 613 623 537 661 604.7 31.94 
FP 117 189 188 170 120 119 166 101 98 97 97 189 136.5 35.58 
FN 98 222 173 144 175 167 123 159 146 136 98 222 154.3 31.94 
PPV 84.58 75.10 75.23 77.60 84.19 84.32 78.13 86.69 87.09 87.22 75.10 87.22 82.02 4.69 
NPV 87.09 70.75 77.21 81.03 76.94 78.00 83.79 79.05 80.76 82.08 70.75 87.09 79.67 4.21 
Sen 86.76 71.97 76.75 80.35 78.50 79.31 82.82 80.54 81.91 82.96 71.97 86.76 80.19 3.79 
Spe 84.96 73.97 75.71 78.34 82.95 83.26 79.30 85.59 86.22 86.53 73.97 86.53 81.68 4.32 
CA 85.84 72.92 76.22 79.31 80.57 81.16 80.96 82.87 83.93 84.65 72.92 85.84 80.84 3.74 
AUC 0.933 0.817 0.859 0.883 0.884 0.904 0.897 0.906 0.921 0.926 0.817 0.933 0.893 0.033  

Table 4 
Prediction performance of the SGD optimized Deep-NC model with ten random sampling cases.  

Statistical metrics Ten random sampling cases Statistics 

1 2 3 4 5 6 7 8 9 10 Min Max Mean STD 

TP 663 655 688 675 658 684 683 719 612 651 612 719 668.8 26.91 
TN 462 500 461 465 530 478 486 450 546 532 450 546 491 32.56 
FP 96 104 71 84 101 75 76 40 147 108 40 147 90.2 26.91 
FN 297 259 298 294 229 281 273 309 213 236 213 309 268.9 31.52 
PPV 87.35 86.30 90.65 88.93 86.69 90.12 89.99 94.73 80.63 85.77 80.63 94.73 88.12 3.55 
NPV 60.87 65.88 60.74 61.26 69.83 62.98 64.03 59.29 71.94 69.27 59.29 71.94 64.61 4.19 
Sen 69.06 71.66 69.78 69.66 74.18 70.88 71.44 69.94 74.18 73.39 69.06 74.18 71.42 1.82 
Spe 82.80 82.78 86.65 84.70 83.99 86.44 86.48 91.84 78.79 83.13 78.79 91.84 84.76 3.26 
CA 74.11 76.09 75.69 75.10 78.26 76.55 77.01 77.01 76.28 77.47 74.11 78.26 76.36 1.14 
AUC 0.807 0.831 0.844 0.831 0.858 0.846 0.844 0.832 0.842 0.855 0.807 0.858 0.839 0.014  

H.V. Le et al.                                                                                                                                                                                                                                    



Ecological Informatics 63 (2021) 101300

11

▪ The Deep-NC model’s behavior for predicting wildfire is 
strongly dependent on how its weights were updated. Among 
the four optimization algorithms, Adam algorithm has the best 
performance, whereas there is no significant difference in the 
performance of the models using the other optimization 
algorithms.  

▪ The performance of the Deep-NC models is higher than those of 
benchmarks, namely, Relevance Vector Machines, Support 
Vector Machines, and Random Forests. Thus, Deep-NC is a 
promising tool that should be considered for predicting wildfire 
danger.  

▪ One of the difficulties in designing Deep-NC models is the 
determination of the number of hidden layers and the number 
of neurons for each of them. In this work, although three hidden 
layers with 64 neurons each were utilized based on a suggestion 
in Tien Bui et al. (2020), there is no guarantee that this is an 
optimal structure of the Deep-NC model. Therefore, the per
formance of the Deep-NC model could be improved by inves
tigating a more optimal structure for the model.  

▪ The high performance of the Deep-NC model in this work is 
adequate for producing the wildfire danger map, which is 
beneficial for provincial authorities in forest prevention and 
control.  

▪ Future works could focus on how to optimize the structure of 
Deep-NC models for wildfire studies. Also, new ML optimiza
tion algorithms, e.g., Coronavirus Optimization Algorithm 
(Martínez-Álvarez et al., 2020) and Balancing composite mo
tion algorithm (Le-Duc et al., 2020), should be utilized for 
training Deep-NC models. 

Declaration of Competing Interest 

None. 

Table 5 
Prediction performance of the RMSprop optimized Deep-NC model with ten random sampling cases.  

Statistical metrics Ten random sampling cases Statistics 

1 2 3 4 5 6 7 8 9 10 Min Max Mean STD 

TP 571 516 493 696 568 528 585 618 611 698 493 698 588.4 66.10 
TN 545 578 602 434 563 577 530 510 520 419 419 602 527.8 57.45 
FP 188 243 266 63 191 231 174 141 148 61 61 266 170.6 66.10 
FN 214 181 157 325 196 182 229 249 239 340 157 340 231.2 57.45 
PPV 75.23 67.98 64.95 91.70 74.84 69.57 77.08 81.42 80.50 91.96 64.95 91.96 77.52 8.71 
NPV 71.81 76.15 79.31 57.18 74.18 76.02 69.83 67.19 68.51 55.20 55.20 79.31 69.54 7.57 
Sen 72.74 74.03 75.85 68.17 74.35 74.37 71.87 71.28 71.88 67.24 67.24 75.85 72.18 2.61 
Spe 74.35 70.40 69.35 87.32 74.67 71.41 75.28 78.34 77.84 87.29 69.35 87.32 76.63 6.02 
CA 73.52 72.07 72.13 74.44 74.51 72.79 73.45 74.31 74.51 73.58 72.07 74.51 73.53 0.89 
AUC 0.821 0.828 0.840 0.806 0.836 0.819 0.825 0.811 0.817 0.814 0.806 0.840 0.822 0.010  

Table 6 
Prediction performance of the Adadelta optimized Deep-NC model with ten random sampling cases.  

Statistical metrics Ten random sampling cases Statistics 

1 2 3 4 5 6 7 8 9 10 Min Max Mean STD 

TP 588 589 540 614 669 621 632 668 729 701 540 729 635.1 54.25 
TN 541 538 565 517 497 521 507 474 405 429 405 565 499.4 47.83 
FP 171 170 219 145 90 138 127 91 30 58 30 219 123.9 54.25 
FN 218 221 194 242 262 238 252 285 354 330 194 354 259.6 47.83 
PPV 77.47 77.60 71.15 80.90 88.14 81.82 83.27 88.01 96.05 92.36 71.15 96.05 83.68 7.15 
NPV 71.28 70.88 74.44 68.12 65.48 68.64 66.80 62.45 53.36 56.52 53.36 74.44 65.80 6.30 
Sen 72.95 72.72 73.57 71.73 71.86 72.29 71.49 70.09 67.31 67.99 67.31 73.57 71.20 1.99 
Spe 75.98 75.99 72.07 78.10 84.67 79.06 79.97 83.89 93.10 88.09 72.07 93.10 81.09 6.02 
CA 74.37 74.24 72.79 74.51 76.81 75.23 75.03 75.23 74.70 74.44 72.79 76.81 74.74 0.96 
AUC 0.825 0.831 0.831 0.818 0.847 0.836 0.826 0.816 0.821 0.827 0.816 0.847 0.828 0.009  

Fig. 8. Wildfire danger map for the study area using the Deep-NC model.  
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