
Vol.:(0123456789)1 3

Environmental Earth Sciences (2021) 80:239 
https://doi.org/10.1007/s12665-021-09525-6

ORIGINAL ARTICLE

An approach based on socio‑politically optimized neural computing 
network for predicting shallow landslide susceptibility at tropical 
areas

Viet‑Ha Nhu1   · Nhat‑Duc Hoang2,3 · Mahdis Amiri4 · Tinh Thanh Bui5 · Phuong Thao T. Ngo6 · Pham Viet Hoa7 · 
Pijush Samui8 · Long Nguyen Thanh9 · Tu Pham Quang10 · Dieu Tien Bui11

Received: 13 June 2020 / Accepted: 26 February 2021 / Published online: 16 March 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
A new hybrid model approach based on Imperialist Competitive Algorithm, a socio-politically optimization, and neural 
computing networks (ICA-NeuralNet) was developed and proposed in this study with the aim is to improve the quality of 
the shallow landslide susceptibility assessment at the Ha Long city area, Quang Ninh province. This area, which belongs 
to one of the three key economic regions of Vietnam, has a high urbanization speed during the last ten years. However, the 
landslide has been a significant environmental hazard problem during the last five years due to extreme torrential rainstorms. 
For this regard, a geographic information system (GIS) database was established, which contains 170 landslide polygons that 
occurred during the last five years and ten influencing factors. The database was used for training and validating the ICA-
NeuralNet model. The results showed that the integrated model achieves high performance with classification accuracy rates 
of 82.4% on the training dataset and 78.2% on the testing dataset. Therefore, the ICA-NeuralNet is subsequently employed 
for generating a landslide susceptibility map of the study area, which greatly supports the land-use planning as well as hazard 
mitigation/prevention of local authority.
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Introduction

Recent research shows that climate change has played sig-
nificant roles in inducing extreme rainfall events (Keellings 
and Hernández Ayala 2019; Liu et al. 2019; Sarhadi and 
Soulis 2017), which triggered a large number of landslides 
globally (Benz and Blum 2019; Haque et al. 2019). Con-
sequently, landslides continue causing significant damages 
in many parts of the world, especially in mountainous and 
remote regions (Froude et al. 2018; Grahn and Jaldell 2017; 
Stäubli et al. 2018). Given their complex natures, it is still 
challenging to predict landslide occurrences, scales, and 
impacts with high accuracy. Thus, this fact limits the ability 
to reduce the risk of landslides and prevent or mitigate their 
devastating consequences, especially their direct effects on 
people’s lives (Rossi et al. 2019). Moreover, in the context 

of increased population density and expansive infrastructure 
developments in mountainous areas, the risk and devastating 
consequences of landslides seem to be intensified. There-
fore, innovative measure to reduce the adverse effects of 
landslides at the regional scale is an urgent need (Barraqué 
and Moatty 2019).

To reduce or even prevent damage caused by slope move-
ments, it is necessary to develop models that allow identify-
ing areas prone to landslides. Therefore, landslide suscepti-
bility assessment is often regarded as an essential program 
for efficient spatial planning and risk management in moun-
tainous areas (Cao et al. 2019; Ciurleo et al. 2019; Fressard 
et al. 2014; Kornejady et al. 2019; Yan et al. 2019; Zêzere 
et al. 2017). In recent years, GIS and statistical software 
tools have provided extensive opportunities for analyzing the 
spatial distribution of landslides (Chen et al. 2019b; He et al. 
2019; Rossi et al. 2019). GIS technology has been increas-
ingly implemented to evaluate cause and effect and investi-
gate the impact of environmental changes on slope stability 
(Cascini 2008). It is because conventional physical models 
used to assess soil slope stability have significant obstacles, 
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including the lack of access to crucial geotechnical informa-
tion (Kuriakose and Beek 2009). GIS-based models, on the 
other hand, are quantitative methods for identifying sites 
with similar geological and geomorphological character-
istics that rely on accessible remote-sensing data as well 
as field surveys with low-cost hand-held global positioning 
system devices (Guru et al. 2017).

The GIS data consisting of various layers of informa-
tion (e.g., slope degree, aspect, topographic wetness index) 
provide a powerful tool for displaying and analyzing spa-
tial patterns of landslide occurrences (Chen et al. 2018). 
The collected GIS data can be used to establish a landslide 
inventory map for a study area. The information stored in 
such an inventory map is subsequently extracted to create 
GIS datasets featuring landslide and non-landslide locations 
(Merghadi et al. 2018).

Various statistical methods have been employed to ana-
lyze GIS datasets for landslide susceptibility mapping at the 
regional scale (Huang and Zhao 2018; Pourghasemi et al. 
2018; Reichenbach et al. 2018). Li et al. (2017) propose an 
improved version of the traditional frequency ratio method 
by enhancing the continuity of frequency ratio values and 
diminishing the subjectivity associated with the classifi-
cations of landslide affecting factors. Performances of the 
frequency ratio, weights of evidence, and statistical index 
models used for constructing multi-class weighted factors 
and generating landslide susceptibility maps have been 
investigated in (Razavizadeh et al. 2017); the authors con-
clude that the frequency ratio is highly sensitive to land-
slide influencing factors and all of the three approaches can 
deliver acceptable modeling accuracy for the study area. 
Ding et al. (2017) compare the capabilities of the frequency 
ratio, weights of evidence, and evidential belief function 
used for predicting landslide occurrence in mountain hin-
terland; the research finding is that the frequency ratio is 
simple yet effective method for computing landslide sus-
ceptibility maps. An approach that combines information 
theory and GIS has been put forward in (Tsangaratos et al. 
2017); the information coefficients, approximated by Shan-
non’s entropy index, are employed to specify the number of 
classes of each landslide influencing factors; accordingly, the 
evidential belief function and logistic regression are used for 
computing landslide susceptibility maps.

Based on the previous works’ findings, the statistical 
methods are capable of delivering good prediction accuracy 
with a low computational expense. However, conventional 
statistical methods have certain limitations in analyzing 
complex, multivariate, and nonlinear data. The perfor-
mances of such methods have been demonstrated to be infe-
rior to advanced machine learning approaches (Merghadi 
et al. 2018; Tien Bui et al. 2019).

Therefore, machine learning approaches have been 
attracting researchers’ attention to develop accurate landslide 

susceptibility prediction models in recent years (Achour and 
Pourghasemi2020; Mohan et al. 2020; Wang et al. 2020). 
Various machine learning methods have been used in recent 
years for the task of interest. They include neural network 
models (Pham et al. 2017a; Pradhan and Lee 2010), neuro-
fuzzy models (Aghdam et al. 2017; Chen et al. 2019a; Sezer 
et al. 2011), support vector machines (SVM) (Hoang and 
Tien Bui, 2017; Pham et al. 2017b), alternating decision 
trees (Pham et al. 2017b), multivariate adaptive regres-
sion splines (Pourghasemi and Rahmati, 2018), radial basis 
function neural network (Pham et al. 2018a), decision trees 
(Pradhan 2013), classification and regression trees (Chen 
et al. 2017), and sophisticated ensemble learning approaches 
(Bandara et al. 2020; Kutlug Sahin and Colkesen, 2019; 
Sachdeva et al. 2020; Truong et al. 2018).

Nevertheless, comparative research works show that 
researchers of landslides at the regional scale have not yet 
reached a consensus on the most appropriate model for 
large-scale landslide susceptibility mapping (Huang and 
Zhao 2018; Reichenbach et al. 2018). It is because GIS-
based landslide prediction is heavily data dependent; a spe-
cific machine learning method appropriate for one study area 
may not be so for another study area. Therefore, investigat-
ing other novel alternative machine learning methods is a 
worthy direction.

Among methods used for landslide spatial mapping, neu-
ral computing network (NeuralNet) remains one of the most 
widely employed machine learning models (Aditian et al. 
2018; Harmouzi et al. 2019). The NeuralNet method pos-
sesses a strong capability in dealing with multivariate and 
nonlinear data (Pham et al. 2018b; Wang et al. 2016). Due 
to universal learning capability (Bishop 2011), a NeuralNet 
model can construct a complex decision boundary that accu-
rately separates the dataset under study into two categories 
of landslide and non-landslide coupled with probabilistic 
outputs. These results can be subsequently used to establish 
a landslide susceptibility map for the study area.

With the recent development of machine learning, the 
traditional stochastic gradient descent and backpropagation 
algorithm from the 1990s have been largely ignored (Ma 
et al. 2019) due to unstable performance and sensitivity to 
starting conditions. Thus, they hinder the prediction perfor-
mance of the NeuralNet in landslide modeling significantly. 
Accordingly, scholars and practitioners have resorted to 
metaheuristic methods as alternatives for training NeuralNet 
models. Various metaheuristic approaches, including Differ-
ential Evolution (Wang et al. 2015), Social Spider Optimiza-
tion (Mirjalili et al. 2015), Genetic Algorithm (Göçken et al. 
2016), Krill Herd Algorithm (Kowalski and Łukasik 2016), 
Particle Swarm Optimization (Chatterjee et al. 2017), Spot-
ted Hyena Optimizer (Li et al. 2018), Ant Lion Optimization 
(Moayedi et al. 2019), Artificial Bee Colony (Ghaleini et al. 
2019) and many others, have demonstrated the capability of 
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constructing NeuralNet models with good predictive accu-
racy. Therefore, applying metaheuristic in NeuralNet train-
ing becomes an increasing research trend (Ojha et al. 2017).

Besides, the Imperialist Competitive Algorithm (ICA) 
(Atashpaz-Gargari and Lucas 2007) is an attractive 
metaheuristic based on novel social–political concepts 
that can be used for optimizing neural computing models. 
Nevertheless, an ICA-optimized neural computing model’s 
performance has rarely been explored in shallow landslide 
assessment. Thus, this work attempts to fill this gap in the 
current literature by proposing ICA-NeuralNet for landslide 
susceptibility mapping, with a case study at a tropical area 
of the Ha Long city and the Cam Pha city, which belong to 
the northeastern mountainous region of Vietnam. Finally, 
conclusions are given.

Background of the employed computational 
methods

The overall research method used in this study comprises 
five main steps, as shown in Fig. 1. In the first and second 
phases, the landslide inventory and the GIS database for the 
study area are established. The GIS database, containing 
information on landslide occurrences and influencing fac-
tors, is then used to train the proposed ICA-NeuralNet. The 
ICA-NeuralNet is a hybridization of neural computing tech-
niques and metaheuristic optimization. After the proposed 
hybrid model is constructed, its predictive performance can 
be evaluated. Finally, the model is applied to produce a land-
slide susceptibility map for the whole study area.

Neural computing network

Neural computing network (NeuralNet) is a supervised 
machine learning method that originates from actual bio-
logical neural networks (Pham et al. 2018b). As a supervised 
algorithm, a NeuralNet model used for shallow landslide 
susceptibility mapping can be trained with historical data 
stored in a landslide inventory. A landslide inventory must 
include a set of input features and ground truth labels ("land-
slide" and "non-landslide"). Due to its universal approxi-
mation, the NeuralNet is capable of mining the functional 
relationship between a set of input features and the ground 
truth labels.

Generally, a NeuralNet model contains three layers: the 
input, hidden, and output layers (Sundermeyer et al. 2012). 
The first layer receives information regarding the input fea-
tures of shallow landslide occurrences. The hidden layers 
containing artificial neurons process the input features to 
derive the final class labels of shallow landslide occur-
rence (either "landslide" or "non-landslide"). The Neural-
Net is able to learn complex concepts due to a sophisticated 

organization of interconnected neurons. Notably, the feasi-
bility of capturing nonlinear mapping functions in NeuralNet 
models is achievable through the employment of nonlinear 
activation functions used by learning units (called neurons) 
in the hidden layers. The final layers compute the output 
class probability of "landslide" and "non-landslide".

It is noted that an NN model can adapt its structure 
through a process of fine-tuning its connecting weights. Let 
us consider a landslide data X with D influencing factors 
f ∶ X ∈ RD

→ T ∈ RC be a mapping function that computes 
the class output T with c output classes, based on informa-
tion provided by X, which are a set of real numbers (R). 
In this research context, c is equal to 2, which are the two 
classes: landslide and non-landslide, and. The final output of 
a NeuralNet model used for shallow landslide susceptibility 
mapping is compactly stated as follows (Pham et al. 2018b):

where IW and OW represent weight matrices of the hidden 
layer and the output layer, respectively. bI = [b11, b12…, b1N] 
denotes a bias vector of the hidden layer; bO denotes a bias 
vector of the output layer; fA represents an activation func-
tion (e.g., log-sigmoid). Herein, C = 2 denoting the num-
ber of class labels. It is also worth noticing that the weight 
matrices (IW and OW) and the bias vectors (b1 and b2) of the 
NeuralNet can be computed directly from data with ground 
truth labels using the error backpropagation framework 
(Hegazy et al. 1994; Rumelhart et al. 1986).

(1)f (X) = b
O
+ OW × (fA(bI + IW × X)),

GIS Database

Lanslide inventory

Performance Evaluation

ICA-NeuralNet

Construction of landslide 

susceptibility map

Fig. 1   The overall research method of the study
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Imperialist competitive algorithm (ICA)

The Imperialist Competitive Algorithm (ICA) is a 
metaheuristic method inspired by the behaviors of the 
human’s socio-political community. This metaheuristic algo-
rithm imitates the real-world social policy of imperialism 
within which empires rise and fall. Notably, a rising empire 
starts to dominate colonies and harness their sources. Vari-
ous empires, represented by solution candidates in the ICA 
population, compete to gain supreme domination. Through-
out the competition process, an empire may lose colonies 
and decline. For further demonstration of this algorithm, 
users are guided to the previous works of Hosseini and Al 
Khaled (2014), Le et al. (2018), and Ding et al. (2019).

The algorithm’s main stages include the formation of 
early empires, assimilation, revolution, and imperialist 
competition (Atashpaz-Gargari and Lucas 2007). The ICA 
has significant features such as good neighborhood search 
capability, effective global search property, and good conver-
gence speed (Hosseini and Al Khaled 2014). The features of 
the ICA allow its searching process to have a good chance to 
escape from local optima and prominent structure.

In recent years, ICA has been used to solve various com-
plex optimization problems, revealing excellent features in 
terms of convergence and global search properties (Gerist 
and Maheri 2019; Mikaeil et al. 2018; Tashayo et al. 2019; 
Tien Bui et al. 2018; Wang et al. 2019). In this study, the 
ICA is used to optimize the NeuralNet model structure 
employed for shallow landslide susceptibility mapping.

The general ICA procedure is summarized as follows 
(Atashpaz-Gargari and Lucas 2007):

1.	 Select some random points from the performance and 
place the empires in the initial stage,

2.	 Attraction: it makes the colonies of each empire closer 
to the imperialist,

3.	 Revolution: randomly change the position of some coun-
tries,

4.	 If a colony empire has a lower cost colony, change the 
colonial and imperialist positions.

5.	 Unite the same empires,
6.	 Calculate the total cost of empires,
7.	 Select the weakest colony (colonies) from the weakest 

empires and give it (one) to one of the empires (imperi-
alist competition),

8.	 Destroy the powerless empires,
9.	 If the stop condition is met, then stop.

Study area and data

Description of the study areas

The study area belongs to Quang Ninh province, located in 
the north of Vietnam, covering a region of approximately 
563 km2. The study area is located between the latitudes 
20° 40′ 00″ and 21° 13′ 00 " N and between the longitudes 
106° 55′ 00″ and 107° 25′ 00″ E. The region has a tropical 
climate where the monthly average temperature is 24 °C, and 
the annual precipitation is 2306 mm (Pham 2018).

The geological evolution and tectonic movement in the 
study area have resulted in faults, folds, trenches, terrains, 
basins, and more than ten formations (Thanh 2012), which 
generate a diversity of hilly and mountainous terrains today. 
Herein, the terrains arranged and extended in an east–west 
direction coinciding with the fold axis direction fluctuate 
from 0 m to 829.1 m above sea level with slope angles vary-
ing from 0° to 76.73°.

The geodynamics relates mainly to the two major fault 
zones, the Red River and the Tan-Lu. They strongly link 
to Himalayan and Indosinian orogenic cycles (Fenart et al. 
1999). The first zone is the collision result of the Asia plate 
and the India plate, which divides the Indochina block and 
the South China Block (Fenart et al. 1999). The second one 
is a large dynamic tectonics belt, which generates a sliding 
ramp stretching from the Halong region (the study area) to 
the Hong Kong region (Zhang et al. 2015).

Together with the geodynamics activities, the Quang 
Ninh province often suffers from prolonged and heavy rains 
(Loi et al. 2017), especially from 2015 to now. For example, 
the most massive rainfalls in the past 40 years (> 600 mm) 
during the four days from 25 to July 28, 2015, triggered vari-
ous landslides and flash floods in the province, causing 17 
people died, six people to missing, many residential areas 
were submerged. The total estimated damage is more than 
40 million USD (Quyen 2015). In the study area, landslides 
occurred in all mountainous areas, especially in areas with 
a high density of rivers and streams, thin vegetation cover, 
high population density (Ha et al. 2020; Loi et al. 2017; 
Nguyen et al. 2020; Nhu et al. 2020; Van et al. 2017).

Shallow landslide inventory

It is noted that this study relies on NeuralNet and ICA to 
construct a machine learning-based model used for spatial 
analysis of landslide occurrence. One fundamental assump-
tion of landslide susceptibility prediction is that the factors 
causing past landslides will continue to influence the like-
lihood of landslide occurrence in the future (Reichenbach 
et al. 2018). Hence, it is required to collect geo-information 
on past landslides such as terrain, geological condition, and 
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land-use. They are used as the basic data for establishing 
a shallow landslide inventory in this study. In this analy-
sis, a landslide inventory with 196 shallow soil and rock 
mixed soil slides from the State-Funded Landslide Project 
No.105.08–2017.316 of Vietnam (Nhu et al. 2020) was used. 
The locations of landslide occurrences were determined 
using one-meter resolution aerial photographs and Google 
Earth images 2019. This helps to correct landslide locations, 
which is a good database for modeling. Herein, the land-
slide scars concept (Nefeslioglu et al. 2008) was used to 
map these failure features. Besides, we only consider only 
rainfall-triggered landslides because no earthquake-triggered 
landslide was reported in the study area.

These landslides occurred in the last 5 years, from 
2015 to 2019. Figure 2 shows some photos of shallow 
landslides in the study areas. Our fieldwork and investi-
gations showed that during and after those heavy rains, 
these soils and rock mixed soils were saturated with water, 

and therefore, leading to landslides. Besides the weak soil 
characteristics of the study areas, the thin vegetation cover 
makes the process of saturation of the rock mixed soil 
layer on the surface occurs very quickly. Thus, long-term 
rainfall intensity combining with the complex geological 
structure, various landslides in the study areas have also 
been activated.

The constructed inventory map (Fig. 3) has identified the 
total number of 3730 pixels of landslide occurrences con-
sisting of 1865 pixels of landslide and 1865 pixels of non-
landslide are randomly sampled from the map of the study 
area. In order to train the model, the data of landslide loca-
tions are randomly divided into Model Training and Model 
Validating in a 3:1 ratio. The numbers of samples in training 
and validating sets are 2722 and 1008, respectively.

Fig. 2   Landslide photos in the Ha Long (a) and Bai Chay (b–d) of the study area. The photos a, b, and c were taken in August 2015 (photos 
courtesy of baoquangninh.com.vn), whereas photo (d) was taken by Viet Ha Nhu in July 2019
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Influencing factors

Determination of influencing factors is essential for prone 
landslide susceptibility mapping. In these study areas, these 
shallow landslides were soil and rock mixed soil failures and 
triggered by heavy rainfalls; therefore, land-use, distance 
to road, distance to river, soil type, distance to fault, and 
lithology, and the elevation-related factors were considered 
(Bui et al. 2017a; Dang et al. 2020; Nhu et al. 2020). In this 
analysis, rainfall data were difficult to obtain due to a very 
low density of monitoring stations; therefore, rainfall pat-
terns were not used.

The digital terrain model (DTM) for the study area was 
constructed in ArcGIS 10.6 using the available national top-
ographic maps 1:50,000 scale provided by the Ministry of 
Natural Resouces and Environment (Nhu et al. 2020). Then, 
these DTM-related factors were prepared.

Slope degree: Slope is the most important predisposing 
factor in triggering shallow landslides because it directly 
controls the balance of motor and resistant forces acting on 
the soil above the potential rupture surface(Duncan et al. 
2014; Griffiths and Fenton 2000). In this research, the slope 
degree map generated from DTM in the study has a param-
eter range from 0 to 76.73 degrees (Fig. 4a).

Aspect: The slope aspect describes the orientation of 
the slope and has a primary effect on precipitation, wind, 
and sunlight offering (He et al. 2019). As a result, this 
factor has often been used by researchers in landslide sen-
sitivity analysis. In this study, the slope aspect map of 
DTM was prepared and had nine parameters (Fig. 4b): flat, 
four cardinal directions: north, south, east, west, and four 
intercardinal directions: northeast (NE), southeast (SE), 
southwest (SW), and northwest (NW).

Curvature: the curvature index is essential in landslide 
modeling because of its direct association with the hydro-
logical dynamics of the slopes (Beguería 2006; Ozdemir 
and Altural 2013). Negative numbers indicate concave sur-
faces or flow concentrator surfaces, whereas positive num-
bers indicate convex surfaces or flow-dispersing surfaces 
(Krebs et al. 2015). Numbers close to zero indicate a flat 
surface. In this study, the curvature map shown in Fig. 4c 
was derived using the spatial analysis tool in ArcGIS.

Topographic Wetness Index (TWI): TWI is another 
essential factor in predicting susceptibility to landslides 
and shows soil conditions, geography, and volume of 
runoff (He et al. 2019). Its values range from 4.6 to 24.1 
(Fig. 4d). In other words, TWI is a topographic factor in 

Fig. 3   The study area in Vietnam
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Fig. 4   Landslide related factor: a slope, b aspect, c curvature, d top-
ographic wetness index (TWI), e land-use (AFL Acacia land, AgL 
Agricultural land, GrL Grassland, LaF landfills, MiL Mineral land, 
MiFL Mixed forest land, OrL Orchard land; OtherL Other lands, 
PFL Poor forest land, ReL Residential land, RoM Rocky mountain, 
YoL Young forest land), f distance to road, g distance to river, h soil 

type (AS Alluvial soil, LYSC Light yellowish soil on claystone and 
metaphormic rock, LYSS Light yellowish soil on sandstone, PS Peaty 
soil, RM Rocky mountain, SalS Saline soil, SanS Sandy soil, SESS 
Strongly eroded skeletal soil, and YRSCR Yellowish red soil culti-
vated with floating rice), (i) distance to fault, and (j) lithology
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the runoff model and is defined by the following equation 
(Moore and Grayson 1991):

where α is the cumulative upslope area surface that is bored 
through a point and b = tanβ is the slope angle at the point.

Land use (LU): Land use in slope instability is of par-
ticular importance and is widely regarded as susceptible to 
landslides (Zhao et al. 2015). Explanation Land use types 
have been generalized to different categories to assess their 
potential for landslide in Fig. 4e.

Distance to road (DTRo): This factor was considered 
because our fieldworks show that road sections undercut-
ting slopes influence landslide in this study area. Therefore, 
first, road-cut sections that undercut slopes larger than 10° 
were extracted and then used to compute the distance to road 
map (Fig. 4f).

Distance to river (DTRi): It is recognized that river and 
stream sections undercutting slopes may influence slope 
failures indirectly (Bui et al. 2012). Therefore, in this work, 
river section cutting slopes larger than 10° were used to con-
struct the distance to river map. The buffer map was cre-
ated using ArcGIS software and then divided into different 
groups at 40-m intervals: 0–40, 40–80, 80–120, > 120 m 
(Fig. 4g).

Soil type (ST): Soil type directly affects soil drainage, 
erosion, and destruction; therefore, it influences shallow 
landslides (Frattini et al. 2004). The soil feature map in this 
study area is represented by ten categories (Fig. 4h).

Distance to fault (DTF): Fault distances were divided 
into different groups: 0–200, 200–600, 600–1000, > 1000 m 
(Fig. 4i). Fault levels lightly become sliding surfaces because 
the stress on the rock around a fault is unstable. Landslides 
often happen during surface rupture (Yalcin et al. 2011).

Lithology type (LT): the lithological map contains 11 
separate compositions as shown in Fig. 2j. Undoubtedly, 
the type of lithology has a profound effect on landslides 
because it directly affects some essential characteristics such 
as shear strength and permeability of rocks and soils and, 
thus, their resistance to weathering/erosion process (Varnes 
1984; Watakabe and Matsushi 2019).

Proposed ICA‑NeuralNet for predicting 
shallow landslide susceptible areas

Feature relevancy investigation

In machine learning, the quality of the model depends heav-
ily on the quantity and quality of the input data (Emary et al. 
2016). Therefore, it is necessary to evaluate the predictability 

(2)TWI = ln

(

a

tgb

)

,

of factors used in this study preliminarily. The objective of 
this evaluation is to identify irrelevant variables that can be 
cast out without incurring a significant loss of information 
(James et al. 2013). In this research, the wrapper algorithm 
(Kohavi and John1997) with fivefold cross-validation was 
employed to compute the merit value, which was used to 
measure the importance of the landslide influencing factors.

Using the training dataset, a subset of the influencing 
factors was searched, and then, a landslide susceptibility 
model was built using the random forests algorithm. In the 
next step, the performance of the model was assessed using 
statistical metrics. This is a repeated process, and all the 
possible combinations of the landslide influencing factors 
were assessed, and finally, the role of each factor was ranked.

Because the use of statistical metrics may influence the 
final ranking of the influencing factors, therefore, in this 
work, four metrics were considered, including classification 
accuracy (CAR), F-score, the area under the curve (AUC), 
and mean absolute error (MAE) (Hand 2009). The purpose 
of using the four metrics is to see if any bias in the conclu-
sion of the feature relevancy.

Designing and configuring ICA‑ NeuralNet model 
for shallow landslide

The hybrid model (refer to Fig. 5) was established based 
on the ICA and the neural computing approach of the Neu-
ralNet. The model structure is arranged in a multi-layered 
configuration containing an input layer, having one or more 
intermediate layers (referred to as hidden layers), and an out-
put layer. In this network, the information of different factors 
is interconnected to exchange information in a unidirectional 
way starting from the input layer through hidden layers to 
the output layer (Rodriguez-Galiano et al. 2015).

The ICA is employed to enhance the learning capability 
of the modeling approach (refer to Fig. 6). This algorithm 
computes the error between the outputted value and real 
target value and feeds it back to the model in order to adjust 
the parameters. This repetitive process is performed until the 
error is sufficiently small, or the maximum number of epochs 
is reached. Based on this iterative scheme, the values can be 
adjusted to yield the desired output that is close enough to 
the real target information (Çelik and Başarır 2017). The 
ICA-based optimization process terminates when the maxi-
mum number of searching iteration = 100 is achieved.

As shown in the previous section, a NeuralNet model 
used for shallow landslide mapping is fully determined 
by IW and OW’s two-weight matrices. The first matrix 
is of the size NR x NI + 1, where NR and NI denote the 
number of neurons in the hidden layer and the number of 
input features, respectively. It is worth to mention that the 
number of columns of IW is NI + 1, representing a vector 
of bias. Since there are ten landslide influencing factors, 
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NI = 10. Moreover, the number of neurons in the hidden 
layer should be determined appropriately via several trial-
and-error runs. The second weight matrix OW is of the 
size NO x NR + 1. Because the ICA metaheuristic neces-
sitates that a candidate solution is expressed in the form 
of a vector, the two matrices IW and OW must be vector-
ized. Thus, the total number of searched variables is NR x 
NI + NO x NR + 2. Furthermore, to identify the most desired 
NN model structure, the Root Mean Square Error (RMSE) 
is used as the objective function to be minimized by the 
ICA. The RMSE index is computed as follows:

where yi and ti are the predicted, and the actual class outputs 
(either "landslide" or "non-landslide"); N denotes the num-
ber of data samples.

(3)RMSE =

√

√

√

√

N
∑

i=1

(yi − ti)
2

N
,

Fig. 5   The proposed ICA-NeuralNet structure in this research
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The ICA‑NeuralNet model performance 
measurement

To assess the ICA-NeuralNet model used for spatial pre-
diction of shallow landslides, the indices of true positive 
index (TPI), true-negative index (TNI), false-positive index 
(FPI), and false-negative index (FNI) are first obtained and 
computed directly by inspecting the classification outcomes. 
Accordingly, the statistical indices of positive predictive 
value (PPV), negative predictive value (NPV), classification 
accuracy (CAR), sensitivity, and specificity can be computed 
based on the TP mentioned above, TN, FP, and FN as fol-
lows (Bui et al. 2016b; Liu et al. 2005):

(4)PPV =
TPI

TPI + FPI
,

(5)NPV =
TNI

TNI + FNI
,

(6)CAR =
TPI + TNI

TPI + TNI + FPI + FNI
× 100%,

Besides, one of the most popular methods which are 
usually used to assess the machine learning models is the 
Receiver operating characteristic (ROC) curve (van Erkel 
and Pattynama 1998) and the Kappa index (K) (McHugh 
2012). Notably, the area under the ROC Curve (AUC) is 
usually computed and graphically describes the capability of 
landslide prediction (Bui et al. 2017b; Hoang and Tien Bui 
2016; Lucà et al. 2011). Accordingly, the performance of 
the model is excellent (AUC belongs to 0.9–1), good (AUC 
belongs to 0.8–0.9), fair (AUC belongs to 0.7–0.8), and poor 
(AUC is less than 0.7) (Cantor and Kattan 2000).

(7)Sensitivity =
TPI

TPI + FNI
,

(8)Specificity =
TNI

TNI + FPI
.

Fig. 6   The ICA-NET optimiza-
tion process
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Initialization

Training ANN Model

Data Classification

Objective Function 
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Result and discussion

Preliminary analysis on feature importance

As mentioned earlier, the two approaches of mutual infor-
mation and ReliefF are employed in this study to prelimi-
narily investigate the relevancy of the ten shallow land-
slide influencing factors. The investigation outcomes are 
reported in Table 1. It can be seen from this table that the 
slope factor has obtained the highest merit value in all 
cases of the four different metrics used (CAR, F-score, 
AUC, and MAE). This is plausible because the slope is 
widely accepted as the most critical factor causing fail-
ures (Bollati et al. 2012; Günther et al. 2013; Hong et al. 
2007). In contrast, distance to road and distance to river 
have the lowest contribution to the landslide. The ranking 
of the other seven factors is slightly different with the four 
statistical metrics (Table 1). Herein, three factors, aspect, 
TWI, and lithology, have higher contributions than soil, 
land-use, distance to fault, and curvature. All factors have 

a certain merit value; therefor,e they were employed all for 
the training phase in the next step.

Training ICA‑NeuralNet model and performance 
assessment

The ICA-NeuralNet model was constructed by the training 
dataset created from ten predisposing factors. The training 
was accomplished via a tenfold cross-validation process. 
The training result is reported in Table 2. It can be seen 
clearly that the ICA-NeuralNet model can provide a good 
fit to the training dataset with CAR = 82.4%, K = 0.649, and 
AUC = 0.895). After the ICA-NeuralNet model training 
phase is accomplished, the validation dataset is used to test 
the model predictive capability. The validation result is sum-
marized in Table 3 with CAR = 78.2%, sensitivity = 77.5%, 
specificity = 78.9%, K = 0.563, and AUC = 0.847).

In addition, to better demonstrate the predictive capabil-
ity of the ICA-NeuralNet, the verification of the model was 
taken further by two indexes, the success-rate curve and the 
prediction-rate method (Bui et al. 2016a; Chung and Fabbri 
2003). The result of the success-rate curve is illustrated in 

Table 1   The role of landslide 
influencing factors in this 
study area using the random 
forest based wrapper subset 
assessment

No Influencing factor Merit value Ranking

CAR​ F-score AUC​ MAE

1 Slope (o) 0.2357 0.2274 0.2529 0.1629 1
2 Aspect 0.1661 0.1572 0.1973 0.0985 2
3 TWI 0.1605 0.1597 0.1995 0.0873 3
4 Lithology 0.1618 0.1585 0.1909 0.0810 4
5 Soil 0.1185 0.0897 0.1177 0.0591 5
6 Landuse 0.1144 0.0785 0.1294 0.0453 6
7 Distance to fault (m) 0.1293 0.1338 0.1477 0.0407 7
8 Curvature 0.1339 0.1359 0.1372 0.0392 8
9 Distance to road (m) 0.0856 0.0765 0.0843 0.0184 9
10 Distanc to river (m) 0.0187 0.0759 0.0184 0.0018 10

Table 2   Performance of the ICA-NeuralNet model on the training 
dataset

Metrics RF J48 DT CART​ LMT ICA-NeuralNet

TPI 1285 1236 1241 1219 1221
TNI 1141 1124 1095 1144 1023
FPI 76 125 120 142 140
FNI 220 237 266 217 338
PPV (%) 94.4 90.8 91.2 89.6 89.7
NPV (%) 83.8 82.6 80.5 84.1 75.2
Sensitivity (%) 85.4 83.9 82.3 84.9 78.3
Specificity (%) 93.8 90.0 90.1 89.0 88.0
CAR (%) 89.1 86.7 85.8 86.8 82.4
K 0.783 0.734 0.716 0.736 0.649
AUC​ 0.964 0.914 0.891 0.908 0.895

Table 3   Prediction performance of the model in the validating dataset

Metrics RF J48 DT CART​ LMT ICA-NeuralNet

TPI 278 274 272 270 400
TNI 433 426 418 430 388
FPI 226 230 232 234 104
FNI 71 78 86 74 116
PPV (%) 55.2 54.4 54.0 53.6 79.4
NPV (%) 85.9 84.5 82.9 85.3 77.0
Sensitivity (%) 79.7 77.8 76.0 78.5 77.5
Specificity (%) 65.7 64.9 64.3 64.8 78.9
CAR (%) 70.5 69.4 68.5 69.4 78.2
K 0.411 0.389 0.369 0.389 0.563
AUC​ 0.860 0.740 0.814 0.778 0.847
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Fig. 7, which was constructed by comparing the landslide 
susceptibility indices with landslide pixels in the training 
dataset and the validation dataset. The AUC values obtained 
from the ICA-NeuralNet are 0.895 for the training phase and 
0.847 for the validation phase. These outcomes confirm that 
the model has high-prediction capability.

Comparison of the ICA‑NeuralNet model 
with the benchmark

As mentioned earlier, the ICA-NeuralNet model was pro-
posed in this study by combining the ICA metaheuristic and 
neural computing model for landslide modeling. To dem-
onstrate the advantage of the newly developed model, the 
ICA-NeuralNet is compared with the benchmark models, 
including the Random Forest (RF), J48 DT, Classification 
and regression trees (CART), and logistic model tree (LMT). 
It is because those methods have been used successfully in 
establishing landslide susceptibility maps in previous works 
(Bui et al. 2016a, b; Chen et al. 2017; Felicísimo et al. 2013; 
Hong et al. 2018; Youssef et al. 2016).

With a focus on validating performances, the landslide 
prediction results of the proposed ICA-NeuralNet model 
(CAR = 78.2%, K = 0.563, and AUC = 0.847) are better than 
those of the benchmark methods. The RF is the second-best 
approach with CAR = 70.5%, K = 0.411, and AUC = 0.860) 
followed by J48 DT, CAR, and LMT. More importantly, 
the ICA-NeuralNet has a good balance in processing both 

landslide and non-landslide pixels, where the sensitivity 
and the specificity are 77.5% and 78.9%, respectively. In 
contrast, the other models (RF, J48 DT, CART, and LMT) 
have some bias in processing landslide pixels, where FPI is 
significantly higher than the proposed ICA-NeuralNet model 
(Table 3). Thus, it could be concluded that the ICA-Neural-
Net model is highly effective and suited for spatial modeling 
of the shallow landslide in the study area.

Shallow landslide susceptibility map

When the final ICA-NeuralNet model is established, the 
model is then used to calculate the sensitivity index for all 
pixels of the study area. Accordingly, these susceptibility 
indices were converted to the ASCII raster format in ArcGIS 
using Python. Finally, the landslide susceptibility map was 
created for the study area. The IC-NET model optimized 
by the ICA metaheuristic is then used to calculate landslide 
susceptibility indices for the study area. All of the influenc-
ing factors were converted to raster format and then fed to 
the ICA-NeuralNet model to generate susceptibility indices 
called landslide probability index. These indexes were clas-
sified based on the influence level of the factors to landslide 
probability occurrence or susceptibility. Accordingly, the 
landslide susceptibility map (shown in Fig. 8) for the area 
was cartographically presented by values ranging from 0 
to 1.

Fig. 7   ROC curve and AUC of the ICA-NeuralNet model
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Concluding remarks

Due to recent climate change and land-use modification, 
landslide occurrences in the study area of Ha Long and Cam 
Pha cities (northern Vietnam) are escalating in both scales 
of damage and frequency. Therefore, establishing a shallow 
landslide susceptibility map is crucial and an urgent need. 
This study proposed a novel machine learning solution for 
constructing such a landslide susceptibility map for the study 
area by hybridizing the metaheuristic method of the ICA and 
neural computing framework. The hybrid method, named 
as ICA-NeuralNet, combines the advantages of NeuralNet 
as a robust nonlinear classifier and of the ICA as a global 
optimization. The NeuralNet plays a role in building a deci-
sion boundary separating the input space into two distinct 
regions of "landslide" and "non-landslide". Meanwhile, the 
ICA plays a role in optimizing the NeuralNet model struc-
ture with respect to the collected GIS dataset. Since the ICA 
is a stochastic global optimizer, it can help the training phase 
of the NeuralNet to avoid being trapped in an optimal local 
solution.

Training and validating the proposed method were 
accomplished based on a GIS dataset, including 3730 data 
samples and ten landslide influencing factors. Experimen-
tal results point out that the ICA can help to avoid the risk 
of premature convergence and attain a high-quality Neu-
ralNet model with CAR more than 78% and AUC = 0.85. 

Thus, the results of this study have illustrated the effective-
ness of using ICA to optimize the neural computing model 
for predicting shallow landslide susceptibility. Hence, the 
proposed model has a good potentiality to be used for sus-
ceptibility mapping of the shallow landslide in other areas 
that have the same geo-environment conditions. Finally, 
this study’s results could be used for further research, 
including land-use planning/management in landslide-
prone areas in Quang Ninh province (Vietnam).

Since the ICA-NeuralNet model has demonstrated 
good predictive accuracy for the study area, the proposed 
approach can be potentially applied for shallow landslide 
assessment in other regions. Nevertheless, since the model 
prediction performance is highly dependent on the quality 
and quantity of the GIS data, a decent effort on data col-
lection is required to ensure the successful application of 
the hybrid metaheuristic-neural computation model. One 
limitation of the current study is that the hyper-parame-
ters of the neural network model, including the number 
of neurons in the hidden layer and the activation func-
tion, are selected via a trial-and-error process. Therefore, 
the current work’s future extensions may investigate an 
advanced approach for automatic fine-tune such as hyper-
parameters of the neural computing models. The current 
work has investigated and confirmed the capability of the 
ICA-optimized neural network. Future works may explore 

Fig. 8   Shallow landslide susceptibility map generated by the proposed ICA-NeuralNet model
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other neural computing models, such as convolutional neu-
ral networks for shallow landslide susceptibility.
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