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a b s t r a c t

Understanding the radon dispersion released from this mine are important targets as radon dispersion is
used to assess radiological hazard to human. In this paper, the main objective is to develop and optimize
a machine learning model namely Artificial Neural Network (ANN) for quick and accurate prediction of
radon dispersion released from Sinquyen mine, Vietnam. For this purpose, a total of million data
collected from the study area, which includes input variables (the gamma data of uranium concentration
with 3 � 3m grid net survey inside mine, 21 of CR-39 detectors inside dwellings surrounding mine, and
gamma dose at 1 m from ground surface data) and an output variable (radon dispersion) were used for
training and validating the predictive model. Various validation methods namely coefficient of deter-
mination (R2), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) were used. In addition,
Partial dependence plots (PDP) was used to evaluate the effect of each input variable on the predictive
results of output variable. The results show that ANN performed well for prediction of radon dispersion,
with low values of error (i.e., R2 ¼ 0.9415, RMSE ¼ 0.0589, and MAE ¼ 0.0203 for the testing dataset). The
increase of number of hidden layers in ANN structure leads the increase of accuracy of the predictive
results. The sensitivity results show that all input variables govern the dispersion radon activity with
different amplitudes and fitted with different equations but the gamma dose is the most influenced and
important variable in comparison with strike, distance and uranium concentration variables for pre-
diction of radon dispersion.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

It is well-known that many inhabited areas around the world
people are long-term exposure effects and can be get the risks
under high levels of natural radionuclides radiation such as natural
radioactivity in the soils of R€ossing Uranium Mine in western
Namibia vary from 45.9 to 1752 Bq/kg for 238U, 70.4e1866 Bq/kg for
232Th and 376e1300 Bq/kg for 4 K (Oyedele et al., 2010); the 222Rn
concentration in air surrounding rare earth elements mines in
North Vietnam from 48 to 920 Bq/m3 (Le Khanh et al., 2015); the
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222Rn concentration in soil range from 670 to 1940 Bq/m3 and
490e2120 Bq/m3 at chromite mines of Khanozai and Muslim Bagh,
Pakistan (Ahmad et al., 2019); and up to 6000 Bq/kg of 238U and
240,000 Bq/kg of 232Th inMadenaMadagasar (Van Hao et al., 2019).
One of the natural radionuclides usually concerning is radon gas
(222Rn). This is a noble gas, a progeny of the 238U decay series and
the longest half-live (T1/2 ¼ 3.8 days) in comparison with other
natural radioactive gases. Because of the gas state, this 222Rn is easy
dispersion and fill in the atmosphere, especially in limited spaces
such as caves, inside houses, and undergroundmines or radioactive
element bearing mineral mines which could be contributed a sig-
nificant internal radiation exposure (Carvalho and Reis, 2006;
WHO, 2009; Le Khanh et al., 2015). In natural environment, the
222Rn isotope is one of the most radiotoxic and carcinogenic gas
that may affect indoor air quality, the high specific activity of alpha
emitting. It is clear linking epidemiological evidence between
continued exposure to high 222Rn activity concentrations and lung
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Fig. 1. Studied zone inside red line with 3 � 3m grid of gamma spectrum survey data, 21 points of radon test and gamma dose inside pink line. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)
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cancer (WHO, 2009). The 222Rn was known a natural radionuclide
are constituents of the earth crust (Banzi et al., 2017), the one can
find everywhere in the environment. In some of special regions are
prone to higher 222Rn concentrations in air, especially such as
granite, uranium, phosphate mine, and rare earth element mine
2

areas, and certain 238U, 226Ra containing mineral or placer deposits
(Carvalho et al., 2007; Chalupnik andWysocka, 2008; Hilton, 2008;
Nguyen et al., 2016; Van Hao et al., 2019; Thanh Duong et al., 2020).

Traditionally, many studies have been carried out to monitor
and determine the radon concentration (Ramola et al., 2005; Hadad



Table 1
Statistical analysis of inputs and output used in this study.

Values Uranium concentration (ppm) Gamma dose (mSv/h) Distance (m) Strike (degree) Dispersion radon activity (Bq/m3)

Role Input Input Input Input Output
Min 0 0.176 0.094 0 123
Average 578.067 0.234 675.447 166.710 181.333
Max 12,173 0.308 2731.801 359.980 278.000
Std 1214.939 0.039 727.703 66.681 38.123

Fig. 2. Correlation graphs and histograms with respect to the dispersion radon activity
for (a, b) uranium concentration; (c, d) gamma dose; (e, f) distance; (g, h) strike and (i,
j) dispersion radon activity.
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et al., 2007; Heidary et al., 2011; Grant et al., 2012; Laiolo et al.,
2012; Le Khanh et al., 2015; Jilani et al., 2017), which have to
determine in situ at real time and using average of few single
measurements, need multi-measure to reach to real value, and for
huge area will need much more time and finance or developing of
radon dispersion modeling or predicting based on conditions are
assumed to be standard form or hypothetical models (Doering
et al., 2018; Wu et al., 2014, 2014, 2014; Xie et al., 2012). Wu et al.
(2014) built the theoretical model of release radon concentration
in environment air by diffusion and advection flux of radon on unit
area by Fick’s law and Darcy’s law. The method only concern to the
effected parameters of the radon emanation and prediction for
narrow area which is similar background of local radon value and
maybe true for narrow test space; Xie et al. (2012) was reported the
dispersion of radon released from a uranium mine by using
Computational fluid dynamics for atmospheric Rn physical model
and mathematical models (Wind features with main wind direc-
tion; Atmosphere stability and Surface roughness is constant) then
compared with field measurements. But this model maybe true for
very standard condition with very narrow area (250 m of distance)
it is same condition area and did not concern to the background so
applying for complex huge area will be difficult; Doering et al.
(2018) was developed a traditional modelling of the dispersion of
radon and develop contour maps from a landform covered by low
uranium grade.

In recent years, more advanced techniques called machine
learning or artificial intelligence have been developed and applied
in prediction problems such as natural hazard assessment
(Pourghasemi et al., 2020; Van Dao et al., 2020), soil properties
prediction (Pham et al., 2019; Rivera and Bonilla, 2020), predicton
of construction material properties (Ly et al., 2019; Rashidi et al.,
2016; Wei et al., 2019). Compared with traditional approaches,
these techniques are considered as cost and time effective models.
In the case of radon dispersion prediction, there is less or rarely
studies of prediction of radon dispersion using the machine
learning such as application of decision trees to the analysis of soil
radon data for earthquake prediction (Zmazek et al., 2003) or
artificial neural network (ANN) model for earthquake prediction
with radon monitoring (Külahcı et al., 2009). In general, these
studies initially showed the high potential of machine learning
models for prediction problems which can be applied to quick and
accurate the radon dispersion.

In this study, the main aim is to develop an machine learning
model namely ANN to predict the radon dispersion at the iron
oxide copper and gold e rare earth elements e uranium (IOCG-
REE-U) Sinquyen deposit, which is the biggest copper mine which
contain high natural radionuclides and the 238U is the main natural
radionuclide (Nguyen et al., 2016). For modeling, Input variables
(the gamma data of uranium concentration with 3 � 3m grid net
survey inside mine, 21 of CR-39 detectors inside dwellings sur-
rounding mine, and gamma dose at 1 m from ground surface data)
and an output variable (radon dispersion) were used. Various
validation methods namely coefficient of determination (R2), Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE) were used.
In addition, Partial dependence plots (PDP) was used to evaluate



Fig. 3. Methodological flowchart of this study.
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the effect of each input variable on the predictive results of output
variable. Matlab packages and software were used for data pro-
cessing and modeling in this study.
2. Materials and methods

2.1. Data used

The uranium concentration (ppm) as the first important input
data, the data was recorded from the field radiometric measure-
ments which were performed using the potable spectrometer GF5
with NaI(Tl) scintillation crystal of the Czech Gamma Surveyor
Company™ and 3 � 3m grid net of about 350 � 1250 m of area
inside red line of Sinquen deposit (Fig. 1). In the field, each mea-
surement point was performed in 3 min and the detector was
placed at 1 m from the Earth surface with the display on screen of
4

potassium, uranium and thorium concentrations, and gamma
absorbed dose rate D [nGy/h]. The radionuclide concentrations
were represented and contributed from surface near soil and rocks
with thick about 30 cm from ground surface. The final results and
their adequate uncertainty were estimated using the data obtained.
The uranium concentration is the main source to release radon
(222Rn) from this mine to surrounding environment.

The gamma dose (mSv/h) at 1 m from ground was used as the
second input data, the data was measured together with radon test
points at the same position (inside 21 dwellings). The gamma doses
have original from all of three natural decay chains (238U, 232Th, and
4 K). The data will provide information the rest contribution of
radon at the local of radon test data (the radon is from 238U at situ).
The gamma dose were recorded by potable gamma survey model
DKS-96 with NaI(Tl) scintillation crystal of Russian. Both of the
potable Gamma and Gamma Surveyor were calibrated at the



Fig. 4. The correlation coefficient between the raw and reduced data in function of
Step Size.

V.-H. Duong, H.-B. Ly, D.H. Trinh et al. Environmental Pollution 282 (2021) 116973
National Atomic Energy Agency of Vietnam. The third and fourth
input data are distance (m) and strike (degree) parameters which
are defined distance fromGamma Surveyor points to radon test and
strike follow trending direction from Gamma Surveyor to radon
test points respectively. The distance parameter was inputted
related to dispersion by time accumulation of movement, which
were different by each of data points. It is similar with strike related
to trending direction from each of uranium points (the point has
uranium concentration values which were measured) and each of
radon test points. Although parameters such as topography, wind
direction, wind velocity, climate, temperature are also affecting the
radon dispersion but when using the radon concentration by
accumulated record of measurement of CR-39 detectors during 3
mouths, those parameters could be neglected.

For the radon test data at 21 dwellings surrounding mine, the
detector CR-39 was used for this survey, which were placed inside
RADUET chambers made by Radosys Ltd-Hungary. The CR-39 track
etch detector with two diffusion chambers are dedicated to detect
the radon and thoron activity (Tokonami et al., 2005). The first
chamber is used for detecting only radon and the secondary
chamber is sensitive for both radon and thoron. A simple calcula-
tion factors separate radon and thoron activity data results follow
(Dung et al., 2014). At every dwelling the CR-39 detector was hung
at a distance of 2 m from door and walls and at a height of the
1.5e1.8 m from the Earth surface. The CR-39 detectors were
exposed for a period of three months. The average radon and
thoron concentrations was estimated by averaging measured con-
centrations in this time period. After the exposure time the track
detector pairs were recovered and transferred to the National
Atomic Energy Agency of Vietnam for processing where the de-
tectors were chemically treated and determined of the radon and
thoron activities. All the coordinates of the measurement of
gamma, spectrum gamma and radon, thoron points were recorded
by Garmin GPS, version 60CSx with high accuracy ± 2e3 m.

The number of 1,000,000 experiments was then used to
construct the database to perform the simulation. It included 4
variables as inputs, namely the uranium concentration (ppm),
gamma dose (mSv/h), distance (m) and strike (degree). The
dispersion radon activity (Bq/m3) was considered as the output
variable (Table 1). The dataset was scaled into the range of [0; 1] to
minimize the bias between variables. For illustration purpose, Fig. 2
displays the correlation graphs and histograms of all input variables
5

versus the dispersion radon activity in the present database.

2.2. Methods used

2.2.1. Artificial Neural Network (ANN)
ANN is awell-knownmachine learning algorithmwhich aims at

mimicking the behavior of the human brain by means of connec-
tion. ANN can reconstruct a number of functions of human
behavior, performed by a finite number of layers with different
computing elements called neurons (Nathan et al., 2016). The ANN
structure has three layers: input, hidden and output. Hidden layers
provide a relationship between the input and output layers. ANN
has been generally used for prediction, estimation, forecasting,
pattern recognition, optimization, and to establish relationships
between complex featured variables. The advantage of ANN is that
no prior knowledge of object attributes is required, because even if
the exact relationship between inputs and outputs is not known.
ANN has the ability to learn the exact behavior between the inputs
and outputs from the examples without any kind of physical
involvement, can be trained to learn relationship, and able to
extract the exact pattern between the input and output variables
without any additional explanation (Mustafa et al., 2012). ANN can
be considered black box models because they do not learn based on
assumptions regarding input-output transmission function as well
as physical interaction of parameters. In this study, ANN was used
to predict the radon dispersion.

2.2.2. Validation indicators
To validate the performance of ANN, the coefficient of deter-

mination (R2), Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE) and slope are used. Precisely, the R2 values allow to
identify the statistical relationship between the measurement and
predicted dispersion radon activity. Its value ranging from 0 to 1,
where 0 means no correlation and 1 is perfect correlation. Two
criteria such as RMSE and MAE have the same units as the radon
activity and lower values of RMSE, MAE indicate good accuracy of
prediction of dispersion radon activity using ANN algorithm. Slope
indicates the slope of regression fit compared with the perfect
linear fit. The values of R2, RMSE and MAE are estimated using the
following equations:
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where ui is defined as the measurement values of dispersion radon

activity, u
_
iis the predicted dispersion radon activity given by ANN

algorithm, u
_

is defined as the mean value of the ui, and n is the
number of the considered samples.

2.2.3. Methodological flow chart of this study
Methodology of this study is presented in Fig. 3 which can be

carried out by several main steps including (1) data preparation:
data used in this study was collected from Singquen mine, Vietnam
with 1,000,000 experiments which included the values of 4 input



Fig. 5. The ratio of median evaluation between the raw and reduced data in function of Step Size for (a) uranium concentration; (b) gamma dose, (c) distance, (d) strike and (e)
dispersion radon activity.
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variables namely the uranium concentration (ppm), gamma dose
(mSv/h), distance (m) and strike (degree) and one output variable
namely dispersion radon activity (Bq/m3), (2) dataset splitting: In
this work, we have used the holdout sample method for model
validation (Keane and Wolpin, 2007), the data collected was split
into two parts to construct training (70%) and testing (30%) data-
sets, out of these, training dataset was used to train the ANNmodel
and testing dataset was used to validate the predictive capability of
the ANNmodel, (3) Training and optimizing the structure of ANN to
find the best architecture (4) evaluation of the ANN predictive
capability: the ANN predictive capability was validated using
testing datasets and quantitative indicators (RMSE, MAE, and R2),
6

and its predictive capability was compared with several benchmark
ML models such as Deep Neural Networks (DNN), Random Forest
(RF), and Gausian Process Regression (GPR), and (5) sensitivity
analysis is performed to evaluate the influence of input variables on
the output.

3. Results and discussion

3.1. Reduction of dimension of dataset

As the amount of measurements in the dataset is considered as
very high volume (i.e. over a million of data), the reduction of such



Fig. 6. The number of data and computation time ratio in function of “Step Size”.

Fig. 7. Results of simulations with 1 hidden layer and the number of neurons from 1 to 20 neurons for (a) RMSE; (b) MAE; (c) R2; and (d) Slope.
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dimension is important to reduce efforts in computational time and
memory. The analysis of representative subset of data is presented
in this section. In accordance with statistical point of view, the
reduction of number of data should ensure the correlation relation
between the raw and the reduced data. Moreover, the reduced
subset of data must be reliable enough to not distort the tendency
of the raw data. To this aim, the correlation coefficient between the
raw and the reduced data was analyzed as plotted in Fig. 4. In this
study, the “Step Size” is defined as the dividend with respect to the
total number of the raw data, the divisor. It means that if “Step
Size” ¼ 10, the reduced database contains the initial samples (i.e.
7

1,000,000 data) divided by “Step Size”, making the total number of
samples in the reduced dataset is equal to 100,000. It is seen that
the value of 60 Step Size could be reasonably accepted as the
optimal value to reduce the input space (Fig. 4).

Another statistical analysis showing the influence of “Step Size”
such as ratio of median value (in %) between the raw and reduced
data is presented in Fig. 5a, b, c, d and e for uranium concentration,
gamma dose, distance, strike and predicted dispersion radon ac-
tivity, respectively. The number of 60 step size is also confirmed as
the optimal value.

In addition, the number of data and computation time presented



Fig. 8. Results of simulations with 2 hidden layer and the number of neurons from 1 to 20 neurons for (a) RMSE; (b) MAE; (c) R2; and (d) Slope.
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in ratio, with respect to the raw dataset, are also shown in function
of Step Size in Fig. 6. As expected, it is seen that the relationship
between the number of data and computation time was highly
linear with “Step Size”. Finally, the “Step Size” of 60 was chosen to
perform the ANN simulations. It exhibited a gain of 40 times in
function of computation time than using the raw dataset (Fig. 6b).
Moreover, the reduced dataset contained only 17,000 data instead
of 1,000,000 of data in the raw dataset, while keeping the same
statistical information.
3.2. Validation of Artificial Neural Networks

3.2.1. Optimization of ANN structure
Performance of ANN model depends significantly on the selec-

tion of structure of ANN. In this section, the structure of ANN was
analyzed and optimized to get the best performance of the model
for prediction. Firstly, the parametric study was performed with
ANN using 1 hidden layer. The number of neurons in the hidden
layer is varied from 1 to 20. Fig. 7 shows the results of error criteria
(RMSE, MAE, R2 and Slope) in function of different number of
hidden neurons. The Slope is defined as the gradient between the
linear fit line and the perfect linear fit. A similar trend is observed
for all error criteria, as the performance of the ANN model is
increased with higher number of neurons in the hidden layer. It is
noticed that at least 5 neurons in the hidden layer are required to
achieve reasonable prediction results.

Fig. 8 compares the prediction performance of ANN with 2
hidden layers, using RMSE, MAE, R2 and Slope as validation criteria.
The number of neurons in each hidden layer is varied from 1 to 20.
Again, it is easily observed that the best prediction results are
observed when using the maximum number of neurons in both
hidden layers. The values of RMSE and MAE have a strong tendency
8

toward lower values, whereas those of R2 and Slope tends to in-
crease with higher number of neurons.

The highest value of R2 with respect to the case of ANN using 1
hidden layer is R2 ¼ 0.934, whereas that of the case using 2 hidden
layers is R2 ¼ 0.9766. As a conclusion for the parametric study, the
higher the number of neurons, the better the predictive results
achieved. In short, the ANN structure containing 2 hidden layers
were chosen for further investigations as the prediction results
exhibited higher precisions.
3.2.2. Predictive capability of ANN
As a consequence of the parametric study in the previous sec-

tion, the structure ANN [4-20-20-1] was chosen to perform the
predictive capability of ANN. Fig. 9 shows the prediction results in a
probability distribution form for the training, testing and overall
dataset. Besides, Fig. 10 explores the cumulative distribution for the
three datasets. All the values with respect to the performance in-
dicators are indicated in Table 2. It is observed that a highly sta-
tistical correlation was achieved between actual values of
dispersion radon activity and its corresponding predicted values,
for the training, testing as well as the whole dataset. In terms of the
quality assessment indicators, for the training part, R ¼ 0.974,
R2 ¼ 0.948, RMSE ¼ 0.056, MAE ¼ 0.020, whereas for the testing
part, those values were R ¼ 0.970, R2 ¼ 0.942, RMSE ¼ 0.059 and
MAE ¼ 0.020. It was also noticed that the regression line between
the actual and predicted data exhibited a slope of 43.45�, 43.38�

and 43.43� for training, testing and all data, respectively. The slope
was very close to 45�, showing a great performance in regression
capability of the ANN prediction model. Graphs of cumulative
distribution between the actual and predicted data for the training,
testing and all dataset are also given (Fig. 10). Other performance
indicators such as the mean of error (ErrorMean) and the standard



Fig. 9. Probability distribution between actual and predicted data for (a) training part, (b) testing part and (c) all data.

Table 2
Value of performance indicators.

Indicator Training part Testing part All data

R 0.9737 0.9703 0.9728
R2 0.9485 0.9415 0.9460
RMSE 0.0561 0.0589 0.0572
MAE 0.0202 0.0203 0.0202
ErrorMean 0.0003 0.0004 0.0003
ErrorStD 0.0561 0.0589 0.0570
Slope 0.9473 0.9471 0.9473
SlopeAngle (�) 43.45 43.45 43.43
Intercept 0.0200 0.0200 0.0200
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deviation of error (ErrorStD) were also given in Table 2 for com-
parison propose.

In order to characterize locally the performance of the predic-
tion model, comparison between actual and predicted data was
analyzed at different quantile levels. To this aim, quantiles from 10
to 90% with a step of 10% were employed for tracking locally the
behavior of the probability distribution of actual and predicted
data. It is worth noticed that only quantiles from 10% to 90% were
used, focusing on the most important statistical distribution. The
results of such analysis are presented in Fig. 11a, b, c for training,
testing and all data, respectively, whereas precise values of the
quantiles are indicated in Table 3. The ratio (%) between the pre-
dicted and actual dispersion radon activity in each quantile level
was also calculated and presented in Table 3. It is seen that for the
testing part at Q30, a high ratio of 141.8% was observed, similarly at
9

Q40, a ratio of 126.1% was obtained. However, it is deduced that the
proposed model exhibited locally a strong efficiency in prediction
the dispersion radon activity, as the average value for training,
testing and all data are 97.4%, 102.3% and 100.2%, respectively. In
general, the performance of ANN is good for prediction of radon
dispersion at the study area.
3.3. Comparison of the optimized ANN with Deep Neural Networks,
Random Forest, and Gausian Process Regression

In this section, we compared our optimized ANN with several
models namely Deep Neural Networks (DNN), Random Forest (RF),
and Gausian Process Regression (GPR). Out of these models, DNN is
known as advanced ANNmodels with more than 2 hidden layers in
the network structure (Cichy and Kaiser, 2019), RF is well-known as
popular decision tree based machine learning model (Svetnik et al.,
2003), and GPR is a nonparametric approach based on Bayesian
theory (Schulz et al., 2018). In this study, the DNNwas trained using
different numbers of hidden layers (3e12) (Tables 4 and 5, Fig. 12
and Annex), the RF was trained using a minimum leaf size of 5
and 800 trees, and the GPR was trained with two different kernels
such as Matern32 (GPR-32) and Matern52 (GPR-52). The compar-
ison results show that ANN exhibits an excellent prediction capa-
bility, with the values of R2 higher than RF, and GRP. Besides, the
values of errors such as RMSE andMAE of ANN are lower than those
of GPR and RF. Similarly, the results of ANN compared with DNN
usingmore than 3 hidden layers are presented in Table 5. It could be
observed that an increase in the hidden layer number reduces the



Fig. 10. Cumulative distribution between actual and predicted data for (a) training part, (b) testing part and (c) all data.
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prediction accuracy of neural network. Therefore, it could be
concluded that the ANN [4-20-20-1] is the best predictor of the
problem.
3.4. Sensitivity analysis

In this section, a sensitivity analysis of input variables based on
PDP characterization is presented. PDP characterization technique
allow tracking the influence of input variables through the nu-
merical prediction model such as ANN. In this study, the local effect
of each input variable using the PDP technique is presented in
Fig. 13a, b, c and d for uranium concentration, gamma dose, dis-
tance and strike, respectively. It is seen that all input variables
govern the dispersion radon activity, but at different amplitudes.
Moreover, several appropriate fits were applied for the PDP curves
in order to quantify the variation. For instance, a quadratic fit was
used for tracking information for uranium concentration and dis-
tance, a linear fit was used for strike and a Fourier equation was
applied for gamma dose. It should be noticed that those equations
are also indicated in Table 6. The fit equations could be useful as a
quick empirical formulation to estimate the effect of the variation
of input variables.

In order to analyze the amplitude of the PDP curves determined
previously, two criteria were proposed based on (i) the area of the
PDP curvewith respect to its min value and (ii) the fluctuation level
of each curve. Trapezoidal numerical integration was applied for
calculating the area level of each PDP curve, whereas the fluctua-
tion level was quantified through its standard deviation. The results
10
are presented in bar graph mode in Fig. 14a for area level and 14 b
for fluctuation level. It is seen that the gamma dose was the most
influenced variable on the dispersion radon activity. The gamma
dose exhibited the highest value of area level as well as the highest
level of fluctuation. Same level of influence is considered for all
other variables.

In preliminary, it could notice here that the fit equations with
quick empirical formulation to understand and estimate the effect
of the variation of input variables follow Strike
< Distance < Uranium concentration < Gamma dose in order. So, it
could say that the gamma dose is the most important variable in
comparisonwith others. It is worthy when gamma dose is the most
important variable, the data variable concerning to close and direct
to local radon concentration at situ of radon monitoring measured
point. Because of the radon resource is at monitoring measured
place, the places are dwellings surrounding mine. Therein, the
radon has original from local 226Ra which one of the main
contribute to local monitoring measured gamma dose. This radon
resource at situ, inside closed dwellings, be accumulated by time,
do not affect by wind or not much effect by distance and strike, and
easy to reach to CR-39 detectors. The reasons setup for gamma dose
(related to local radon concentration) became the most important
variable. The rest of radon contribute to CR-39 was reached to CR-
39 have original from uranium concentration which distribute in-
side Sinquyen Mine. The radon needs time and effected dispersion
by distance and strike from mine to measurement points (dwell-
ings). In general, the uranium concentration, distance and strike
could be the same role of important variables. But in different case



Fig. 11. Quantile values between actual and predicted data for (a) training part, (b) testing part and (c) all data.

Table 3
Value of quantile statistical analysis.

Quantile level Training part Testing part All data

Actual data Predicted data Ratio (%) Actual data Predicted data Ratio (%) Actual data Predicted data Ratio (%)

Q10 0.097 0.083 85.7 0.097 0.074 76.8 0.097 0.082 84.6
Q20 0.142 0.128 90.5 0.142 0.120 84.5 0.142 0.127 89.6
Q30 0.181 0.191 105.6 0.181 0.256 141.8 0.181 0.235 130.1
Q40 0.271 0.279 102.9 0.271 0.342 126.1 0.271 0.285 105.3
Q50 0.439 0.439 100.1 0.439 0.442 100.7 0.439 0.440 100.2
Q60 0.452 0.452 100.1 0.452 0.453 100.3 0.452 0.452 100.2
Q70 0.497 0.479 96.3 0.497 0.478 96. 0.497 0.478 96.3
Q80 0.542 0.535 98.7 0.542 0.534 98.6 0.542 0.535 98.6
Q90 0.587 0.566 96.4 0.587 0.562 95.7 0.587 0.566 96.4

Average 97.4 Average 102.3 Average 100.2

Table 4
Comparison of the optimized ANN and other benchmark ML models.

Indicator ANN GPR-52 GPR-32 RF

Train Test Train Test Train Test Train Test

R 0.9739 0.9703 0.8570 0.8790 0.8619 0.8813 0.9867 0.9698
R2 0.9485 0.9415 0.7344 0.7726 0.7429 0.7767 0.9736 0.9405
RMSE 0.0561 0.0589 0.1272 0.1163 0.1252 0.1152 0.0429 0.0620
MAE 0.0202 0.0203 0.0716 0.0629 0.0699 0.0596 0.0221 0.0322
Err.Mean 0.0003 0.0004 0.0011 0.0008 0.0008 0.0002 0.0004 0.0006
Err.StD 0.0561 0.0589 0.1273 0.1164 0.1252 0.1152 0.0429 0.0620
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Table 5
Performance of DNN with different number of hidden layers (Appendix).

Datasets Number of hidden layers

3 4 5 6 7 8 9 10 11 12

Train 0.963 0.956 0.955 0.948 0.942 0.933 0.928 0.919 0.91 0.906
Test 0.942 0.933 0.935 0.922 0.914 0.919 0.909 0.901 0.881 0.886

Fig. 12. Typical plot of DNN performance with 3 hidden layers.

Fig. 13. PDP curves for (a) uranium concentration, (b) gamma dose, (c) distance and (d) strike as well as the most appropriate fits.
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Table 6
Most appropriate fits for PDP characterization.

Variable Most appropriate fit Equation

Uranium concentration Quadratic y ¼ 0.06x2 - 0.02x þ 0.38
Gamma dose Fourier y ¼ �0.02cos(5.75x) - 0.02sin(5.75x) þ 0.35
Distance Quadratic y ¼ 0.02x2 - 0.002x þ 0.37
Strike Linear y ¼ �0.03x þ 0.39

Fig. 14. Bar graphs for analysis of (a) area level and (b) fluctuation level from PDP curves.

V.-H. Duong, H.-B. Ly, D.H. Trinh et al. Environmental Pollution 282 (2021) 116973
they can replace of position such uranium concentration for the
second important variable for assessment of area level but the last
one when mention of fluctuation level.
4. Conclusions

In this study, ANN machine learning method was developed for
prediction of radon dispersion based on four input data variables
including the distance, strike, Uranium concentration, gamma dose
at the case study of the Sinquyen mine. The results show that ANN
performed with for prediction of radon dispersion in this study
(R2 ¼ 0.9342 with 1 hidden layer and R2 ¼ 0.9766 for two hidden
layers). The sensitivity analysis results showed all input variables
govern the dispersion radon activity with different amplitudes and
fitted with different equations of linear, quadratic and Fourier
equations, but the gamma dose is the most influenced and
important variable in comparison with strike, distance and ura-
nium concentration variables for prediction of radon dispersion.

With the achievements of developing of machine learning
method for prediction of radon dispersion will promise useful and
effective for social and reduce cost of radon monitoring and mea-
surement for the similar structure mines as well as areas have high
natural radioactivity at Vietnam in particular and in the world. It
means when we want to predict or mapping of radon concentra-
tion, this study might help to reduce the cost, time, procedure of
radon measurement with only low cost of gamma spectrometry
and gamma dose surveys. The great machine learning method
13
applicationwill open newmethod to predict and mapping radon in
future which is one of the important parameters to assess of high
quality and safe of fresh air. To extend this study, we would like to
deal with real-time monitoring of input mutil-data collection of
different parameters using the proposed model. This study can also
be applied for the data collected by CR-39 measurement.
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