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Abstract: The determination of natural radionuclide concentrations plays an important role for as-

suring public health and in the estimation of the radiological hazards. This is especially true for high 

level radiation areas. In this study, 226Ra, 228Ra and 238U concentrations were measured in well waters 

surrounding eight of the high-level natural radiation areas in northern Vietnam. The 226Ra, 228Ra and 
238U activity concentrations vary from <1.2 × 10−3–2.7 (0.46), <2.6 × 10−3–0.43 (0.07) and <38 × 10−3–5.32 

Bq/L (0.50 of median), respectively. 226Ra and 238U isotopes in most areas are in equilibrium, except 

for the DT-Thai Nguyen area. The calculated radiological hazard indices are generally higher than 

WHO (World Health Organization) recommendations. Average annual effective dose and excess 

lifetime cancer risk values due to drinking well water range from to 130 to 540 μSv/year and 7.4 × 

10−6 to 3.1 × 10−5, respectively. 

Keywords: 226Ra; 228Ra; 238U; well water; radiological hazards; REE and uranium mines; northern 

Vietnam 

 

1. Introduction 

Human beings are always exposed to a wide range of natural radionuclides [1]. Nat-

ural radionuclides can be present in the whole environment, including soil, water, air, 

food and even our bodies. Radionuclides in soil, air and water come from different 

sources, such as the weathering of the earth’s crust, mining activities or fertilizer materials 

[2–7]. The radionuclides in water can enter the food chain, if the water is used for drinking 

or irrigation purposes. Determination of natural radionuclide concentrations in all the en-

vironments plays an important role for public health, because it can be used to assess the 

population’s exposure to radiation and estimate the radiological hazard. 

Investigations on natural radiation have received particular attention throughout the 

world in the last decade, which led to extensive studies in many countries, especially in 

or surrounding the high-level natural radiation areas. Studies regarding the natural radi-

oactivity in water from different sources were widely conducted [7–15]. 

Among natural radionuclides, uranium leaches out from the bedrock and is present 

in water (surface and underground water) in various dissolved and suspended particu-

late forms. Other sources can be from the dry or wet deposition of aerosol from air. 228Ra 

originates from the 232Th series, and in contrast to the typically not very soluble of Th 

element, 228Ra can be partially mobilized in natural waters, giving information on geo-

chemical conditions and enabling contributions to the potential public exposure. 226Ra is 

a long-lived daughter of the 238U decay series, and it is also found in the water in trace 

quantities. The concentrations of 238U, 228Ra and 226Ra in the water depend on the lithology, 
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geomorphology and other geological conditions [16]. Thus, the concentration of these ra-

dionuclides varies from one site to another. The study concerning 226Ra, 228Ra and 238U 

concentrations in drinking water allows understanding their distribution and evaluating 

their impact on human health. 

In Northern Vietnam, there are several mines, which contain higher than average 

concentrations of radioactive elements such as the rare earth mines in NX (Lai Chau), DP 

(Lai Chau), MH (Lao Cai) and YP (Yen Bai); there is also a polymetallic mine (also con-

taining high uranium concentration) in DT (Thai Nguyen); finally, there is uranium ore in 

BY (Son La), TS (Phu Tho) and NB (Cao Bang). These mines were recently reported to 

have a high radioactive background by unpublished data from the Geological Division 

for Radioactive and Rare Minerals, Hanoi, Vietnam. This presents a possible public health 

concern. Therefore, in this study, the natural radionuclide concentrations in well water 

(226Ra, 228Ra 238U) in the area surrounding these mines are investigated. Based on the activ-

ity concentrations, the radiological health hazards are also evaluated. 

2. Materials and Methods 

2.1. Study Areas 

The eight areas in Northern Vietnam, including NX-Lai Chau, DP-Lai Chau, MH-Lao 

Cai, BY-Son La, TS-Phu Tho, YP-Yen Bai, DT-Thai Nguyen and NB-Cao Bang were se-

lected for this study. The location of these areas is presented in Figure 1. The NX mine is 

one of the largest rare earth element (REE) mines in Vietnam, with probable reserves of 

about 7.7 million tons. DP mine ranks the second, with probable reserves of about 3.7 

million tons and is followed by MH with approximately 400,000 tons and YP with about 

5000 tons [17]. BY (Son La), TS (Phu Tho) and NB (Cao Bang) have uranium ore deposits, 

while DT (Thai Nguyen) is the largest polymetallic mine in Vietnam. 

 

Figure 1. Location of the study areas (map was modified from Hung et al., 2016) [18]. 

2.2. Sample Collection and Preparation 
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In each study location, 20 water samples were collected from local wells during 2018–

2019. These wells were dug manually in the soil to the depth of about 5 to 10 m, and these 

wells provide drinking water for the local population. A total of 160 water samples with 

50 L for each sample were collected for this study. Each water sample was stored in a big, 

50 L plastic container. Each water sample was co-precipitated as Ba(Ra)SO4 for radium 

isotopes, then the uranium isotopes were subsequently precipitated as (NH4)2U2O7 to-

gether with MnO2 [15,19,20]. The solid precipitate was then filtered. Together with study 

samples, a blank sample was prepared using distilled water in order to determine the 

background. The obtained precipitated sample was dried and milled to powder, then they 

were pressed into cylindrical plastic containers, weighted and finally hermetically sealed. 

The samples were stored for 4 half-lives in order to reach the secular equilibrium (16 days 

for 226Ra after sealing, and approximately 100 days for 238U after precipitation). 

2.3. Methods 

2.3.1. Measurements of Activity Concentration of 238U, 228Ra and 226Ra in Water 

After the samples reached equilibrium, activity concentration measurements were 

performed using a high-resolution detector HPGe with a low background made by Or-

tec™. The analysis was performed using Gamma Vision software. The detector’s energy 

resolution was 1.9 keV at the 1.33 MeV 60Co gamma-ray peak. To reduce the effects of 

background radiation at the laboratory, the detector was shielded by a 10-cm thick old-

lead cylinder with a 1 mm cadmium and 1 mm copper inner lining. The samples were 

counted for two days to minimize the statistical counting error and activity calculation 

and calibration were carried out based on standard reference materials (IAEA-375). The 

level of background radiation present in the laboratory and introduced by the chemical 

process was determined using the blank sample. 

The activity concentration of each sample was determined based on its respective 

gamma lines. The gamma lines of 609.3 keV, 1120.3 keV and 1764.5 keV of 214Bi were used 

to determine the activity concentration of 226Ra, the 911.1 keV line of 228Ac was used for 
228Ra while the 1001 keV line of 234mPa was used for 238U (which was verified by 235U meas-

urement using the 186 keV line). The lowest limit detection were 0.0012, 0.0026 and 0.038 

Bq/L for 226Ra, 228Ra and 238U, respectively (the values were used for a studied sample vol-

ume of 50 L). 

The activity concentrations of 226Ra, 228Ra and 238U are calculated based on the follow-

ing Equation (1) [7]: 

A�� =
N��M��A��C�C��

N��M��
 (1)

where: Asp and Ast is activity concentration of studied and standard samples; Nsp, Msp and 

Nst, Mst are the net measured intensity and mass of the sample and standard sample, re-

spectively; Ci is the correction factor for the differences between the densities of the sam-

ples and the standard sample for the i isotope; and Cdi is the correction fraction for the 

precipitation efficiency for the i isotope. 

2.3.2. Evaluation of Radiological Hazard Indices 

 Annual effective dose (AED) 

The annual effective dose (AED) due to the ingestion of the drinking well water was 

estimated to assess the radiological hazards for the local population by using Equation (2) 

[21]: 

AED (μSv/year) = A (Bq/L) × Cw (L/year) × DCF (μSv/Bq) (2)

where AED is the annual effective dose due to ingestion of radionuclides; A is the activity 

concentration of radionuclides; Cw is the annual water consumption for a person (730 

L/year for adults) [22]. DCF is the ingestion dose conversion factor for the corresponding 
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radionuclides (0.28, 0.69 and 0.045 μSv/Bq for 226Ra, 228Ra and 238U, respectively) [21,23]. 

We all know that there are some other isotopes, like 210Po, which can contribute to a higher 

annual effective dose caused by drinking well waters, but in this study we only used the 
226Ra, 228Ra and 238U values to calculate the AED. 

 Excess lifetime cancer risk (ELCR) 

Based on the values of AED, excess lifetime cancer risks (ELCR) were calculated us-

ing the following Equation (3) [24]: 

ELCR = AED × Life Expectancy (LE) × Risk factor (RF) (3) 

where LE is life expectancy of Vietnamese people in North Vietnam and mountainous 

areas (71 years) (https://www.gso.gov.vn/default_en.aspx?tabid=774); RF the risk factor 

associated with radiation, which is equal to 0.057 Sv−1 [24]. 

3. Results and Discussion 

3.1. Activity Concentration 

The range and average values of activity concentration of 226Ra, 228Ra and 238U meas-

ured in the well water samples are given in Table 1. It can be seen that the activity con-

centration of 226Ra, 228Ra and 238U ranges from <0.0012–2.7, <0.0026–0.43 and <0.038–5.32 

Bq/L, respectively. The highest concentrations of all three isotopes are found in DT-Thai 

Nguyen. This table shows only a slight difference in concentration between 226Ra, 228Ra 

and 238U in most cases, except for the DT-Thai Nguyen sampling site. 226Ra, 228Ra and 238U 

ratios near unity indicate recent contact with uranium bearing not yet weathered minerals 

[25]. The concentrations of 226Ra, 228Ra and 238U are less than 1 Bq/L in most areas, except 

for DT-Thai Nguyen (Table 1). In the case of DT-Thai Nguyen, the concentrations of 226Ra, 
228Ra and 238U are comparatively high and are in the ranges of 0.36–2.70, 0.05–0.43 and 

0.33–5.32 Bq/L, respectively. There, the 226Ra concentration can reach levels multiple times 

higher than the WHO guideline (1 Bq/L) [26]. The high concentrations of 226Ra and 238U in 

DT-Thai Nguyen can be attributed to the polymetallic mine (which contains high uranium 

concentration) in this area. There are some activities, such as exploitation and the process 

of ore sorting going on, which can influence activity concentrations. It should be noted 

that the water samples in this study were taken from wells with depth of less than 10 m. 

These type of wells depend on rainfall and surface water as their source of water. Accord-

ingly, they are easily contaminated by surface water and various human activities. Thus, 

the human activities in the polymetallic mine can lead to a relatively high concentration 

of 226Ra, 228Ra and 238U in well water. 

Table 1. Concentration of natural radionuclides in well water samples in North, Vietnam. 

Locations Type of Mine Value 
 Activity Concentration (Bq/L) 

226Ra/238U 
226Ra 228Ra 238U 

NX-Lai Chau REE mine 
Range (SD) 0.26–0.65 (0.09) 0.04–0.10 (0.01) 0.15–0.72 (0.15) 0.64–1.73 

Average 0.44 0.06 0.50 0.95 

DP-Lai Chau REE mine 
Range (SD) 0.35–0.59 (0.08) 0.05–0.15 (0.03) 0.31–0.71 (0.10) 0.60–1.19 

Average 0.47 0.11 0.54 0.90 

MH-Lao Cai REE mine 
Range (SD) 0.30–0.78 (0.16) <0.0026–0.11 (0.02) 0.31–0.87 (0.18) 0.69–1.52 

Average 0.52 0.07 * 0.56 0.96 

YP-Yen Bai REE mine 
Range (SD) <0.0012–0.54 (0.07) <0.0026–0.12 (0.02) <0.038–0.70 (0.12) ** 

Average 0.23 * 0.08 * 0.31 * ** 

BY-Son La Uranium mine 
Range (SD) 0.25–0.74 (0.11) <0.0026–0.09 (0.02) 0.27–0.63 (0.08) 0.76–1.44 

Average 0.45 0.06 * 0.41 1.08 

TS-Phu Tho Uranium mine 
Range (SD) 0.25–0.97 (0.19) 0.05–0.10 (0.02) 0.27–0.69 (0.11) 0.50–1.76 

Average 0.48 0.07 0.48 1.01 

DT-Thai Nguyen Uranium mine 
Range (SD) 0.36–2.70 (0.69) 0.05–0.43 (0.11) 0.33–5.32 (1.46) 0.50–1.42 

Average 1.15 0.18 2.06 0.79 
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NB-Cao Bang Uranium mine 
Range (SD) 0.32–0.97 (0.18) <0.0026–0.13 (0.02) 0.34–0.80 (0.12) 0.53–1.43 

Average 0.53 0.07 0.55 0.97 

Overall range 
Minimum <0.0012 <0.0026 <0.038 0.50 

Maximum 2.7 0.43 5.32 1.76 

* during averaging values under the detection limit were taken as the detection limit to give a conservative estimate. ** 

uncalculable values were left out of the ratio calculation. 

Table 2 compares the 226Ra, 228Ra and 238U concentrations in the well water samples in 

this study with that of different water sources in different countries. The concentrations 

of 226Ra, 228Ra and 238U in well water in the areas observed in this study are significantly 

higher than those in Hoa Binh, Vietnam. In addition, the observed concentrations are 

higher than those in reported for many other countries [8–12,16], whereas they are lower 

than some values reported for tube wells in India. The concentrations observed in well 

water significantly depend on the type of aquifer rock as well as the chemical and physical 

characteristics of water [27], thus such differences can be expected. The concentration of 

studied radionuclides observed in well water in this study is within the worldwide range 

[28]. 

Table 2. 226Ra and 238U concentrations in water samples in different areas. 

Countries Samples 
Activity concentration (Bq/L) 

References 
226Ra 228Ra 238U 

Northern Vietnam Well water <0.0012–2.7 <0.0026–0.43 <0.038–5.32 This study 

Hoa Binh, Vietnam Groundwater 0.005–0.029 ≤0.020 ≤0.0005–0.009 [15] 

Italy Drinking water 0.0050–0.0608 0.00010–0.0257 0.000206–0.103 [12] 

Turkey Drinking water <0.027–2.431 <0.036–0.270 - [9] 

Jordan Tap water 0.096 0.170 0.033 [8] 

Erbil, Iraq Surface water 0.274–1.03 0.00676–0.244 * 0.274–1.03 * [11] 

Gogi, India 
Tube well 0.0195–10.5 - 0.0123–33.2 

[16] 
Open well 0.0366–0.0571 - 0.114–0.160 

Ghana 
Groundwater 0.09–0.18 0.22–0.99 * 0.09–0.18 * 

[10] 
Surface water 0.08–0.17 0.18–0.74 * 0.08–0.17 * 

World range Drinking water 0.0002–45 0.0001–7.7 0.000028–150 [28] 

* Equilibrium was assumed by the original authors. 

Regarding the concentration ratio of 226Ra/238U in well water samples, as shown in 

Table 1, the average value ranges from 0.57 (DT-Thai Nguyen) to 1.09 (BY-Son La). The 

data presented in Table 1 also shows that on average there is near equilibrium between 
226Ra and 238U, except for DT-Thai Nguyen. Kumar et al. (2016) reported that the concen-

tration of 226Ra/238U in groundwater in southwestern Punjab in India was varied from 0.08 

to 0.22 [29]. In groundwater in Finland, Asikainen (1981) also showed that the ratio of 
226Ra/238U ranged from 0.05 to 1. By contrast, other previous studies reported the enrich-

ment of 226Ra in groundwater [30]. For examples, Gascoyne (1989) indicated that the 
226Ra/238U ratios in Canadian groundwater varied from 0.026 to 5300; this ratio in 

Konnngara Australian groundwater was from 0.02 to 89 [31]. Recently, the research re-

sults of Almasoud et al. (2020) indicated that the ratios of 226Ra/238U in groundwater sam-

ples in Saudi Arabia ranged from 1.25 to 20.4 [32]. The issue is further complicated by the 

effects of the recoil from the emission of an alpha particle, which can increase the mobility 

of the daughter nuclide due to the Szilárd–Chalmer effect. On the other hand, the 234Th or 
234U can be fixed to more weathering resistant mineral phases, resulting in relatively more 
238U dissolving into groundwater [31]. The depletion of 234U in groundwater can also be 

observed based on the relative abundances of U under various geochemical conditions 

[30] 
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The relationship between activity concentrations of 238U and 226Ra in well water sam-

ples in this study is shown in Figure 2. A significant positive correlation was found be-

tween the two radionuclides with a Pearson correlation coefficient, 0.9402 and a p value < 

0.00001 for the overall dataset, due to the influence of the higher values observed at DT-

Thai Nguyen. The high value of correlation between 238U and 226Ra shows that these radi-

onuclides have leached from the similar host rock [16]. Excluding DT-Thai Nguyen, there 

is moderate positive correlation with a Pearson correlation coefficient of 0.6326, and a p 

value < 0.00001. Similarly, a strong positive correlation was observed both between 238U 

and 228Ra (Pearson correlation coefficient: 0.8411, with a p value < 0.00001) and 226Ra and 
228Ra (Pearson correlation coefficient: 0.7834, with a p value < 0.00001) for the overall da-

taset, however the effect of the higher values at DT-Thai Nguyen improving the correla-

tion are observable here as well. 

 

Figure 2. Relationship between 238U and 226Ra concentrations. 

3.2. Radiological Hazards 

The calculated radiation hazard indices based on the average activity concentrations 

for some drinking well water in northern Vietnam are listed in Table 3. As shown in this 

table, the annual effective dose (AED) for 226Ra is significantly higher than that for 238U, 

while 228Ra is in the middle despite having a higher dose conversion coefficient due to the 

comparatively low activity concentrations. The average total annual effective dose for 

adults due to the consumption of water ranges from 130 to 540 μSv/year with the mean 

value of 240 μSv/year. The average excess life cancer risk (ELCR) due to drinking the in-

vestigated well water is from 7.4 × 10−6 to 3.1 × 10−5 (7 to 31 cases per 1 million people) with 

the average of 1.4 × 10−5 (14 cases per 1 million people). Specific wells can have higher 

values; the overall maximum activity concentrations were observed in a well in YP-Yen 

Bai translating to a total annual effective dose of 540 μSv/y for adults and an ELCR of 7.0 

× 10−5 (70 cases per 1 million people). As reported by the WHO (2017), the reference values 

for AED and ELCR due to drinking water are 100 μSv/year and 1.0 × 10−5, respectively. It 

can be seen that the results of AED and ELCR due to consumption of well water in this 

study are higher on average for each area from the observed radionuclides alone than the 

values suggested by the WHO (2017), with the exception of ELCR for YP-Yen Bai. This 

indicates that there is a need for defining local policy regarding the wells in high-level 

natural radiation areas, northern Vietnam (in the observed areas), especially DT-Thai 

Nguyen. 
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Table 3. Radiation hazard indices for well water samples in northern Vietnam. 

Locations Type of Mine 
AED (μSv/Year) 

ELCR 
226Ra 228Ra 238U Total 

NX-Lai Chau REE mine 120 40 20 190 1.1 × 10−5 

DP-Lai Chau REE mine 130 80 20 240 1.3 × 10−5 

MH-Lao Cai REE mine 150 50 30 220 1.3 × 10−5 

YP-Yen Bai REE mine 60 50 10 130 7.4 × 10−6 

BY-Son La U mine 130 40 20 180 1.0 × 10−5 

TS-Phu Tho U mine 140 50 20 210 1.2 × 10−5 

DT-Thai Nguyen U mine 320 120 90 540 3.1 × 10−5 

NB-Cao Bang U mine 150 50 20 220 1.3 × 10−5 

Average 150 60 30 240 1.4 × 10−5 

4. Conclusions 

The concentrations of 226Ra, 228Ra and 238U in well waters in different locations sur-

rounding the high-level radiation areas in northern Vietnam were extensively measured 

and evaluated. The research results show that the concentrations of 226Ra, 228Ra and 238U in 

well water samples in the observed mining areas of northern Vietnam are comparatively 

higher than those reported for other areas of Vietnam and other countries. The highest 

concentrations of 226Ra, 228Ra and 238U are observed in DT-Thai Nguyen. The research also 

shows that the concentration of 226Ra and 238U for most locations on average are around 

equilibrium, except for DT-Thai Nguyen. Regarding the radiological hazards assessment, 

the calculated results of AED and ELCR due to the consumption of well water are often 

higher, and for DT-Thai Nguyen multiple times higher, than the WHO reference values. 

The results generated from this study provide important baseline data for the impact as-

sessment of the mining activities in the region in the future. 
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