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1.  Introduction 

Mining industry plays a crucial role in the socio-

economic development, especially for many developing 

countries across the world.  However, it often causes 

severe environmental issues (Chen et al., 2019; J. Long et 

al., 2018). Mining activities often produce different air 

pollutant sources such as particulate matters (PM10, 

PM2.5 and PM1.0) (Arregocés et al., 2018), 

hazardous substances (sulfur dioxide (SO2), carbon 

dioxide (CO2), carbon monoxide (CO)), and heavy metals 

(Espitia-Pérez et al., 2018; J. Long et al., 2018). Air 

pollutant in mining sites not only affects directly to 

occupational health within mining areas (Grozdanovic et 

al., 2018; León-Mejía et al., 2011; Petsonk et al., 2013) 

but also increases environmental and health problems in 

the surrounding regions (Hendryx et al., 2020; Pandey et 

al., 2014; Zhang et al., 2020).  

To prevent air pollution and reduce health-related 

issues, it is essential to accurately observe and predict the 

spatio-temporal distribution of air quality in mining areas, 

particularly in the small space with heavy air pollution 

like open-pit coal mines (Alvarado et al., 2015). As 

various hazardous compositions emitting to the 

atmosphere, different methods have been used to observe 

air quality, including manual analysis, concentration 

meter, and continuous analyzer (Chang et al., 2020; Dieu 

Hien et al., 2019; Yang et al., 2020). However, these 

methods are generally time-consuming and costly 

practices, so they are often unaffordable for many 

developing countries. With the advanced development of 

unmanned aerial vehicle (UAV) technology in recent 

years, UAV has been applied in different mining activities 

including pit and dump management (Padró et al., 2019), 

stockpile computation (Le, 2020; Raeva et al., 2016), 

blast-induced ground vibration (X.-N. Bui et al., 2020), 

and 3D mapping open-pit mines (D. T. Bui et al., 2017; 

N. Q. Long et al., 2019; Nghia, 2020). In the field of 

mining environment management, it is noted that UAV 

carrying modular gas sensors is an effective monitoring 

system of air quality (Rohi et al., 2020). A UAV 

monitoring system can help to observe the vertical 

distribution of air quality accurately (Liu et al., 2020; 

Sheng et al., 2019) with acceptable prices, especially 

within the open-pit mining areas where a complex ground 

surface and unstable geomorphology is common 

(Alvarado et al., 2015; Liu et al., 2020; Villa et al., 2016). 

However, there are often limitations in the application of 

Abstract 
Open-pit mining activities, including blasting, drilling, loading, and transport, often result in the direct emission of 
particulates and gases into the atmosphere. Occupational exposure to these pollutants is considered as the risk for 
health, especially the risk of developing respiratory diseases. An air quality monitoring system and spatial analysis are 
necessary to identify these potential hazards. In this study, we propose an air quality monitoring system that integrates 
gas and dust sensors into a small multi-rotor copter or unmanned aerial vehicle (UAV). Different spatial interpolation 
methods including trilinear interpolation, nearest neighbour, and natural neighbour applied to the monitoring data 
(CO, SO2, PM2.5, CO2) from our system to derive air concentration levels in the atmosphere of open-pit coal mines 
were also examined. The results show that the UAV based air quality monitoring system performed efficiently and 
safely in conditions of deep open-pit coal mines. In addition, for the estimation of the concentration level of gases and 
dust in unsampled points, trilinear interpolation performed with the most accurate result, followed by natural 
neighbor and nearest neighbor. 

mailto:nguyenquoclong@humg.edu.vn
http://doi.org/10.29227/IM-2020-02-32
http://doi.org/10.29227/IM-2020-02-32


 

 

264                Inżynieria Mineralna — Styczeń – Czerwiec 2020 July – December — Journal of the Polish Mineral Engineering Society 

 

UAV in large areas due to small battery capacity and 

safety reasons. Therefore, the UAV based system can 

only measure the atmospheric quality at discrete points 

and at certain time instances within the small space of 

deep open-cast mines. To overcome this limitation, 

identification of the suitable interpolation method based 

on observation data from UAV monitoring system is 

necessary. 

Spatial interpolation is a method that best represents 

the whole space and predicts the values at points where 

observation data is unavailable (Lam, 1983). This method 

assumes the data is continuous over the area and spatially 

dependent, indicating that values closer together are more 

likely to be similar than the values further apart. The goal 

of spatial interpolation is to create a surface representing 

as close as the true one. There are several interpolation 

methods such as trilinear interpolation, natural neighbour, 

and nearest neighbour, which were commonly used to 

visualize and mapping substances in the three-dimension 

(3D) space. However, different methods may provide 

different interpolated results depending on the 

characteristics of observed data, especially the number of 

sampling points. Thus, in order to provide an accurate 

estimation of air quality based on air sampling points 

collected by the UAV based method, a testing and 

validating interpolation method is needed (Espitia-Pérez 

et al., 2018).  

To have a deep insight into air quality in mining sites, 

this study is to seek an approach that could accurately 

estimate the 3D concentration of several air compositions 

in open-pit coal mines based upon the UAV monitoring 

system. To achieve this objective, different interpolation 

methods were tested with observation data acquired by 

the UAV monitoring system. The most suitable method 

for constructing 3D distribution of air quality was chosen 

based upon cross-validation with four errors including 

mean error (ME), mean absolute error (MAE), root mean 

square error (RMSE), and percent error (PE). 

2. Study area and data collection 

2.1 Study area 

Deo Nai open-pit coal mine was selected for this 

study. It is located in the northern part of Vietnam (Fig 1). 

The mine is managed by the Deo Nai Joint Stock Coal 

Company which was established on 1st August 1960 by 

the Decision 707 BCN/VB on 27th July 1960. Coal 

extracted from this mine has the highest quality in the 

north-eastern coal basin. According to the permission 

decision of exploitation (2817/GP-BTNMT) issued by the 

Ministry of Natural Resources and Environment in 2008, 

the mine has a maximum area of 6.06 km2 and a 

reservation of 42 500 000 ton producing 2 500 000 ton per 

year. The Deo Nai open-pit coal mine intends to close in 

the year of 2025 when it reaches to the minimum 

extraction elevation of -345 m above from the sea level 

(amsl). At present, the mine has reached to the minimum 

extraction elevation of -150 m amsl with bench height, 

bench width, and working slope varying from 20 to 30 m, 

40 to 70 m, and from 24o to 32o, respectively (Bien, 2015). 

In this study site, the main mining activities include 

drilling, blasting, loading, and hauling operations 

emitting different particle matters, especially PM2.5 and 

hazardous gases (CO, CO2, and SO2) which may directly 

impact on workers‘ health. Therefore, the accurate 

estimation of air quality distribution in three directions is 

necessary. 

 

Fig. 1. Location of study area and its landscape 

Rys. 1. Połoenie badanego obszaru i jego krajobraz 
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2.2 Data collection 

a. UAV platform 

In this study, a DJI Inspire 2 drone (Fig 2) was used for air 

quality monitoring. The drone’s technical parameters are 

presented in Table 1 (https://www.dji.com/inspire-2/info).  

It can be seen from Table 1 that DJI Inspire 2 can take off 

with an 810 g object. This allows the drone flying safely 

with air sensors mounted on it. However, its flight time 

decreases. 

 
Fig. 2. DJI Inspire 2 UAV 

Rys. 2  BSP DJI Inspire 2  

Tab. 1. Specifications of drone 

Tab. 1. Techniczne specyfikacje drona 

Name of UAV DJI Inspire 2 

Weight 3440 g 

Battery 6000 mAh 

Max flight time Approx. 27 min 

Cruise speed 
- P mode/A-mode: 16.4 ft/s (5 

m/s) 

- S-mode: 19.7 ft/s (6 m/s) 

Radio link range 7 km 

Payload 4250 g 

b. Air quality sensors 

Electrochemistry sensors and laser dust sensor were 

used to evaluate four major pollutants, including PM2.5, 

CO, CO2, and SO2 (Fig 3a). Technical parameters of those 

sensors are described in Table 2. The sensors were 

attached to the drone for monitoring several components 

of air and called UAV multi-sensor collectors (UAV-

MSC) system. Due to the load limitation of UAV, light 

and compact sensors were packed in a perforated box and 

mounted on the vehicle (Fig 3b). Data were stored in a SD 

card. 
Tab. 2. Specifications of the air quality monitoring sensors 

Tab. 2. Specyfikacje czujników monitorujących jakość powietrza 

Parameters  Sensor category  Range  Precision  Resolution  

PM2.5  Laser dust sensor  0-500 µg/m3 ± 10% 0.3 µg/m3  

CO Electrochemistry sensor  0-750ppm ± 5% ppm 1 ppm  

CO2 Electrochemistry sensor  0-750ppm ± 5% ppm 1 ppm  

SO2 Electrochemistry sensor  0-20ppm ± 5% ppm 0.1 ppm  

 

 
(a) 

 
(b) 

Fig. 3. (a) Sensors and (b) modular gas-sensor system 

mounted 

Rys. 3. (a) Zamontowane czujniki i (b) modułowy system 

czujników gazu 

c. Description of data collection 

Due to the limited battery capacity, the UAV has less 

hovering time with more load. A total load of sensors and 

other accessories was 0.8 kg corresponding to the flight 

time of 25 minutes, including taking off and landing. 

Therefore, the working time of the UAV monitoring 

system is approximately 15 minutes. Figure 4 and Figure 
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5a depict the preparation of taking off and the UAV flight 

paths to measure air components within the pit. UAV flew 

in the space of the study mine with an average speed of 4 

m/s. At the same time, the velocity and direction of wind 

were also measured. The data collected were utilized to 

make 3D air models. 

 
Fig. 4. Taking off the drone 

Rys. 4. Wystartowanie  

 
(a) 

 
(b) 

Fig 5. (a) Flight paths; (b) Air monitoring points 

Rys. 5. (a) Trasy lotu; b) Punkty monitorowania powietrza 

3. Methods 

3.1 Spatial interpolation methods 

In order to accurately predict the spatial distribution of 

air quality in the study site, three spatial interpolation 

methods including trilinear interpolation, nearest 

neighbour, and natural neighbour were tested and 

evaluated using UAV observation data and based on 

different performance indexes. 

a) Trilinear interpolation 

Trilinear is an extension of the linear interpolation 

performed with points within a box (3D) given values at 

the vertices of the box (Bourke, 1999). With two adjacent 

data points, each line is formed and can be interpolated 

independently. Suppose (xi; yi) and (xi+1; yi+1) are the 

previous and latter endpoints of a line segment, 

respectively. For the point where the abscissa is x, and its 

y is: 

𝑦 = 𝑦𝑖 + (𝑦𝑖+1 − 𝑦𝑖)
𝑥 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

 (1) 

When input parameters are multidimensional, bilinear 

interpolation or trilinear interpolation is required. Bilinear 

interpolation is a linear interpolation with two variables. 

The main idea is to perform interpolation calculation (Eq. 

1) respectively in directions of the two variables. The 

trilinear interpolation is able to add one direction (or 

variable) based on the bilinear interpolation (Fig 6) (Cam 

Q. T. Thanh, 2017). 

Pxyz = P000(1-x)(1-y)(1-z) + P100x(1-y)(1-z) + 

P010(1-x)y(1-z) + P001(1-x)(1-y) z + P011(1-x)yz 

+ P100(1-y)xz + P110xy(1-z) 

(2) 

where Pxyz is the value of sampled point at 

coordinates (xyz). 

 

Fig. 6. Representation of a trilinear interpolation model 

(modified from Cam Q. T. Thanh (2017)) 

Rys. 6. Reprezentacja trójliniowego modelu interpolacyjnego 

b) Nearest neighbour 

Nearest interpolation is the simplest interpolation 

method. The main idea of this method is that the 

interpolated point receives the value of its closest sampled 

point. Therefore, in the processing, it is to find a point 

closest to the interpolation point before assigning the value 

of the point to the interpolation point.  

The performance of this interpolation requires the 

space surrounding a sampled point to be decomposed into 
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cells called a Voronoi diagram, so at any points in this 

space, the closest given point is inside this cell. The 

graphic representation of a Voronoi diagram in both 2D 

and 3D is shown in the Fig 7a and 7b, respectively. 

 
(a) 

 
(b) 

Fig. 7. (a) 2D Voronoi diagram; (b) 3D Voronoi diagram (Liu, 

Zhu, Wang, & Liu, 2010) 

Rys. 7. (a) Diagram Woronoja 2D; (b) Diagram 3D Voronoija 

(Liu, Zhu, Wang i Liu, 2010) 

c. Natural neighbour 

This is a local interpolant which is also based on the 

Voronoi diagram, as shown in Figure 7. Its estimation 

function is a linear and appropriately weighted average of 

the nearby data points or natural neighbours. The method 

of selecting natural neighbours and the interpolation 

weights was proposed by Sibson (1981). According to this 

method, initially, for a given set of irregular points P = (P1 

… Pn), the original Voronoi diagram is constructed; 

subsequently, the target interpolation point q is inserted in 

the diagram, altering the Voronoi diagram. The point q in 

the  new Voronoi diagram is associated with the region 

V(q) and the interpolation weights wi were calculated as 

Eq.3 (Quanfu Fan, 2005) below: 

 

𝑤𝑖 =
𝐴𝑟𝑒𝑎(𝑉(𝑞) ∩ 𝑉(𝑃𝑖))

𝐴𝑟𝑒𝑎(𝑉(𝑞)
 (3) 

where Pi the natural neighbours of q and V(Pi) their 

associated regions in the original Voronoi diagram. The 

natural and the nearest neighbour schemes belong to the 

polygonal interpolation group of methodologies and are 

local, deterministic, and abrupt schemes. 

3.2 Accuracy assessment 

The cross-validation was used; this is a common 

validation in environmental research (Goutham Priya M, 

2018; Jha et al., 2011; Kurtzman & Kadmon, 1999). For 

each interpolation method, we employed 80% of the 

observed data to calculate the concentration of air 

components for a number of 20 % points after excluding 

them from the input data.  

The interpolation of air quality distribution was 

evaluated using mean error (ME), mean absolute error 

(MAE) and root mean square error (RMSE). ME indicates 

the predictive lack of bias, while MAE provides a measure 

of how far the estimate can be in error, ignoring sign  

(Hulme et al., 1995). The RMSE provides a measure that 

is sensitive to outliers (Nalder & Wein, 1998). The ME, 

MAE, RMSE were estimated based on the Eq.4, Eq.5, and 

Eq.6, respectively. 

MAE =
1

𝑁
∑|𝑃𝑖 − 𝑃𝑖

∗|

𝑁

𝑖=1

 (4) 

ME =
1

𝑁
∑(𝑃𝑖 − 𝑃𝑖

∗)

𝑁

𝑖=1

 (5) 

RMSE = √
1

𝑁
∑(𝑃𝑖 − 𝑃𝑖

∗)2
𝑁

𝑖=1

 (6) 

In addition, the cross-validation method is based on 

percent error or PE (%), which is defined as Eq.7: 

 

PE(%) =
RMSE

(
1
𝑁
)∑ 𝑃𝑖

∗𝑁
𝑖=1

𝑥100(%) (7) 

Where RMSE is the mean of the squared difference 

between the observed value (Pi
*) and the predicted value 

(Pi), and N is the number of observations. The smaller 

the value, the more accurate the method is. 

4. Results and discussions 

4.1. Comparative analysis of interpolation methods 

During the monitoring period, there was no mining 

operation because it was the break time between morning 

and afternoon shifts. Also, there was almost no wind 

within the space of the study open-pit mine as it is 

extremely deep and steep. The wind velocity was recorded 

around 0.4 m/s, the humidity varied from 73 to 81%, and 

temperature recorded around 27oC. The monitoring points 

are depicted in Fig 5b. 

Figures 8-12 depict scatter plots which are presented 

for each of three methods. In Figures 8d-f, 9d-f,10d-f, 11d-

f, and 12d-f we can see that trilinear interpolation (TI) and 

natural neighbour (NaNe) performed similarly, whereas 

there are clearly differences in the performance between 

TI and nearest neighbour (NeN) and between NaNe and 

NeN. 

For numerical analysis, as stated in Tables 3-6 for all 

four air compositions, TI shows the lowest errors followed 

by NaNe while NeN produced the results with the largest 

errors. In addition, the performance of three interpolation 

methods for CO2 is the best based on PE. Specifically, 
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trilinear interpolation of CO2 gave a PE of 3.7% which 

was smaller than that of CO, SO2, and PM2.5 with 10.3%, 

12.9%, and 15.2%, respectively. 

For the interpolation of PM2.5, Table 3 shows that TI 

performed the best with the lowest errors of -0.116 (ME), 

4.787 (MAE) and 5.896 (RMSE), whereas NeN produced 

the worst results with the largest errors of -0.516 (ME), 

5.014 (MAE), and 7.141 (RMSE). 

For estimation of CO concentration, Table 4 shows 

that TI produced the lowest errors of 0.058 (ME), 0.102 

(MAE) and 0.295 (RMSE), whereas NeN produced the 

largest errors of 0.040 (ME), 0.145 (MAE), and 0.295 

(RMSE). Similarly, for SO2, the ME, MAE, and RMSE 

varied from 0.005 to 0.008, 0.011 to 0.019, and 0.019 to 

0.031, respectively (Table 5). Finally, the ME, MAE, and 

RMSE for CO2 varied from 4.428 to 7.208, 14.086 to 

18.458, and 19.189 to 26.702, respectively (Table 6).  

 
Tab. 3. Cross-validation test result for PM2.5 estimates 

Tab. 3. Wyniki testu walidacji krzyżowej dla oszacowań PM2.5 

 

Method of interpolation 
Mean error 

(ME) 

Mean absolute error 

(MAE) 

Root mean square error 

(RMSE) 

PE 

(%) 

Trilinear -0.116 4.787 5 .896 15.2 

Nearest Neighbor 0.250 5.750 7.141 18.4 

Natural Neighbor -0.516 5.014 6.274 16.2 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig 8. Scatter diagrams of observed and estimated concentrations for PM2.5 with (a) Trilinear interpolation; (b) Nearest 

Neighbour; (c) Natural Neighbor. Scatter diagrams of estimated concentrations for PM2.5 by (d) Nearest Neighbor and Trilinear; 

(e) Natural neighbour and Nearest neighbour; (f) Natural Neighbour and Trilinear 

Rys. 8. Diagramy rozrzutu obserwowanych i szacunkowych stężeń PM2.5 z (a) Tnterpolacją Trójliniową; (b) Najbliższym 

sąsiadem; (c) Naturalnym Sąsiadem. Diagramy rozrzutu szacowanych stężeń pyłu PM2.5 według: (d) Najbliższego Sąsieda i 

Trójliniowego; (e) Naturalnego Sąsiada i Najbliższego Sąsiada; (f) Naturalnego Sąsiada i Trójliniowego 

 
Tab. 4. Cross-validation test result for CO estimates 

Tab. 4. Wyniki testu walidacji krzyżowej dla oszacowań CO 

 

Method of interpolation 
Mean error 

(ME) 

Mean absolute 

error (MAE) 

Root mean square error 

(RMSE) 

PE 

(%) 

Trilinear 0.058 0.102 0.192 10.3 

Nearest Neighbor 0.040 0.145 0.295 15.8 

Natural Neighbor 0.066 0.118 0.210 11.3 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 9. Scatter diagrams of observed and estimated concentrations for CO with (a) Trilinear interpolation; (b) Nearest Neighbour; 

(c) Natural Neighbour; (d) Nearest Neighbour and Trilinear; (e) Natural neighbour and Nearest neighbour; 

(f) Natural Neighbour and Trilinear 

Rys. 9. Diagramy rozrzutu obserwowanych i szacowanych stężeń CO z (a) Interpolacją Trójliniową; (b) Najbliższym Sąsiadem; 

(c) Naturalnym Sąsiadem; (d) Najbliższym Sąsiadem i Trójliniowym; (e) Naturalny Sąsiadem i Najbliższym Sąsiadem; (f) 

Naturalnym Sąsiadem i Trójliniowym 

 

Tab. 5. Cross-validation test result for SO2 estimates 

Tab. 5. Wyniki testu walidacji krzyżowej dla oszacowań SO2 

Method of interpolation 
Mean error 

(ME) 

Mean absolute error 

(MAE) 

Root mean square error (RMSE) PE 

(%) 

Trilinear 0.007 0.011 0.019 12.9 

Nearest Neighbor 0.005 0.019 0.031 20.6 

Natural Neighbor 0.008 0.012 0.021 14.3 

 

 
  

(a) (b) (c) 
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(d) (e) (f) 

Fig 10. Scatter diagrams of observed and estimated concentrations for SO2 with (a) Trilinear interpolation; (b) Nearest Neighbour; 

(c) Natural Neighbor; Scatter diagrams of estimated concentrations for SO2 by: (d) Nearest Neighbor and Trilinear; (e) Natural 

neighbour and Nearest neighbour; (f) Natural Neighbor and Trilinear 

Rys. 10. Diagramy rozrzutu obserwowanych i szacowanych stężeń SO2 z (a) Interpolacją Trójliniową; (b) Najbliższym ąsiadem; 

c) Naturalny Sąsiadem; Diagramy rozrzutu szacowanych stężeń SO2 według: (d) Najbliższego Sąsieda i Trójliniowego; (e) 

Naturalnego Sąsiada i Najbliższego Sąsiada; (f) Naturalnego Sąsiada i Trójliniowego 

 
Tab. 6. Cross-validation test result for CO2 estimates 

Tab. 6. Wyniki testu walidacji krzyżowej dla oszacowań CO2 

Method of interpolation 
Mean error 

(ME) 

Mean absolute error 

(MAE) 

Root mean square error 

(RMSE) 

PE 

(%) 

Trilinear 4.428 14.086 19.189 3.7 

Nearest Neighbor 7.208 18.458 26.894 5.2 

Natural Neighbor 5.631 15.396 19.702 3.8 

 

   
(a) (b) (c) 

  
 

(d) (e) (f) 

 
Fig. 11. Nearest Neighbour; (c) Natural Neighbour; Scatter diagrams of estimated concentrations for CO2 by (d) Nearest Neighbor 

and Trilinear; (e) Natural neighbour and Nearest neighbour; (f) Natural Neighbor and Trilinear 

Rys. 11. Diagramy rozrzutu obserwowanych i szacowanych stężeń CO2 z (a) Interpolacją Trójliniową; (b) Najbliższym Sąsiadem; 

(c) Naturalnym Sąsiadem; Diagramy rozrzutu szacowanych stężeń CO2 według: (d) Najbliższego Sąsiadu i Trójliniowego; (e) 

Naturalnego Sąsiadu i Najbliższego Sąsiadu; (f) Naturalnego Sąsiadu i Trójliniowego 
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(a) (b) 

  
 

Fig. 12. Volume rendering and contour plots created using the trilinear interpolation method 

Rys. 12. Renderowanie objętości i wykresy konturowe utworzone metodą interpolacji trójliniowej 

 

4.2. Estimation of 3D air quality distribution 

As illustrated in the previous section, the TI method 

performed the highest accurate estimation result compared 

the others, therefore it was used to reconstruct a 3D 

distribution of different emissions in the study site based 

on the measured data from UAV multi-sensor collectors 

(UAV-MSC). The location of each sampling point was 

identified using VN-2000 coordinate. In each model, a ZY 

profile was also created to show contours of interpolated 

values. Figure 11 showed a 3D distribution of four air 

pollutant substances using software Voxler. The 

concentration of four toxic emissions (CO, SO2, CO2, and 

PM2.5) showed a relatively wide variation ranging from 

0.9692.72 µg/m3 (CO), 0.07850.247 µg/m3 (SO2), 

428577 µg/m3 (CO2), and 5.0658.2 µg/m3 (PM2.5). 

More noticeably, although two most of the toxic chemicals 

(CO and SO2) have a lower concentration of 0.247 µg/m3 

and 2.47 µg/m3, the high concentration at the bottom of 

the pit may harmfully impact on occupational health, 

especially who works for a long-time in deeper areas of 

open-pit mines. Meanwhile, CO2 and PM2.5 distributed 

entirely in the open-pit area, which not only impacts on the 

working environment but increases environmental risks in 

surrounding areas. These findings provide additional 

evidence explaining regional pollution caused by mining 

activities in many countries worldwide (Gautam et al., 

2018; Hendryx et al., 2020). It also raises the necessity of 

reducing air pollution in mining sites to prevent health-

related issues in both local and regional scales. 

5. Conclusion 

This study presents a new approach to flexibly monitor 

and accurately estimate air quality in an open-pit coal 

mine. It was built based on constructing the UAV multi-

sensor collectors (UAV-MSC) system and testing 

different interpolation methods for establishing a 3D 

distribution of four toxic emissions from the open-pit coal 

mine. UAV-MSC system shows the practical ability to 

carry various sensors to monitor air quality in open-pit 

coal mines. It can be used to measure different air quality 

components (PM2.5, CO, CO2, and SO2). Moreover, the 

system works safely and effectively in the condition of 

open-pit mines compared to conventional ground-based 

monitoring systems which often cost a high price and are 

difficult to monitor air quality following vertical direction.  

Also, different interpolation methods, namely trilinear 

interpolation, nearest neighbour, and the natural 

neighbour were applied to reproduce the vertical 

distribution of toxic emissions based on measured data 

from the UAV-MSC system. To evaluate these 

interpolation methods, the cross-validation method with 

four errors including mean error, mean absolute error, root 

mean square error and percent error were used. The results 

show that trilinear interpolation is the most suitable 

method for spatial modelling of air components in the 

three dimensions of space as this method gave the smallest 



 

 

272                Inżynieria Mineralna — Styczeń – Czerwiec 2020 July – December — Journal of the Polish Mineral Engineering Society 

 

 

errors compared to the two remaining methods. 

In short, the proposed approach provides an additional 

option with simple procedures and acceptable price to 

measure flexibility an estimate accurately 3D distribution 

of air quality in open-pit mines.  
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Metody interpolacji przestrzennej 3D dla oceny jakości powietrza w kopalniach odkrywkowych z 

danymi uzyskanymi przez system monitorowania oparty na pospolitym bezzałogowym statku 

powietrznym BSP 

 

Wielorakie działalności ư górnictwie odkrywkowym, w tym roboty strzelnicze, wiertnicze, załadowania, transport, 

zwałowania itp. często prowadzi do bezpośredniej emisji pyłów i gazów do atmosfery. Zanieczyszczenie powietrza 

na terenie zakładu górniczego uważane jest za zagrożenie dla zdrowia pracowników i górników, zwłaszcza ryzyko 

rozwoju chorób układu oddechowego. Aby zidentyfikować te potencjalne zagrożenia, niezbędny jest system 

monitorowania jakości powietrza i analiza przestrzenna. W artykule, przedstawiono wyniki zastosowania system 

monitorowania jakości powietrza, który integruje czujniki gazu i pyłu w pospolitym wielowirnikowym helikopterze 

lub bezzałogowym statku powietrznym (BSP). Zbadano również różne metody interpolacji przestrzennej, w tym 

interpolację trójliniową, najbliższego sąsiada i naturalnego sąsiada, zastosowane do danych z monitoringu (CO, 

SO2, PM2.5, CO2) z badanego systemu w celu wyznaczenia poziomów stężenia powietrza w atmosferze kopalni 

odkrywkowych. Wyniki pokazują, że system monitorowania jakości powietrza oparty na BSP działał sprawnie i 

bezpiecznie w warunkach głębokich odkrywkowych kopalń węgla kamiennego. Dodatkowo, do oszacowania 

poziomu stężeń gazów i pyłów w niepróbkowanych punktach zastosowano interpolację trójliniową z 

najdokładniejszym wynikiem, a po kolei  naturalny sąsiad i najbliższy sąsiad. 

 

 

Słowa kluczowe: jakość powietrza, kopalnie odkrywkowe, interpolacja przestrzenna, bezzałogowe statki powietrzne 

(BSP) 

 


