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Wireless power transfer (WPT) is a convenient method of delivering energy to
multiple devices without connecting wires. To further enhance WPT efficiency,
unique characteristic metamaterials, such as electromagnetic field focusing, have
been successfully utilized. Normally, metamaterial characteristics depend on multiple
parameters. Several metamaterial designs require a significant amount of time to
complete numerical simulation. In this work, we propose a rapid design metamaterial
method using a deep neural network (DNN). When DNN is used, the results show
an accuracy of 98.1% and an accumulated mean square error (MSE) less than
0.3x107%. For synthesizing the design parameters, the MSE is less than 8x107°.
Besides, the computation time of the 1000 samples can be reduced 85x10° times

compared to the HFSS simulation.

I. Introduction

The wireless power transfer (WPT) is a convenient
method of delivering energy to multiple devices
without connecting wires. However, the previous
approaches have an issue that the field generated by
the antenna is much leakage to the unload because the
receiver coil is small or not close to the source coil
[1]. That is the reason why wireless power transfer
efficiency is reduced.

Recently, cavity—-metamaterials are useful in WPT
for enhanced efficiency. Aruna et al. investigate the
2D metamaterial, which improves WPT efficiency by
using cavities unit cell as the power hotspots [2]. The
cavity unit cell metamaterial is created by tuning the
characteristics, which depend on multiple parameters.
Thus, the metamaterial design process takes a long
time of simulation or complex computation. For
numerous designs, the traditional method is
unpreferred.

The DNN has recently been improved high
accuracy and computing rate beyond the human level.
These advantages of the DNN endow the designed
metamaterial with high accuracy was approached [3].
The result shows that the DNN has been successfully
used for predicting the transmittance coefficient of the
dielectric metasurface.

In this work, we propose a rapid design
metamaterial parameters method using a DNN. Using
2118 (18%) testing data of 11766 random samples, we
investigate that the DNN can rapidly successfully
predict the reflection coefficient (S11) of the
metamaterial.

II. Design

Fig. 1(a) shows a schematic of the WPT charging
table using the cavity—-metamaterial assembled by the
hexagonal unit cells. The unit cell characteristic is
decided by six parameters: the width W, the spacing
S, the metal thickness #m, the dielectric thickness #,
cell size a, and the capacitor Cs. Same as our previous
work, there are 3.4x10'! designs when considering all
the combinations of the parameters [4]. Fig. 1(b)
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shows the reflection coefficient of the hexagonal unit
cell depending on Cs.
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Fig.1. (a) Concept of WPT charging table using
cavity metasurface. (b) Reflection of unitcell (Si1)
depending on Cs. (c) Relative field amplitude
distributes on metasurface.

Fig. 1(c) shows the measured relative field
amplitude by scanning over the metasurface. Here, all
the unit cells resonate at o1 = 0.86wo except for the
unit cells forming the cavity, which resonate at wo =14
MHz. The result shows that the relative field
amplitude in the cavity region is higher than in the
surrounding region.

Fig. 2 shows the block diagram of the overall
neural network. For synthesizing the design
parameters, we use two fully—connected networks
(FCNs), which are the design parameter to S-
parameter (DPSP) and the S-parameter to design
parameter (SPDP) networks. Both FCNs have nine
layers with 1024 nodes.
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Fig.2. Two FCNs are used for predicting the
frequency spectra and generating the design
parameters of the hexagonal unitcell.
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Fig. 3 shows the examples of test data for the
DPSP network after 2500 epoch. For each sub-figure,
the MSE is also shown. When we accumulate the MSE
of the 2118 test set, 98.1% of them have MSE <
0.8x1073. The results show that the proposed
approach using DNN faithfully reconstructs the
reflection spectra.
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Fig.3. Examples of test data obtained using the DPSP
network.

Fig. 4 shows the examples of test data for the
SPDP network after 2500 epoch. When we accumulate
the MSE of the 2118 test set, 97.7% of them have
MSE < 8x107%. The results show that the DNN can be
efficiently used for synthesizing the dimension of the
hexagonal metamaterial unitcell.
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Fig.4. Examples of test data obtained using the SPDP
network.

We use Ansys HFSS version 2019 for the EM
solver and Tensorflow version 2.0 for DNN. To
compare the computation time, both HFSS and DNN
are run on the HP Z640 workstation having a 64 GB
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memory, a GTX1080 GPU, and a Xeon E5-1650v3
processor. When 1000 samples are calculated, the
HFSS simulator takes 188057 sec (52.24 hours) while
DNN takes 2.2 sec. The result shows that the DNN
approach significantly reduces the computation time.
1. Conclusion

In this work, we investigated the DNN can
successfully predict the reflection spectra and
synthesize the design parameters. Using DNN for
1000 metamaterial designs, the computation time of
the process was reduced around 85x10° times
compared to the HFSS simulation.
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