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ABSTRACT

The shrinkage limit is one of the Atterberg limits and is a fundamental geotechnical parameter used to assess the settlement 
and other volume change parameters of engineering soils containing clays. This paper describes shrinkage limits and 
index tests results on expansive soil treated with rice husk ash (RHA) and 5%, 10% and 15% quicklime activated rice 
husk ash (QARHA) obtained using laboratory testing procedure. The representative soil was subjected to classification 
tests and it was found to be high expansive soil, an A-7-6 soil according to American Association of States Highway and 
Transportation Officials (AASHTO) and poorly graded according to Universal Soil Classification System (USCS). It was 
classified as highly plastic soil. The soil was subjected to treatment exercise at the rate of 0% (reference), 2%, 4%, 6%, 
8% and 10% addition of RHA, 5%-QARHA, 10%-QARHA and 15%-QARHA by weight of dry soil. The RHA addition 
improved the shrinkage properties; shrinkage limit at varying rates ranging from 5.7%, to 27.9% for 2%, and 10% RHA 
addition respectively with reference to the control experiment. And for the shrinkage index, the improvement rate was also 
substantial i.e. 7.8% to 55.7% at 2% and 10% RHA addition respectively with reference to the control experiment. The 
effect of rice husk ash activated with 5% quicklime lime (5%-QARHA) showed improvement rate of 6.6% and 34.4% at 
2% and 10% 5%-QARHA addition respectively with reference to the control experiment. Also, the effect of rice husk ash 
activated by 10% and 15% quicklime (10%-QARHA and 15%-QARHA) on the shrinkage properties was presented with 
the rates of improvement which shows that the higher the rate of activation of rice husk ash with quicklime, the higher the 
pozzolanic performance Finally, rice husk ash and its composites achieved by quicklime activation process have shown to 
be alternative cementing materials for use as binders in the modification of expansive soils utilized as subgrade materials. 

Keywords: Highly expansive clayey soil; shrinkage limit; swelling potential; shrinkage index; adsorbed moisture; black 
cotton soil; clay activity; clay content; construction materials.
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INTRODUCTION

Cut and fill practices as well as soil haulage that go on during 
earthworks expose soils to movements and distributions 
within projects, which result to soil shrinkage as applied 
to earthwork design and calculations (Arnold 2018; CEER 
2013). Another very important factor responsible for this 
behavior is the seasonal changes in water table which 
facilitates this problematic behavior under hydraulically 
bound conditions like pavement foundations experience 
(Chen 1988; Puppala et al. 2013; V. N. S. Murthy 2006 & 
2007). This behavior depends on whether the soil is bank 

(undisturbed), loose (disturbed) or compacted (V. N. S. 
Murthy 2006). A soil of bank and compacted state can 
swell with the introduction of moisture thereby changing 
from state to state and disorganizing the design principles 
and conditions of a foundation structure (CEER 2013). 
In reverse order, a swell mass can as well shrink under 
desiccation conditions, which could be due to seasonal 
changes in the field (see visual illustration in Figure 1). 
Note that at the shrinkage limit, if moisture content is 
reduced further, air enters the voids spaces of the soil and 
the volume of voids is maintained at constant condition 
(Wall 1959).
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Because different processes take place during expansive 
soils volume changes, the soil undergoes volume decreases 
by shrinkage during drying-shrink phase and the dry mass 
of soil’s internal stresses cause desiccation cracks, which are 
created in planes of weakness within the soil clods (CEER 
2013; Shigeki and Toshio 1965; P. R. N. Hobbs et al. 2019).  
The seasonal reduction in foundation soil volume causes 
undesirable changes in the overlain structure (Onyelowe 
et al. 2019; 2020a & 2020b). According to relevant design 
standard, 

“the shrinkage limit can be used to evaluate the shrinkage potential, 
crack development potential, and swell potential of earthwork 
involving cohesive soils” (ASTM D4943-18, 2018). 

Soils that show significant changes in their volume 
when in contact with moisture are regarded as expansive 
soils (A. Sridharan1 and K. Prakash 2000; Das and 
Sobhan 2012; Gopal and Rao 2011; K. C. Onyelowe et 
al. 2020). They gain volume (swell) when hydrated and 
loose volume (shrinks) when dried (V. N. S. Murthy 2006 
& 2007). Generally, their plasticity indices range high 
and their bearing capacities differ from when wetted with 
when dried (V. N. S. Murthy 2006 & 2007; K. Prakash 
et al. 2013). Expansive soils are regarded as problematic 
soils as they affect the stability of structures found on 
them (V. N. S. Murthy 2006 & 2007; A. Sridharan1 and 
K. Prakash 2000). Expansive subgrade tends to swell and
shrink owing to the moisture variation resulting in the
deformation of the structure built over it (A. Sridharan1
and K. Prakash 2000). Expansive soils are residually
derived from the gneiss, basalt, basic volcanic ash,
calcareous aluminum and sedimentary rocks containing
calcareous shales, lime stones, slates and sand stone (Das
and Sobhan 2012; Gopal and Rao 2011). Black cotton soils
form due to the subaerial weathering of the basalts in-
situ and subsequent admixture of the weathered products
with iron and organic matter (K. Prakash et al. 2013; Das
and Sobhan 2012; Gopal and Rao 2011). The expansive
soils are characterized by the presence of expanding
lattice type of clay minerals belonging to smectite group,
montmorillonite being an important member of that group.
These clay minerals are characterized by very weak Van

Der Waals’ forces in between the adjacent unit cells of 
the mineral, appreciable isomorphous substitution during 
the clay mineral formation, leading to very high negative 
surface charges, very high cation exchange capacity (i.e., 
80-150 meq/100g) and large specific surface (i.e., 400-
900m2/g) (K. Prakash et al. 2013; Das and Sobhan 2012;
Gopal and Rao 2011). It has been well established that
these minerals respond quite differently to any external
physico-chemical environment when compared with the
response of non-expanding lattice type of clay minerals
like kaolinite, which may also be present in any natural
soil (Das and Sobhan 2012). To achieve sustainable
earthworks, expansive soils are preconditioned to
withstand these volume changes that destroy design targets
and performance expectations (Haas and Ritter, 2019; J.
F. Rivera et al. 2020; Hervé et al. 2009). There have been
different methods and field practices previously adopted in
this effort, which yielded good results (Amadi and Okeiyi
2017; Bui Van and Onyelowe 2018; Sachin N. Bhavsar and
Ankit J. Patel 2014; Onyelowe et al. 2019; 2020a & 2020b;
Haas and Ritter 2019; J. F. Rivera et al. 2020). However,
this work has adopted a novel approach of activating the
previously used material admixture, which is ash through
the action of quicklime (CaO). This activation process
was achieved by the calcination of the strength-based
compounds found in rice husk ash, which are alumina
(Al2O3), silica (SiO2) and Fe2O3. These compounds are the
aluminosilicates responsible for pozzolanic behavior of rice
husk ash. Through the calcination of the aluminosilicates
dominant in RHA, calcium aluminate and calcium silicate
are formed, hence the quicklime activated rice husk ash
(QARHA). This composite cementing material achieved
through caustic activation mechanism has not being in use
in the field of expansive soil modification and stabilization.

MATERIALS AND METHODS

MATERIALS

The clayey soil used as a representative soil for this 
experimental work was collected from a depth of 1 meter 
from a borrow pit located at Ndoro Oboro, Abia State. 

FIGURE 1. Visual illustration of volume changes in expansive soils (CEER, 2013)
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The representative soil was prepared in accordance 
with British Standard International BS1377 (1990) and 
stored for the laboratory work at room temperature. And 
the treated soil was prepared in accordance with British 
Standard International BS1924 (1990). Quicklime is a 
whitish water-soluble caustic material with a melting 
point of 2613°C, boiling point of 2850°C, density of 
3.34g/cm3 and pH of 12.4. It has a cubic halite structure 
and crystalline solid at room temperature. It is obtained 
from the burning of limestone, so it is referred to as burnt 
lime. It dissociates into the ions of calcium and oxygen as 
presented in Eq. 1 (ASTM C618, 1978). For this reason, 
it has abundant supply of calcium for calcination and 
pozzolanic reaction with clayey soil dipole minerals. 
In aqueous solution, it becomes hydrated lime and this 
is reason that its pH is hardly determinate. It possesses 
binding properties that meet the requirements of 
appropriate standard (ASTM C618, 1978; BS 8615-1, 
2019). This crystalline solid was obtained in the market 
and stored securely for use.

CaO     →     Ca2+ + O2- (1)

The RHA was derived from the direct combustion of rice 
husk collected from rice mills in Abakaliki, Nigeria. The 
ash according to studies satisfies the requirements of a 
pozzolanic material in accordance with British Standard 
International BS 8615-1 (2019) and American Standard 
for Testing and Materials ASTM C618 (1978) due to the 
presence of Al2O3, SiO2 and Fe2O3 in its chemical oxides’ 
composition. The release of silica and alumina from the 
activated rice husk ash triggers pozzolanic reaction in the 
clayey soil adsorbed complex interface through hydration 
and calcination. 

METHODS

Basic laboratory experiments were conducted as follows; 
particle size analysis of soil and rice husk ash, Atterberg 
limits test, compaction test, specific gravity of soil and 
California bearing ratio to ensure proper characterization 
of the representative soil and the rice husk ash. These 
basic tests were conducted under laboratory conditions in 
accordance with the British Standard International BS1377 
(1990). The rice husk ash was activated using quicklime in 
accordance with the requirements of Davidovits (2013). The 
activated rice husk ash activated with caustic binders of 5%, 
10% and 15% CaO by weight of RHA, was utilized in the 
proportions of 0% (the reference test), 2%, 4%, 6%, 8%, and 
10% by weight of dry soil to modify the clayey soil in the 
stabilization process. Atterberg limits (liquid limit (WL) and 
plastic limit (WP)) behavior of the activated RHA modified 
clayey soil were observed by experimentation using the 
Casagrande apparatus in accordance with design standard 
(ASTM D4318-17e1, 2017; ASTM D4829-19, 2019). 
From the observed test results, the plasticity index (IP) was 
computed from Eq. 2 [30, 31, 32].
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(2)

According to design standard, 

“the shrinkage limit, along with the liquid limit and plastic limit 
of soil, are often collectively referred to as the Atterberg limits 
in recognition of their formation by Swedish soil scientist, A. 
Atterberg. These limits distinguish the boundaries of the several 
consistency states of cohesive soils” (ASTM D4943-18, 2018). 

The shrinkage limits of the soil were determined by 
working on the soils passing sieve of 425 µm at about the 
water content of the liquid limits with the shrinkage dishes. 
It was also ensured that segregation and liquefaction of 
the samples did not occur during the material preparation. 
After the compaction of the soils (reference and treated), 
the measurements were taken according and the shrinkage 
limits and shrinkage indexes were computed with the 
observed values with Equations 3 and 4 (Chen 1988)
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poorly graded with high clay content (CH) according 

to USC system. further, the plasticity index of the soil 

of 45% shows that the soil is highly plastic and 

breaks upon the application of load. The 

representative clayey soil also has a swelling 

potential, which is a function of plasticity of 23.35% 

and this means that the soil is highly expansive 

(Chen, 1988; Skempton, 1958). The MDD of the soil 

was observed to be 1.25g/cm3 obtained at an OMC of 

16%. This shows that soil is very porous agreeing 

with its swelling potential and expansive condition. 

These properties have characterized the soil as a 

problematic and high expansive soil very unsuitable 

for earth works.  
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RESULTS AND DISCUSSIONS

MATERIALS CHARACTERIZATION

The basic characteristic features of the representative clayey 
soil are presented in Tables 1, 2 and Figure 2. From the 
basic test results, it can be deduced that the soil has 45% 
of its particles passing sieve size 0.075mm, liquid limit 
of 66% and with a natural moisture content of 14%. The 
above properties show that the soil is an A-7-6 soil group 
according to AASHTO classification (Gopal and Rao 2011) 
and poorly graded with high clay content (CH) according 
to USC system. further, the plasticity index of the soil of 
45% shows that the soil is highly plastic and breaks upon 
the application of load. The representative clayey soil also 
has a swelling potential, which is a function of plasticity 
of 23.35% and this means that the soil is highly expansive 
(Chen, 1988; Skempton, 1958). The MDD of the soil was 
observed to be 1.25g/cm3 obtained at an OMC of 16%. This 
shows that soil is very porous agreeing with its swelling 
potential and expansive condition. These properties have 
characterized the soil as a problematic and high expansive 
soil very unsuitable for earth works. 
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Table 2 presents the chemical oxides composition of the 
representative soil and the rice husk ash. The results show 
that the soil has Na2O with the high oxide composition by 
weight of the soil. This oxide contributes to the expansive 
condition of the soil. The ferrite composition is rich in the 
red color of the clayey soil and contributes to the pozzolanic 
reaction during stabilization works (ASTM C618, 1978; 
BS 8615-1, 2019). This property supports the high swelling 
potential of the clayey soil. Conversely, the rice husk ash 

has high of the aluminosilicates, which fulfills the minimum 
requirements of a pozzolana in accordance with appropriate 
design standards (ASTM C618, 1978; BS 8615-1, 2019).

MODIFIED EXPANSIVE SOILS SHRINKAGE                              
PARAMETERS BEHAVIOR 

The results of the effect of rice husk ash (RHA), 5% 
quicklime activated rice husk ash (5%-QARHA), 10% 

TABLE 1. Characterization properties of clayey soil

property description of clayey soil and units value
% passing sieve, 0.002mm (C) 23
% passing sieve, 0.075mm 45
Natural moisture content, WN (%) 26
Liquid limit, WL (%) 85
Plastic limit, WP (%) 47
Shrinkage limit, LS (%) 12.2
Plasticity index, IP (%) = WL - WP

Liquidity index, 
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FIGURE 2. Particle size distribution curve of the clayey soil and rice husk ash
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quicklime activated rice husk ash (10%-QARHA) and 
15% quicklime activated rice husk ash (15%-QARHA) 
have been presented in tables and figures below. Tables 3, 
4, 5, and 6 present the effect of these different admixtures 
or composites of rice husk on the shrinkage limit and 
shrinkage index. In Table 3, the RHA addition improved 
the shrinkage properties; shrinkage limit at varying rates 
ranging from 5.7%, 12.3%, 18.9%, 23%, and 27.9% for 
2%, 4%, 6%, 8% and 10% RHA addition respectively with 
reference to the control experiment. And for the shrinkage 
index, the improvement rate was also substantial i.e. 
7.8% to 55.7% at 2% and 10% RHA addition respectively 
with reference to the control experiment. In Table 4, the 
effect of rice husk ash activated with 5% quicklime lime 
(5%-QARHA) was presented with an improvement rate 
of 6.6% and 34.4% at 2% and 10% 5%-QARHA addition 
respectively with reference to the control experiment. These 
data present a huge gap between the improvement rate of 
RHA addition. In Tables 5 and 6, the effect of rice husk 
ash activated by 10% and 15% quicklime (10%-QARHA 
and 15%-QARHA) on the shrinkage properties was 
presented with the rates of improvement which shows 
that the higher the rate of activation of rice husk ash with 

quicklime, the higher the pozzolanic performance. Figures 
3 and 4 present the graphical behavior of this treatment 
and modification exercise conducted on expansive soil for 
use as a pavement foundation material. The horizontal and 
vertical improvement i.e. increased addition of composite 
rice husk ash and its activated form and the increased 
activation rate of quicklime, recorded on the shrinkage limit 
and indexes was due to the prolonged pozzolanic reaction 
characteristic of quicklime (Ennio Polidori 2009). The 
cation exchange reactions that took place, under hydration 
reaction resulting from adsorbed moisture from the molding 
moisture (R. E. Grim 1953; Rose et al. 1997), which led 
to the formation of the hydrates of calcium aluminate and 
silicate was responsible for the recorded improvement in 
the shrinkage properties (G. P. Robertson et al. 1999; Lewis, 
1988; Puppala, 2016; Miguel 2003; McBride 1997). Also, 
the use of activated ash formed nucleating surfaces from the 
strengthening of the weak Van dar Waals’ forces due to the 
disposition of the clay minerals in the expansive soil (A. 
Goraczko and A. Olchawa 2017). These effects resulted 
to the formation of flocs and clogs and eventual increase 
in the interparticle forces and strength gain which showed 
improvements in the experimented properties. 

TABLE 2. Oxides composition of the additive materials

Materials
oxides composition (content by weight, %)

SiO2 Al2O3 CaO Fe2O3 MgO K2O Na2O TiO2 LOI P2O5 SO3 IR free CaO
clay soil 12.45 18.09 2.30 10.66 4.89 12.10 34.33 0.07 - 5.11 - - -
rice husk ash 56.48 22.72 5.56 3.77 4.65 2.76 0.01 3.17 0.88 - - - -

*IR is insoluble residue, LOI is loss on ignition, 

TABLE 3. Plasticity, shrinkage parameters of compacted clayey soil modified with rice husk ash (RHA)

shrinkage properties (%)
rice husk ash (RHA) (%)

0 2 4 6 8 10
WL 85 83 79 74 68 61
WP 47 45 43 40 36 31
IP 38 37 36 34 32 30
LS 12.2 12.9 13.7 14.5 15.0 15.6
IS 34.8 32.1 29.3 25.5 21.0 15.4

TABLE 4. Plasticity, shrinkage parameters of compacted clayey soil modified with 5% quicklime (CaO) activated                               
rice husk ash (5%-QARHA)

shrinkage properties (%)
5% quicklime (CaO) activated rice husk ash (5%-QARHA) (%)

0 2 4 6 8 10
WL 85 75 62 54 46 35
WP 47 42 38 32 24 19
IP 38 33 24 22 22 16
LS 12.2 13.0 13.9 14.8 15.7 16.4
IS 34.8 29 24.1 17.2 8.3 2.6



TABLE 5. Plasticity, shrinkage parameters of compacted clayey soil modified with 10% quicklime (CaO) activated                              
rice husk ash (10%-QARHA)

shrinkage properties (%)
10% quicklime (CaO) activated rice husk ash (10%-QARHA) (%)

0 2 4 6 8 10
WL 85 73 61 52 43 33
WP 47 41 39 33 25 17
IP 38 32 22 19 18 16
LS 12.2 13.1 14.1 14.8 15.8 16.5
IS 34.8 27.9 24.9 18.2 9.2 0.5

TABLE 6. Plasticity, shrinkage index and swelling potential of compacted clayey soil modified with 15% quicklime (CaO)         
activated rice husk ash (15%-QARHA)

shrinkage properties (%)
15% quicklime (CaO) activated rice husk ash (15%-QARHA) (%)

0 2 4 6 8 10
WL 85 71 60 50 41 32
WP 47 40 39 31 24 17
IP 38 31 21 19 17 15
LS 12.2 13.2 14.3 14.9 15.9 16.8
IS 34.8 26.8 24.7 16.1 8.1 0.2

FIGURE 3. Influence of additives on shrinkage limit of treated soil. 

FIGURE 4. Influence of additives on shrinkage index of treated soil
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CONCLUSIONS

The effect of rice husk and rice husk ash activated with 
different rates of quicklime on the shrinkage properties; 
shrinkage limit and shrinkage index has been investigated 
in the laboratory and the following remarks are presented; 
rice husk ash as usual has shown to be a good supplementary 
cement source for the stabilization of expansive soils, the 
activated rice husk ash also showed the synergy between 
quicklime and ash towards achieving a sustainable 
alternative cementing material for soil stabilization purposes 
and lastly, the increased rate of activation showed substantial 
rate of improvement on the shrinkage properties of the 
representative expansive soil. Generally, it can be concluded 
that expansive soils can be stabilized with different rates 
of rice husk ash in plane form and also when activated 
with quicklime to improve its volume change properties 
and for the purpose of this study, substantially increasing 
improvement in the shrinkage characteristics were achieved 
with an optimal value of 10% addition.
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