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ABSTRACT
Due to the wide application of evolutionary science in different
engineering problems, the main aim of this paper is to present
two novel optimizations of multi-layer perceptron (MLP) neural
network, namely dragonfly algorithm (DA) and biogeography-
based optimization (BBO) for landslide susceptibility assessment
at a study area, West of Iran. Utilizing 14 landslide conditioning
factors, namely elevation, slope aspect, plan curvature, profile
curvature, soil type, lithology, distance to the river, distance to
the road, distance to the fault, land cover, slope degree, stream
power index (SPI), and topographic wetness index (TWI) and rain-
fall as the input variables, and 208 historical landslides as target
variable, the required spatial database is created. Then, the MLP is
synthesized with the mentioned algorithms to develop the pro-
posed DA-MLP and BBO-MLP ensembles. Three accuracy criteria
of mean square error, mean absolute error, and area under the
receiving operating characteristic curve are used to evaluate the
performance of the models and also to develop a score-based
ranking system. As the first outcome, the application of the DA
and BBO metaheuristic algorithms enhances the accuracy of the
MLP. Moreover, referring to the calculated total ranking scores of
6, 14, and 16, it was revealed that the BBO performs more effi-
ciently than DA in optimizing the MLP.
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Introduction

As a frequent and ubiquitous natural hazard, landslides are described as downward
mass movements (triggered by gravity), and as a consequent of anthropogenic and
natural activities (Varnes and Radbruch-Hall 1976; Cruden 1991; Aksoy et al. 2016;
Aksoy and Gor 2017; Bui et al. 2019; Moayedi, Bui, et al. 2019). Due to undesirable
impacts of this environmental threat on urbanization and environmental develop-
ments, studying the landslides has received a growing attraction from the side of
international scientific community (Aleotti and Chowdhury 1999; Tsangaratos and
Ilia 2016). Globally, the vast majority (more than 90%) of the landslides have
occurred in developing countries, and they are responsible for around 17% of the
reported fatalities (Pourghasemi et al. 2012). In Iran, the landslides have caused more
than 185 loss of lives. Considering the distribution of the historical landslide events,
the western part of Iran is known as a landslide-prone region. Seimareh landslide
(occurred in Lorestan Province), for example, it was the largest debris flow observed
worldwide (Shoaei and Ghayoumian 1998). Therefore, analysing the landslide suscep-
tibility is a crucial prerequisite in facing this phenomenon (Hong et al. 2019).

Due to the involvement of various geo-environmental causative factors, investigating
the landslide susceptibility entails establishing complex and non-linear relationships. So
far, many studies have conducted proper landslide susceptibility mapping using statistical
techniques (Youssef et al. 2015; Chen et al. 2016; Razavizadeh et al. 2017). Also, multi-
criteria decision models have shown good capability in this field (Kumar and Anbalagan
2016; Myronidis et al. 2016). In a comparative study, Nicu (2018) employed analytic
hierarchy process (AHP), statistical index (SI), and frequency ratio (FR) for landslide sus-
ceptibility mapping in Romania. It was found that all three models achieve the prediction
rate higher than 50%. However, the AHP (with around 80% accuracy in both training
and testing phases) outperforms two other used approaches.

According to Pradhan (2013), utilizing machine learning tools are one of the most
effective strategies suggested for analysing the relationship between the landslide and con-
ditioning factors. These models have also shown high robustness for other environmental
modelling like flood (Mojaddadi et al. 2017; Termeh et al. 2018) and groundwater con-
tamination (Rizeei et al. 2018). In this sense, Pourghasemi, Jirandeh, et al. (2013) showed
the efficiency of support vector machine by testing different kernel classifiers for landslide
susceptibility assessment in Golestan Province of Iran. Similarly, Oh and Pradhan (2011)
showed the efficiency of adaptive neuro-fuzzy inference system (ANFIS) for regional
landslide susceptibility mapping in a prone district of Penang Island, Malaysia.
Moreover, many studies have successfully used artificial neural network (ANN) for dis-
cerning the spatial relationship between landslide and its conditioning factors (Lee et al.
2004; Kawabata and Bandibas 2009; Can et al. 2019; Tian et al. 2019). Yilmaz (2009)
showed the superiority of the ANN when is compared with FR and logistic regression
(LR) models. Accordingly, area under the curve (AUC) of the used models was 0.852,
0.826, and 0.842, respectively for the ANN, FR, and LR.

Looking for more powerful evaluative tools, many scholars have suggested the use
of hybrid metaheuristic algorithms (Jaafari et al. 2019; Nguyen, Mehrabi, et al. 2019).
More clearly, utilizing typical intelligent models is associated with some computa-
tional drawbacks like local minimum (Moayedi et al. 2018). Optimization algorithms
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enhance the accuracy of these tools by overcoming the mentioned problems (Chen
et al. 2017; Gao, Dimitrov, et al. 2018; Gao, Wang, et al. 2018; Gao et al. 2019;
Moayedi, Mehrabi, et al. 2019). Bui et al. (2017) used artificial bee colony optimiza-
tion technique for determining proper set of hyper-parameters of least squares sup-
port vector machines (LSSVM) in spatial analysis of rainfall-triggered landslides at
Lao Cai area, Vietnam. With 90% accuracy, the susceptibility map produced by the
proposed model was more accurate than which produced by the typical SVM predic-
tion. Likewise, Tien Bui et al. (2018) used imperialist competitive algorithm (ICA) for
optimizing relevance vector machine (RVM) to produce the landslide susceptibility
map of Lang Son city of Vietnam. Their findings indicated that the suggested RVM-
ICA (AUC¼ 0.92) performs more efficiently than two benchmarks, namely the SVM
(AUC¼ 0.91) and LR (AUC¼ 0.87).

The focal point of this paper is to present two novel optimizations of the ANN,
namely dragonfly algorithm (DA) and biogeography-based optimization (BBO) for
landslide susceptibility mapping at a landslide-prone area, West of Iran. Although
various optimization techniques have been applied to intelligent models, the authors
did not come across any precedent study focused on combining the DA and BBO
with ANN for the mentioned purpose. This is worth noting that the main contribu-
tion of these algorithms to the spatial analysis of the landslide susceptibility is finding
the most appropriate computational parameters of the ANN which are assigned to
the conditioning factors.

Study area

The study area is located between the longitude 46� 000 to 47� 200E, and the latitude
34� 450 to 35� 480N, West of Iran (Figure 1). It covers an area of nearly 7811 km2.
The study area is known as a mountainous area with around 500mm of average
annual precipitation. Two major climates in this region are humid weather and the
Mediterranean warm, which results in heavy rainfalls and snowfalls (Shirzadi, Bui,
et al. 2017). Our proposed area comprises three cities of ‘Marivan’, ‘Sanandaj’, and
‘Kamyaran’. The altitude ranges approximately from 750 to 3100, and the maximum
terrain slope is about 60%. The land is mostly covered by good ranges, and the econ-
omy of the inhabitants is significantly influenced dependent on dry farming and irri-
gated agriculture (Rahmati et al. 2015). According to the lithology map, 40 different
lithology units are found there, where ‘Dark grey argillaceous shale’ is the most com-
mon one, covering around 18% of the area. Moreover, five soil groups can be found,
namely ‘Inceptisols’, ‘Rock Outcrops/Entisols’, ‘Rock Outcrops/Inceptisols’, ‘Water
Body’, and ‘Entisols/Inceptisols’, where the majority of the area (around 80%) is cov-
ered by the second soil group.

Data preparation and spatial interaction between the landslide and
conditioning factors

When it comes to artificial intelligence techniques, the used dataset consists of two
types of parameters, including a target variable, influenced by one or more
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independent variable(s). In this research, the landslide inventory map plays the role
of the target variable, and the input variables were 14 landslide conditioning factors,
including elevation, slope aspect, plan curvature, profile curvature, soil type, lithology,
distance to the river, distance to the road, distance to the fault, land cover, slope
degree, stream power index (SPI), and topographic wetness index (TWI) and rainfall.

Figure 1. Location of the study area and spatial distribution of the landslides.
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These layers were created and processed in geographic information system (GIS) with
a pixel size of 10� 10m (Pradhan et al. 2010; Shirzadi, Shahabi, et al. 2017;
Vakhshoori and Pourghasemi 2018). A total of 208 historical landslide events were
identified by using previous records (Shirzadi, Bui, et al. 2017; Mezaal et al. 2018;
Mojaddadi Rizeei et al. 2019; Rizeei and Pradhan 2019) as well as interpreting the
aerial photos (in 1:25,000 scale), supported by field monitoring. It is worth noting
that, typologically, the marked landslides were mostly rotational slides. Therefore,
based on the landslide classification of Varnes (1978), other types of slope failures
suchlike translational slides, flow, and lateral spreading were eliminated (Nguyen,
Bui, et al. 2019). The same number of non-landslide points were then randomly
created over the areas devoid of the landslide. Also, in order to explore the spatial
relationship between the landslide and its conditioning factors, the FR theory is
used. In this method, the correlation between each sub-group and landslide is dir-
ectly proportional to the magnitude of the calculated FR (Oh et al., 2011). Let
Nlandslide and Ndomain stand for the percentage of the landslides marked in the pro-
posed sub-group and the percentage of the terrain covered by it, respectively; then
the FR is calculated as follows:

FR ¼ Nlandslide

Ndomain
(1)

Figure 2 portrays the map of each conditioning factors along with the obtained
FRs. Moreover, Table 1 presents the description of the lithological units (Figure 3), as
well as the calculated FRs. As these charts and the table denote, the categories of
(1000–1500) m for elevation, North (0–22.5�) for slope aspect, ‘Concave’ for plan
curvature (0.001–1.1576eþ 10) for profile curvature, ‘Inceptisols’ for soil type
(100–200) m for distance to the river (200–300) m for distance to the road (300–400)
for distance to the fault, ‘Agriculture’ for land cover (10–15) degrees for slope
(85e5–23e6) for SPI (�9.38 to �7.40) for TWI (500–600) mm for rainfall, and ‘Jugr’
for lithology are the most correlated sub-groups, due to the largest FRs obtained
for them.

Methodology

Acceding to Figure 4, the overall methodology of this research can be presented in
three major steps. Firstly, the spatial database consisting of landslide inventory map
as well as 14 landslide conditioning layers is provided, then the identified landslide
points are randomly divided into the training (i.e. 70% or 146 landslides) and testing
(the remaining 30% or 62 landslides) parts. Note that, the first group is devoted to
develop and train the intelligent models, and the second group is used as unseen
landslides to evaluate the accuracy of the implemented models. After that, the MLP
(multi-layer perceptron) is coupled with the DA and BBO evolutionary algorithms to
develop the DA-MLP and BBO-MLP neural ensembles. Lastly, after generating the
landslide susceptibility maps, the performance of the models is evaluated by three
accuracy criteria, namely mean square error (MSE), mean absolute error (MAE), and
area under the receiving operating characteristic curve (AUROC). Equations (2) and
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Figure 2. The calculated FR for: (a and b) elevation, (c and d) slope aspect, (e and f) plan curva-
ture, (g and h) profile curvature, (i and j) soil type, (k and l) distance to river, (m and n) distance
to road, (o and p) distance to fault, (q and r) land cover, (s and t) slope degree, (u and v) SPI, (w
and x) TWI, and (y and z) rainfall.
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Figure 2. Continued.

GEOMATICS, NATURAL HAZARDS AND RISK 2435



Figure 2. Continued.
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(3) express the formula of the MSE and MAE:

MSE ¼ 1
N

XN
i¼1

Yiobserved�Yipredicted
� �2 (2)

MAE ¼ 1
N

XN
i¼1

Yiobserved � Yipredicted
� �

(3)

in which N shows the number of involved samples, and Yiobserved and Yipredicted are the
desired and predicted values of landslide susceptibility, respectively.

Here, the used intelligent models are described:

Artificial neural network

Mimicking the connecting behaviour of the biological neural networks, the idea of
ANN was first presented by McCulloch and Pitts (1943). The ability of non-linear
analysis has made the ANNs capable tools for input-output mapping of a set of data
samples (ASCE Task Committee 2000). Different types of ANNs have been promis-
ingly used for simulating various engineering problems (Moayedi and Rezaei 2017;
Moayedi and Hayati 2018a, 2018b; Azeez et al. 2019). MLP is one of the most regu-
larly used types of ANNs which is composed of at least three layers which contain
the main processor units (see Figure 5). It has been stated that one hidden layer is
sufficient for neural modelling of any problem (Cybenko 1989; Hornik et al. 1989).

During the ANN implementation, let I¼fai, bi, ci … ; i¼ 1, 2, … Kg and
O¼fai, bi, ci … ; i¼ 1, 2, … Kg be the input and output vectors, respectively.
Then, the response of the jth node is calculated as follows:

Oj ¼ F
XM
m¼1

Im Wmjð Þ þ bj

 !
(4)

in which W and b stand for the weight and bias. Also, F symbolizes the activation
function that is set to be hyperbolic tangent sigmoid (Tansig) in this study:

Figure 2. Continued.
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Table 1. The description of the lithology units.
Symbol Description Age Age era FR

Qft1 High-level piedmont fan and valley
terrace deposits

Quaternary CENOZOIC 0.32

OMql Massive to thick-bedded reefal limestone Oligocene-Miocene CENOZOIC 5.94
pCmt1 Medium-grade, regional metamorphic rocks

(amphibolite facies)
Pre-Cambrian PROTEROZOIC 0.00

Kav Andesitic volcanic Late Cretaceous MESOZOIC 0.00
Kfsh Dark grey argillaceous shale Cretaceous MESOZOIC 0.11
K1m Limestone, argillaceous limestone; tile red

sandstone and gypsiferous marl
Early Cretaceous MESOZOIC 0.00

Plms Marl, shale, sandstone and conglomerate Pliocene CENOZOIC 0.00
Klsm Marl, shale, sandy limestone and sandy dolomite Early Cretaceous MESOZOIC 2.20
Qft2 Low-level piedmont fan and valley

terrace deposits
Quaternary CENOZOIC 0.45

E2l Nummulitic limestone Eocene CENOZOIC 0.00
Klsol Grey thick-bedded to massive

orbitolina limestone
Early Cretaceous MESOZOIC 0.95

K2av Andesitic volcanic Late Cretaceous MESOZOIC 0.00
Murm Light-red to brown marl and gypsiferous marl

with sandstone intercalations
Miocene CENOZOIC 5.74

Pd Red sandstone and shale with subordinate
sandy limestone (DORUD FM)

Permian PALEOZOIC 0.84

Qal Stream channel, braided channel and flood
plain deposits

Quaternary CENOZOIC 0.00

PAgr Granite Paleocene-Eocene CENOZOIC 0.00
TRKurl Purple and red thin-bedded radiolarian chert

with intercalations of neritic and pelagic
limestone (Kerman and Neyzar Radiolarites)

Triassic-Cretaceous MESOZOIC 0.00

Kussh Dark grey shale (Sanandaj shale) (Schist
and phyllite)

Late Cretaceous MESOZOIC 1.24

Olc,s Conglomerate and sandstone Oligocene CENOZOIC 6.83
Ebv Basaltic volcanic rocks Middle Eocene CENOZOIC 3.75
Odi-gb Diorite to gabbro Oligocene CENOZOIC 0.00
PeEf Flysch turbidite, sandstone and

calcareous mudstone
Paleocene-Eocene CENOZOIC 1.83

Qcf Clay flat Quaternary CENOZOIC 0.22
Kupl Globotrunca limestone Late Cretaceous MESOZOIC 0.73
K2l1 Hyporite-bearing limestone (Senonian) Late Cretaceous MESOZOIC 0.00
KPef Thinly bedded sandstone and shale with

siltstone, mudstone limestone and
conglomerate

Late Cretaceous-
Paleocene

MESOZOIC-
CENOZOIC

0.98

TRKubl Kuhe Bistoon limestone Triassic-Cretaceous MESOZOIC 0.85
Oat Andesitic tuff Oligocene CENOZOIC 0.89
Pel Medium to thick-bedded limestone Paleocene-Eocene CENOZOIC 2.30
TRJvm Meta-volcanics, phyllites, slate and

meta-limestone
Triassic-Jurassic MESOZOIC 0.00

JKl Crystalized limestone and calc-schist Jurassic-Cretaceous MESOZOIC 0.00
Kbv Basaltic volcanic Early Cretaceous MESOZOIC 0.00
Jugr Upper Jurassic granite including Shir Kuh

Granite and Shah Kuh Granite
Late Jurassic MESOZOIC 10.90

Ogb Gabbro Oligocene CENOZOIC 0.34
OMrb Red Beds composed of red conglomerate,

sandstone, marl, gypsiferous marl
and gypsum

Oligocene-Miocene CENOZOIC 0.71

pd2 Peridotite including harzburgite, dunite,
lherzolite and websterite

Triassic-Cretaceous MESOZOIC 1.02

E1f Silty shale, sandstone, marl, sandy limestone,
limestone and conglomerate

Early Eocene CENOZOIC 0.88

db Diabase Late Cretaceous MESOZOIC 0.00
sr Serpentinite Triassic-Cretaceous MESOZOIC 0.00
E1l Nummulitic limestone Eocene CENOZOIC 0.00
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TansigðxÞ ¼ 2
1þ e�2x

�1 (5)

Dragonfly algorithm

The DA has been proposed as a proper algorithm for optimization tasks (such as adjust-
ing the ANN synaptic weights). Mirjalili (2016) proposed this algorithm for the first time.
It is an algorithm that inspired using the static and dynamic conducts of dragonflies. In
the life cycle of dragonflies, there are two different stages including (i) the nymph stage
which forms most of their cycle of life and (ii) transformation to the adult stage.

The stationary behaviour of dragonflies is the same as the utilization stage in
meta-heuristics (Russell et al. 1998). From a different aspect, the dynamic conduct is
same to the exploration stage that is where they enter to groups and fly aboard of
various zones to discover food resources (Wikelski et al. 2006). The DA is derived by
the Reynolds Swarm Intelligence. It draws on around five distinct principles, which
are fundamental in discovering the solution of weights.

1. The separation origin has been known as the collision digression of a dragonfly
of other dragonflies, which are near its zone (Figure 6(a)).

2. The alignment origin shows velocity conforming of a dragonfly for other differ-
ent dragonflies, which are near to zone (Figure 6(b)).

3. The cohesion origin is considered as the trend of a dragonfly to the space centre
and includes other dragonflies near to its location (Figure 6(c)).

4. Whereas the basic aim of dragonfly swarms is to survive, attraction to food ori-
gin (Figure 6(d)) shows that dragonflies have to move near food sources.

5. The distraction from enemies’ origins (Figure 6(e)) occurs when dragonflies run
far away from the enemy sources for surviving (Mirjalili 2016).

By Equation (6), we can calculate the separation value. X shows the current
dragonfly position, Xj stands for the of the jth dragonfly position near X, n indicates
the dragonflies number. The alignment amount can be computed by Equation (7).
The term Vj shows the velocity of jth dragonfly near the current one. The cohesion
amount can be computed by Equation (8). The attraction to food from dragonflies
can be computed by Equation (9). Xf stands for the food source position. The confu-
sion of enemy amount can be predicted by Equation (10). Xe shows the enemy pos-
ition. To update the dragonflies position for examining different weight solution as
well as possess another fitness amount, DX and X have been computed by Equations
(11) and (12) (Mirjalili 2016):

Si ¼ �
Xn
j¼0

X � Xj (6)

Ai ¼ �
Pn

j¼0 Vj

n
(7)
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Ci ¼ �
Pn

j¼0 Xj

n
� X (8)

Fi ¼ Xf � X (9)

Ei ¼ Xe � X (10)

Figure 3. The lithology of the study area.
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DXi:j ¼ sSj þ aAj þ cCj þ fFj þ eEj
� �þ w DXi�1:j�1 (11)

Xi:j ¼ Xi�1:j�1 þ DXi:j (12)

in which, a, s, e, f, c, e, and w are the weights of their related element.

Biogeography-based optimization

BBO is a population-based search method which was developed according to the bio-
geography theory (Simon 2008). Mirjalili et al. (2014) coupled this algorithm with a
MLP neural network for the first time. The flowchart of the BBO is presented in
Figure 7. Similar to other evolutionary techniques, at the first step of the BBO, a ran-
dom population is produced named ‘habitat’. Two parameters of habitat suitability
index (HSI) and suitability index variable (SIV) are defined to evaluate the goodness
of these individuals (i.e. possible solutions) and the habitability of the habitats and
areas. The BBO originally includes two operations, namely migration and mutation
that are briefly explained in the following (Hadidi 2015).

Firstly, the possible solutions are modified in order to enhance their goodness. In
this phase, to decide whether the modification of the SIVs is necessary or not, an
immigration rate (kg) is defined (Bhattacharya and Chattopadhyay 2010). In the cases

Figure 4. Applied procedure for landslide susceptibility assessment of this study.
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where the modification is required, an emigration rate (lg) is defined. It is used to
probabilistically determine the solution that will migrate. This is worth noting that
the algorithm keeps away the highly fitted solutions to prevent probabilistic corrup-
tion (Roy et al. 2010).

As is known there are various natural hazards which threaten a geographical area.
Hence, it is likely to observe some abrupt changes in HIS values. Consequently, dur-
ing the mutation process, the habitat might deviate from its equilibrium HIS. In this
stage, a probability factor is calculated for each relation of the population decide
whether it needs to mutate or not. Moreover, this factor determines the solution to
the existing problem. In this sense, the more value of probability, the more closeness
to the overall solution (Hadidi 2015). Let S be the number of species, then, the rate
of mutation is expressed as follows:

Figure 5. The general structure of the ANN.

Figure 6. Different stages of the DA (after Yasen et al. 2018).
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Pf
g ¼

�ðkg þ lgÞPg þ lgþ1Pgþ1 S ¼ 0,

�ðkg þ lgÞPg þ kg�1Pg�1 þ lgþ1Pgþ1 1 � S � Smax�1,

�ðkg þ lgÞPg þ kg�1Pg�1 S ¼ Smax:

8>><
>>: (13)

Results and discussion

Model implementation

As mentioned previously, this paper outlines two metaheuristic optimization of the
neural intelligence for the problem of landslide susceptibility. To do this, the DA and

Figure 7. The flowchart of the BBO algorithm.
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BBO techniques are synthesized with a MLP neural network to enhance its prediction
capability. More specifically, the solutions that are suggested by these algorithms con-
tain the optimized values of the weights and biases of the MLP. Therefore, it needs to
be mathematically introduced to the algorithms. This process was carried out by the
assist of the programming language of MATLAB 2014. The proposed DA-MLP and
BBO-MLP networks were implemented with population size of 250 and 1000 repeti-
tions. Also, the MSE was defined as the objective function (OF) to measures the per-
formance error at the end of each iteration. The convergence curves of the
implemented models are presented in Figure 8. As can be seen, there are some sig-
nificant distinctions between the optimization behaviours of the DA and BBO algo-
rithms. Although the maximum value of the OF is between 0.23 and 0.25 for both of
them, the BBO continues decreasing error until the last repetition. This is while in
DA, the majority of the error reduction has occurred between 220 and 424th repeti-
tions. Also, at the end of the process, the training error of the DA-MLP and BBO-
MLP reaches to 0.1923 and 0.1378, respectively.

Landslide susceptibility mapping

After developing the DA-MLP and BBO-MLP predictive ensembles, the calculated land-
slide susceptibility values were transformed into the GIS environment to produce the sus-
ceptibility maps of each model. Next, based on these values, the study area was divided
into five susceptibility classes, namely ‘Very low’, ‘Low’, ‘Moderate’, ‘High’, and ‘Very
high’ (Xi et al. 2019). It was done by using natural break classification method which
tries to reduce the variance within classes and maximize the variance between classes
(Jenks 1967; Liu and Duan 2018). The main reason for selecting natural break was the
highest popularity of this method for this aim (Irigaray et al. 2007; Akgun et al. 2012;
Xu et al. 2012; Pourghasemi, Pradhan, et al. 2013; Jaafari et al. 2014; Gao, Guirao, et al.
2018; Gao, Wu, et al. 2018). Also, it is proper to note that other existing methods, like
equal interval and quantile method, have some weaknesses for being used in such works
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Figure 8. The convergence cure of the applied DA-MLP and BBO-MLP models.
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Figure 9. Landslide susceptibility maps generated by (a) typical MLP, (b) DA-MLP, and (c) BBO-
MLP models.
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(Ayalew et al. 2004; Tehrany et al. 2019). The resulted maps are shown in Figure 9(a–c),
respectively for the typical MLP, DA-MLP, and BBO-MLP prediction.

The percentage of the area covered by each susceptibility category is calculated and
presented in Table 2. As the table denotes, the MLP has classified 71.02% (around
5548 km2) of the area as hazardous regions (i.e. under the High and Very high sus-
ceptibility). This value is obtained as 50.06% (around 3911 km2) and 23.51% (around
1836 km2) by the DA-MLP and BBO-MLP, respectively. At the same time, consider-
ing the safe areas (i.e. Very low susceptibility class), it can be deduced that the MLP
has presented more cautious prediction. In this regard, 3.07%, 11.67% and 20.99% of
the area is recognized by the least landslide susceptibility.

Performance assessment of the models

The performance assessment of the implemented models consists of two parts.
Statistically, the MSE and MAE are defined to measure the training and testing error
of the implemented MLP, DA-MLP, and BBO-MLP. The results are portrayed in
Figure 10, showing a graphical comparison between the predicted and observed land-
slide susceptibility indices, as well as the histogram of the errors. According to these
figures, synthesizing the MLP with the DA and BBO evolutionary techniques has
effectively helped it to enjoy more learning and prediction capability of landslide pat-
tern. More clearly, in the training phase, the MSE experienced a decrease by around
16% and 40% as the result of applying the DA and BBO algorithms, respectively.
About the MAE, it was reduced by around 12% and 29%. As for the testing phase,
the DA was more successful than BBO, in terms of decreasing the MSE (nearly 11%
vs. 16%). But the MAE results show a slightly lower mean absolute error for the BBO
products (0.4134 vs. 0.4142).

The third considered criterion is the area under the receiver operating characteris-
tic curves (AUROC) which measures the accuracy of the developed susceptibility
maps. In this regard, many studies have recommended the ROC curves for evaluating
the predictions related to diagnostic problems (Egan 1975), like natural hazards
(Beguer�ıa 2006). When it comes to landslide susceptibility modelling, the ROC shows
the proportion of the non-landslide grid cells which are correctly labelled ‘no-failure’
(i.e. the specificity) versus the proportion of the landslide grid cells which are cor-
rectly labelled ‘failure’ (i.e. the sensitivity) (Swets 1988; Lasko et al. 2005; Beguer�ıa
2006). The obtained ROC curves of both training and testing phases of the MLP,
DA-MLP, and BBO-MLP models are presented in Figure 11(a,b), respectively. As the

Table 2. The ratio and area of each susceptibility class.

Susceptibility class

MLP DA-MLP BBO-MLP

Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2)

Very low 3.07 239.64 11.67 911.51 20.99 1639.98
Low 5.72 446.55 18.61 1453.90 31.59 2467.69
Moderate 20.19 1577.30 19.66 1535.54 23.91 1867.45
High 42.14 3291.51 22.82 1782.73 16.70 1304.26
Very high 28.89 2256.45 27.24 2127.77 6.81 532.07
Hazardous regions 71.02 5547.96 50.06 3910.50 23.51 1836.33

2446 H. MOAYEDI ET AL.



figures point out, the results are in a good agreement with the calculated MSE and
MAE indices. The training accuracy of the typical MLP has considerably increased
from 66.7% to 76% and 90.3%, respectively by applying the DA and BBO metaheuris-
tic algorithms. As for the prediction of unseen landslides, the AUROC of the suscep-
tibility map developed by the MLP experienced an increase from 0.648 to 0.744 and
0.722 which indicates the high effectiveness of the incorporated algorithms.

Figure 10. The results obtained for the (a and b) MLP, and (c and d) DA-MLP, and (e and f) BBO-
MLP, respectively for the training and testing samples.
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Discussion and comparison

The obtained results were presented in the previous section. In this part, a score-
based ranking system is developed to compare the efficiency of the applied models.
To this end, based on the calculated MSE, MAE, and AUROC measures, one of the
scores 3, 2, and 1 is assigned to them so that the lager scores indicate more accuracy
of the model (i.e. the smaller MSE and MAE, and larger AUROC). Finally, the total
ranking score (TRS) is obtained by summing the mentioned scores for both training
and testing phases, to rank the implemented MLP, DA-MLP, and BBO-MLP. The
results are presented in Table 3. As can be seen, the BBO-based neural ensemble out-
performs the DA-based and typical MLP networks in training phase in terms of all
three MAE, MSE, and AUROC indices. As for the resting phase, the DA-MLP was
the superior model, due to the lower MAE and also a higher AUROC in comparison
with MLP and BBO-MLP. However, the MAE of the BBO-MLP is slightly lower than
DA-MLP. All in all, the obtained TRSs of 6, 14, and 16, respectively for the MLP,
DA-MLP, and BBO-MLP indicate that the BBO improved the performance of the
MLP, and at the same time, performed more efficiently than the DA.

In this paper, it was shown that the solution suggested by the BBO is more suc-
cessful than DA. In other words, the weights and biases of the MLP which were opti-
mized by the BBO contribute better to the spatial susceptibility assessment. In this
sense, many scholars have stated that the weights of each landslide conditioning fac-
tor are used to determine the relative importance of that layer (Lee et al. 2004;
Pradhan and Lee 2010; Pradhan et al. 2010).

Examining the optimization process, it was observed that the DE achieves a rea-
sonable MSE after around 420 tries and remains more and less steady after that.
While the BBO kept decreasing the error until the last iteration. It resulted in a huge
distinction between the training accuracy of the models. Moreover, since both DA
and BBO presented a very close accuracy for the resting phase (DA outperformed
BBO in terms of MSE and AUROC), it can be deduced that a better-trained network
does not necessarily guarantee a higher prediction accuracy. Besides, simultaneous
investigation of the calculation time and accuracy gives that, however, the BBO fea-
tured as the more reliable model, the DA seems to be a more reasonable algorithm

Figure 11. The ROC curves plotted for the (a) training and (b) testing datasets.
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for landslide susceptibility mapping when the time comes out as a determinant factor.
This is because the DA minimized the error in nearly 3590 s and achieve a more
accurate prediction, compared to the BBO which took about 4690 s.

Conclusion

Recently, hybrid metaheuristic algorithms have gained a growing tendency for solving
various engineering issues with high complexity. In this work, two novel notions of these
algorithms, namely DA and BBO were applied to the problem of landslide susceptibility
mapping. The mentioned algorithms were coupled with a MLP neural network to opti-
mize its performance in discerning the spatial relationship between the landslide and the
considered conditioning factors. As the first outcome, utilizing evolutionary science is an
effective way for increasing the reliability of neural computing. In results, it was revealed
that the DA-MLP ensemble needs less time to minimizes the training error, compared to
the BBO-MLP. However, the BBO-MLP achieved a lower error (MSEBBO-MLP¼ 0.1378
and MSEDA-MLP¼ 0.1923). Also, despite the superiority of the BBO-MLP in learning
landslide pattern, both ensembles presented a close prediction accuracy (AUCBBO-

MLP¼ 0.722 and AUCDA-MLP¼ 0.744). ALL in all, the BBO-MLP was the most successful
model of the current paper. Finally, the produced landslide susceptibility maps can be
used in land use planning for alleviating the damages caused by this natural disaster.
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