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Abstract
Due to the important role of concrete in construction sector, a novel metaheuristic method, namely whale optimization 
algorithm (WOA), is employed for simulating 28-day compressive strength of concrete (CSC). To this end, the WOA is 
coupled with a neural network (NN) to optimize its computational parameters. Also, dragonfly algorithm (DA) and ant 
colony optimization (ACO) techniques are considered as the benchmark methods. The CSC influential parameters are 
cement, slag, water, fly ash, superplasticizer (SP), fine aggregate (FA), and coarse aggregate (CA). First, a population-based 
sensitivity analysis is carried out to achieve the most efficient structure of the proposed model. In this sense, the WOA-NN 
with the population size of 400 and five hidden nodes constructed the best-fitted network. The results revealed that the WOA-
NN (Error = 2.0746 and Correlation = 0.8976) presents the most reliable prediction of the CSC, followed by the DA-NN 
(Error = 2.5138 and Correlation = 0.8209) and ACO-NN (Error = 2.8843 and Correlation = 0.8000) benchmark models. The 
findings showed that utilizing the WOA optimization technique, along with typical neural network, results in developing a 
promising tool for modeling the CSC.
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1  Introduction

Concrete is an excellent man-made mixture which plays an 
essential role in the construction sector. As is known, vari-
ous elements (e.g., water, cement, fly ash, etc.) are mixed 
with different ratios (i.e., dosages) to produce the concrete. 
Regarding the strength and performance of the concretes, 
they can be classified in several groups like HSCs (high-
strength concretes) and SCCs (self-compacting concretes). 
Due to the advantages of this material, it ensures a high level 
of compressive stress [1]. As the most significant mechani-
cal characteristic, the compressive strength of the concrete 
(CSC) is a determinant factor in evaluating the quality of this 
non-linear material [2]. Note that it is usually measured for 
28-day concrete specimens. Up to now, many scholars have 
used various traditional models to evaluate and estimate the 
mechanical characteristics of concrete, such as CSC [3, 4].

More recently, intelligent predictive models like artificial 
neural network (ANN), as well as fuzzy-based systems, have 
received growing attention for diverse prediction aims [5–7]. 
They have also shown high robustness for simulating the 
CSC [8–12]. Khademi and Jamal [13] compared the appli-
cability of adaptive neuro-fuzzy inference system (ANFIS) 
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and multiple linear regression (MLR) models in estimating 
the 28-day CSC. Their findings revealed the superiority of 
the ANFIS, due to the capability of non-linear modeling of 
this tool. Likewise, Keshavarz and Torkian [14] showed the 
efficiency of ANN and ANFIS in estimating the CSC using 
five critical factors of cement, sand, gravel, water to cement 
ratio, and microsilica. Referring to the obtained correlations 
of 0.942 and 0.923, respective for the ANN and ANFIS, they 
concluded that the ANN performs more efficiently. Mandal 
et al. [1] introduced the ANN as a capable model for pre-
dicting the CS of HSC. They compared the results with an 
MLR model and showed that the ANN (with nearly 95% 
correlation) outperforms the MLR.

Moreover, looking for more reliable predictive models, 
lots of researchers have employed hybrid metaheuristic algo-
rithms in various engineering fields [15–18]. As for the CSC 
simulation, these techniques have been extensively used for 
optimizing the performance of regular intelligent models 
[19–21]. In this sense, Behnood and Golafshani [22] used 
multi-objective grey wolf optimization to optimize the ANN 
for predicting the CS of silica fume concrete. Also, Bui et al. 
[23] combined the ANN with a modified firefly algorithm 
to develop a fast and efficient model for approximating ten-
sile and compressive strength of high-performance concrete. 
Moreover, Sadowski et al. [24] coupled a multilayer per-
ceptron (MLP) neural network with imperialist competitive 
algorithm (ICA) to enhance its efficiency in estimating the 
CSC. The results indicated the superiority of the proposed 
ICA-ANN model compared to particle swarm optimization 
(PSO) and genetic algorithm (GA).

As explained in the literature above, hybrid intelligence 
has been widely used for the problem of CSC estimation. 
The main focus of this research is to present a novel opti-
mization of ANN, namely whale optimization algorithm 
(WOA) for fine-tuning the computational parameters of 
this model. Also, two benchmark algorithms of ant colony 
optimization (ACO) and dragonfly algorithm (DA) are 
considered to be compared with the WOA. A population-
based sensitivity analysis is executed to determine the most 
effective structure of the proposed models, and the results 
are evaluated in several ways to determine the elite neural 
ensemble.

2 � Methodology

The overall methodology that is taken to achieve the goal 
of this research is depicted in Fig. 1. In this regard, after 
providing the dataset, it is randomly divided into the train-
ing and testing samples with the well-known proportion of 
80:20 [25–27]. In other words, out of 103 data, 82 samples 
are used to train the proposed models, and the remaining 
21 samples are put aside as unseen concrete conditions for 

evaluating the generalization capability of the developed 
models. The WOA algorithm as well as the ACO and DA 
(as benchmark models) are then synthesized with the MLP 
neural network to adjust the computational parameters. 
Note that the best-fitted structure of the mentioned models 
is determined through a trial-and-error process. Finally, the 
accuracy of the WOA-NN, ACO-NN, and DA-NN predictive 
tools is evaluated by means of three well-known criteria. As 
Eq. 1 denotes, the determination coefficient (R2) is used to 
measure the correlation between the actual and predicted 
CSC. Also, root mean square error (RMSE), as well as mean 
absolute error (MAE), is used to measure the error of the 
prediction. Equations 2 and 3 define the formulation of the 
MAE and RMSE, respectively.

where Y
ipredicted

 , Y
iobserved

 , and Ȳobserved are the predicted, actual, 
and the average of the actual values of the CSC. Besides, the 
term N denotes the number of samples.

The description of the used algorithms is presented 
below:

2.1 � Whale optimization algorithm

The name whale optimization algorithm (WOA) indicates a 
new metaheuristic technique that is inspired by the bubble-
net hunting conduction of humpback whales (Fig. 2) [28]. It 
is known as a swarm-based intelligent approach designed for 
solving various complex optimization issues with continu-
ous domain [29–31]. The whales in the swarm seek their 
prey within a multidimensional space. The location of each 
relation is demonstrated as the decision variable, where 
the cost function is defined as the distance between each 
whale concerning the prey position. The function of time-
constraint as a location for the whales can be evaluated using 
the below operational steps [28, 32]: 

(a)	 Shrinking encircling hunt,
(b)	 Exploitation phase (i.e., the bubble-net attacking)
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(c)	 Exploration phase (i.e., searching for the prey). As Fig. 3 illustrates, when the position of the proposed 

Fig. 1   The graphical methodology of the present study

Fig. 2   The humpback whales bubble-net feeding (after [28])
Fig. 3   The spiral updating process
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prey is recognized, the humpback whales begin to encircle it 
through moving in nine shapes. The WOA remarks the target 
prey as the most appropriate candidate solution (or close to the 
elite solution) because it has no information about the optimal 
location of the prey within the search area. It takes into con-
sideration every possible attempt for finding the elite search 
agent. Notably, other involved relations aim to update their 
positions close to the elite one.

in which X⃗ indicates the whale location, X⃗∗ stands for the 
universal elite position, and t demonstrates the recent try. 
Also, a is decreased from 2 to 0 linearly, and r stands for a 
random number which is distributed equally between 0 and 
1. The stages are explained in the following:

(a)	 Exploitation:

Figure 4 illustrates the bubble-net hunting conduct of the 
WOA algorithm. The equidistance between the positions of the 
whale and the prey is detected by applying a spiral mathemati-
cal approach. The position of the whale (in a helix environ-
ment) is aimed to be adjusted after each movement [33]:

(4)D⃗ =
|||C ⋅

���⃗X
∗(t) − X⃗(t)

|||,

(5)X⃗(t + 1) = ���⃗X
∗(t) − A ⋅ D⃗,

(6)A = 2 ⋅ a ⋅ r − a,

(7)C = 2 ⋅ r,

(8)X⃗(t + 1) = e
bk
⋅ cos(2𝜋k) ⋅ ���⃗D� + ���⃗X

∗(t),

(9)���⃗D
� =

|||
���⃗X
∗(t) − X⃗(t),

|||

where b and k show constant and arbitrary numbers, notably, 
b symbolizes the logarithmic spiral shape and k is distributed 
equally from − 1 to 1.

(b)	 Exploration

As Fig. 5 shows, when A > 1 or A < − 1, the search agent 
upgraded by a randomly selected colleague at the location 
of the elite agent:

In this way we have

in which C ⋅
�������⃗Xrand shows arbitrarily of whales for the pro-

posed iteration. It has been better detailed in [28]. Also, the 
pseudocode of this algorithm is presented in Fig. 6.

2.2 � Benchmark hybrids algorithms

As mentioned, two other natural-inspired population-based 
metaheuristic algorithms, namely the dragonfly algorithm 
(DA) and ant colony optimization (ACO), are considered 
as the benchmark models to be compared with the proposed 
WOA algorithm. As their name connotes, these algorithms 
are inspired by the herding behavior of natural dragonflies and 
ants. The DA was introduced by Mirjalili [34] in 2016, and 
the idea of the ACO algorithm was first presented by Colorni 
et al. [35] in the early 1990s. With the flowchart being similar 
to other optimization techniques, these methods get started by 
producing a random population. In the following, the fitness 
of the suggested solution is evaluated by an objective function. 

(10)X⃗(t + 1) = �������⃗Xrand − A ⋅
���⃗D
�,

(11)����⃗D
�� =

|||C⃗ ⋅
�������⃗Xrand − X⃗(t)

|||,

Fig. 4   Exploitation phase

Fig. 5   Exploration phase
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The solution requires to be updated and improved in itera-
tion, which means higher accuracy for the problem. The algo-
rithms continue this process until a stopping criterion (e.g., 
the desired accuracy or the maximum number of repetitions) 
is met. These methods are well detailed in earlier studies, like 
[36, 37] for ACO, and [38, 39] for DA.

3 � Data collection and statistical analysis

The reference work for the used dataset is research by Yeh 
[40], which gathered the information of 103 concrete tests 
for simulating the slump of concrete. The used dataset is 
available here. As well as slump, this dataset consists of 
flow and 28-day compressive strength of concrete as output 
variables. We selected the compressive strength (MPa) to 
model in this work. The considered influential variables (i.e., 
input factors) are cement, slag, water, fly ash, superplasti-
cizer (SP), fine aggregate (FA), and coarse aggregate (CA). 
Figure 7 illustrates the graphical relationship between the 
CSC and its influential factors. Moreover, the results of sta-
tistical analysis of the mentioned parameters are presented 
in Table 1.

4 � Results and discussion

As mentioned, this study addresses a novel optimization 
of artificial neural networks for predicting the compressive 
strength of concrete. To this end, the whale optimization 
algorithm is considered as the metaheuristic algorithm for 
optimizing the structure of a back-propagation MLP net-
work. Moreover, the performance of the proposed WOA 
algorithm is evaluated by comparing with two benchmark 
methods which are inspired by the herding behavior of arti-
ficial ants and dragonflies. More clearly, these algorithms are 
applied to the mathematical ruling relationship of the MLP 
to find the most suitable options for the connecting weights 
as well as the biases. This process is carried out using the 
programming language of MATLAB 2014. This is worth 
noting that, based on the authors’ experience as well as a 
trial-and-error process, five hidden neurons were found to 
be the most appropriate number of the hidden computational 
units.

4.1 � Optimizing the MLP using ACO, DA, and WOA 
conventional techniques

A population-based sensitivity analysis is executed to 
acquire the best architecture of the used models. In this 
sense, nine different complexities of the models (i.e., nine 
population sizes of 10, 25, 50, 75, 100, 200, 300, 400, and 
500) are tested within 1000 repetitions. Also, the RMSE is 

Fig. 6   The pseudocode of the 
WOA algorithm
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Fig. 7   The graphical description of the CSC influential factors



Engineering with Computers	

1 3

considered as the objective function to measure the error at 
the end of each iteration. Figure 8a–c illustrates the conver-
gence curves of the optimization process of the used ACO-
NN, DA-NN, and WOA-NN ensembles, respectively. As is 
seen, all three algorithms show different behaviors in opti-
mizing the MLP. The ACO keeps decreasing the error until 
the last try, while the DA and WOA perform the majority 
of the error reduction within the first 400 iterations, and 
remain more and less steady after that. The results showed 
that the optimal values of the RMSE were 1.96184548, 
1.849893333, and 1.357585418, obtained for the ACO-NN, 
DA-NN, and WOA-NN with population sizes of 10, 400, and 
400, respectively.

The calculation time of the implemented models (the 
selected structures) is depicted in Fig. 9. From this figure, it 
can be seen that executing the ACO-NN took the lowest time 
(nearly 600 s). Moreover, the WOA- and DA-based neural 
ensembles, which used the same complexities (i.e., popu-
lation sizes), took approximately 5271 and 7620 s, respec-
tively. On the other hand, due to the lower objective function 
obtained for the WOA-NN, it can be concluded that this algo-
rithm outperforms the DA-NN in terms of time-effectiveness. 
Remarkably, the proposed models were implemented on the 
operating system at 2.5 GHz and 6 Gigs of RAM.

Table 1   Statistical description of the used dataset

Compres-
sive strength 
(MPa)

Cement (kg/m3) Slag (kg/m3) Water (kg/m3) Fly ash (kg/m3) SP (kg/m3) FA (kg/m3) CA (kg/m3)

Minimum 17.1 137.0 0.0 160.0 0.0 4.4 640.6 708.0
Maximum 58.5 374.0 260.0 240.0 193.0 19.0 902.0 1049.9
Mean 36.0 229.9 149.0 197.2 78.0 8.5 739.6 884.0
Standard deviation 7.8 78.9 85.4 20.2 60.5 2.8 63.3 88.4

Fig. 8   The sensitivity analysis based on the model complexity for the 
a ACO-NN, b DA-NN, and c WOA-NN
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Fig. 10   The training results obtained for a, b ACO-NN, c, d DA-NN, and e, f WOA-NN predictions
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Fig. 11   The testing results obtained for a, b ACO-NN, c, d DA-NN, and e, f WOA-NN predictions
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4.2 � Accuracy assessment of the implemented 
predictive models

After determining the best structures, the results of the 
models were evaluated and compared by means of the 
RMSE, MAE, and R2 indices. The products of the training 
and testing phases were compared with the desired targets 
to measure the accuracy of the results. Figure 10 shows 
the regression of the results alongside the histogram of the 
errors for the training phase. Note that, in this figure, the 
error is calculated as the difference between the observed 
and predicted CSCs. Likewise, the testing results are pre-
sented in Fig. 11. Based on these figures, all three used 
models performed satisfactorily for predicting the CSC. 
This is also deduced that all three models had higher accu-
racy in discerning the relationship between the CSC and 
the mentioned influential factors (i.e., the training dataset), 
in comparison with estimating the CSC with unseen condi-
tions (i.e., the testing dataset).

Based on the presented histogram charts, the frequency of 
the errors around 0 seems higher in the result of the WOA-
based ensemble in both training and testing phases. This 
claim can also be supported by considering the obtained 
values of the standard error (SE). Accordingly, the SE is 
calculated 1.9739 and 3.5301 for the ACO-NN, and 1.8612 
and 3.3716 for the DA-NN, respectively, in the training and 
testing samples. This is while these values are obtained as 
1.3659 and 2.6387 for the WOA-NN.

Moreover, Table 2 summarizes the obtained values of 
RMSE, MAE, and R2 for all three used models. Accord-
ing to this table, the proposed WOA surpassed the bench-
mark algorithms of ACO and DA in both training and test-
ing stages. More clearly, the WOA-NN (RMSE = 1.3576 
and MAE = 1.0757) presented a higher learning qual-
ity (i.e., in the training phase), compared to the ACO-
NN (RMSE = 1.9618 and MAE = 1.5282) and DA-NN 
(RMSE = 1.8499 and MAE = 1.4786). Moreover, the 
obtained values of R2 (0.9410, 0.9443, and 0.9700, respec-
tively, for the ACO-NN, DA-NN, and WOA-NN ensem-
bles) showed a higher correlation between the products of 
the WOA-based neural network and the actual CSCs. It was 
also deduced that the DA was more successful than ACO in 
optimizing the MLP. Investigating the testing result showed 

that the generalization power of the models is directly 
related to the learning capability. In other words, the calcu-
lated testing RMSEs (3.4452, 3.3325, and 2.6985), as well 
as the MAEs (2.8843, 2.5138, and 2.0746), revealed that the 
WOA estimated the CSC more accurately than ACO and 
DA. Referring to the obtained values of R2 (0.8000, 0.8209, 
and 0.8976), the WOA produced the most reliable results, 
followed by the DA and ACO algorithms.

In overall, the results indicated the superiority of the 
developed WOA-NN technique in both training and test-
ing phases and it could be a robust alternative to traditional 
model in CSC evaluation. It provides an inexpensive yet 
accurate predictive model for investigating the relationship 
between this crucial characteristic of concrete and influential 
factors. Also, the higher learning accuracy of the model indi-
cates the more capability in generalizing the learned pattern. 
In other words, there was no discrepancy between the per-
formance of all three models in the learning and predicting 
the pattern of the CSC in this study. Moreover, considering 
the calculation time as another determinant factor for the 
efficiency of the used models, it was deduced that the WOA 
is more time-effective compared to the DA.

5 � Conclusions

Due to the crucial role of concrete in building construction, 
having a reliable approximation of the characteristics of this 
material is essential. In this work, the compressive strength of 
concrete was modeled using a novel hybrid predictive model. 
In this way, the MLP neural network was coupled with WOA 
optimization technique to develop the WOA-NN ensemble. 
Also, the ACO-NN and DA-NN tools were used as the bench-
mark models. The results of the sensitivity analysis revealed 
that both DA-NN and WOA-NN presented the best results with 
population sizes of 400, while the ACO-NN with the least 
population (i.e., population size = 10) outperformed other 
similar networks. According to the results, the proposed WOA-
NN model predicted the CSC with high accuracy. Besides, 
in comparison with the benchmark methods, the WOA algo-
rithm (RMSE = 2.6985 and R2 = 0.8976) surpassed the ACO 
(RMSE = 3.4452 and R2 = 0.8000) and DA (RMSE = 3.3325 
and R2 = 0.8209) evolutionary techniques in optimizing the 

Table 2   The calculated 
accuracy criteria for 
the performance of the 
implemented models

Ensemble model Network result

Training phase Testing phase

RMSE MAE R2 RMSE MAE R2

ACO-NN 1.9618 1.5282 0.9410 3.4452 2.8843 0.8000
DA-NN 1.8499 1.4786 0.9443 3.3325 2.5138 0.8209
WOA-NN 1.3576 1.0757 0.9700 2.6985 2.0746 0.8976
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MLP. Moreover, other than the higher accuracy, the WOA 
needed less calculation time than DA. Last, evaluating the per-
formance of the WOA in comparison with other well-known 
hybrid algorithms is a good idea for future studies.
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