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Abstract

In differential machine learning, one uses a stochastic gradient flow
with respect to a loss function on the parameter space to find an “almost
minimal’ point of the loss function, which would correspond to an “almost
optimal” predictor. Somehow, a proper theory of loss functions is still
missing, despite their importance. Our paper is a contribution towards
the construction of such a theory.

1 Introduction

This paper is a brief report on our ongoing research on the properties and
designs of loss functions in differential machine learning. We refer to [4, 5, 6,
15] for an introduction to machine learning. For simplicity of exposition, in
this paper we will only consider binary decision problems, though most other
problems can be treated similarly.

Loss functions play an extremely important role in differential learning.
However, up until 2000, people didn’t really care about them, thinking that
they were just a computational issue, without much impact on the final re-
sults of machine learning models. (See, e.g., [3, 15]). Recently, people start
paying more attention to properties of the loss functions which would help the
stochastic gradient flows to converge to desired values of the parameters, see,
e.g., [1, 8,9, 10, 11, 12, 13, 16, 17]. Nevertheless, a full-fledged theory of loss
functions is still missing.

The purpose of our work is to contribute to the development of such a theory
of loss functions. In particular, after recalling a general setting of differential
learning in Section 2, we show the following facts, based on both theoretical
reasoning about stochastic flows and experiments:

1) The noise (stochasticity) prevents the gradient flows from converging to
the minimal points (Section 3).

2) Asymmetric loss functions are better than symmetric loss functions, es-
pecially for problems with significant data imbalances (Section 4).

3) Nonlinear polynomial loss functions are more focal and thus can give
better results than the usual cross entropy function (Section 5).

4) Even though most people (until now) automatically compose their loss
functions with last-layer activation functions like sigmoid, one will get better
results by not using such activation functions (Section 6).

5) Loss functions with a derivative jump at the threshold value creates a
stochastic trap at this value for the gradient flow (Section 7).



2 A general differential learning setting

Let us recall here a general setting of differential machine learning for a
binary classification problem, and fix some notations:

e () denotes the input space, consisting of all possible situations which may
appear in the problem, together with a probability measure P (which depends
on the context). For example, € is a set of images of skin lesions.

® Yrye : L — {0,1} is the ground truth binary class function. For example,
Ytrue(z) = 1 if and only the image is a melanoma (a dangerous skin cancer).

e A machine learning model is a map M : 2 x © — {0, 1}, where © denotes
its corresponding learnable parameter space. For each choice of parameters
0 € © the model M gives an output prediction function

Ypredict = M9 Q= {Oa 1}

e In differential learning, one usually replaces the discrete-valued function
Ypredict Dy & continuous almost everywhere smooth function

yZDMQZQ%[O,l]

which may be interpreted as “probability”, “likelyhood” or “level of confidence”
in a binary prediction: one puts Ypredgict = 1 when y > 0.5 (or some other
threshold), and the closer y is to 1 the more confident one is in this prediction.

When people talk about deep learning, it means that DM is constructed by
composing together many layers of simple functions/operators. The theoretical
basis for the possibility of approximating any function by composing simple
functions is provided by the Kolmogorov superposition theorem (see, e.g., [2]).
In deep learning, the number of independent numerical parameters is usually
very high (tens of millions), so the parameter space © is very high-dimensional.

e The learning process with a given model M is a (stochastic, discretized,
finite-time) dynamical system on the parameter space O:

Opr—> 01— 02— ...—=0,— ...

such that, hopefully, for some n, My, is a good approximation of y¢ye-
e The binary accuracy function

S(Mp, Ytrue) = P{z € Q| Mp(x) = ytrue(x)}

and similar functions, including sensitivity (true positive rate) and specificity
(true negative rate), are used to measure the accuracy of the model. In practice,
S(Mp, Ytrue) is calculated empirically by a random set of N instances x; € Q,i =
1,..., N which are not used in the learning process, called the validation set or
the test set (depending on who tests it, the user or the developer):

N k:l,,N,M x€X = rue(T
S(Mevytrue): |{ ]f]( k) Yt ( k)}‘

e In differential learning, one replaces the error rate 1 — S(My, Yrue) by a
proxy almost-everywhere differentiable loss function

L:®—=R



chosen in such a way that, intuitively, low values of L correspond to high accu-
racy rates. The loss Ly is computed not directly from the binary model M but
from the proxy differentiable model DM by some kind of summation (integral)
formula, e.g.,

L(9) = /EQ U(DMy(z), Ytrue(x))dPq

for some almost everywhere smooth point-wise loss function £. Then one uses
the method of gradient descent to find a parameter value 6,, which “almost
minimizes” L.

e Roughly speaking, the differential learning process is defined as follows.
Start with some 6y € © (either a random value, or a “pre-trained” one). At
step ¢ in the learning process, put

91' — 9i+1 = ‘91 — aVL(Gl) + T)’L(HZ — 91'_1)

where @ > 0 is a chosen small positive number, called the learning rate, V
denotes the gradient, and m(6; — 6;,_1) is a small momemtum term. “Just close
your eyes and roll down, and hopefully you will reach the bottom”.

e It is impossible to compute the exact gradient VL(#). One computes it
empirically, using a small sample of data called a batch at each step, and so the
flow is called a stochastic gradient flow.

e A true gradient flow can often get trapped at bad local minima (where the
value is very high compared to the global minima) and saddle points. That’s why
a momentum term m(6; — 0;_1) is added to the flow in order to get out of such
situations, so in practice one uses a stochastic gradient flow with momentum.

3 Some issues affecting accuracy

A multitude of very accurate binary predictors could be constructed by using
the above general differential learning method, despite many issues. In this
section, we will just mention some of these issues.

eBoundary cases. It may happen that the space 2 is a kind of continuous
space in which there is no clear-cut boundary between the two classes, and
there are many “boundary points” which could belong to both classes at the
same time. For example, the evolution of an actinic keratosis (AK) lesion into a
squamous cell carcinoma (SCC) is a continuous process, at at some point in this
process the lesion could be called AK and could also be called early-stage SCC.
Likewise, one can write a number which looks like a 3 and a 5 at the same time,
so just by looking at the image no one can tell with certainly which number is
it. Due to such boundary cases, there is a hard limit on the level of accuracy
that a binary predictor can achieve (which depends on the problem but does not
depend on how the predictor is constructed). If one forces the model to make
correct predictions on all boundary cases with known ground truth, it simply
means overfitting, which does not help predictions in new cases.

e Data imbalance. Tt often happens that one class is much smaller (has much
fewer data) than the other. Data imbalance makes the learning difficult: the
stochastic gradient flow does not converge to the desired values of the param-
eters, because the parameters which give most accurate predictions are not at
the minimum of the loss function. In Section 4 we will study this phenomenon
in a very simple toy model.



e Noise-induced uncertainty. We remark that a stochastic gradient flow with
momentum used in differential learning can also be viewed as a damped stochas-
tic Hamiltonian flow: The momentum term makes it a Hamiltonian system,
while the negative gradient term is the damping term. It is known (see, e.g.,
[14]) that a stochastic damped harmonic oscillator does not converge to the
minimum energy point, but rather “converges stochastically” to an energy level
higher than the minimum. For differential learning, it means that the stochas-
tic gradient flow cannot be expected to reach the minimum of the loss function.
Rather, it will hover around a certain loss level above the minimum. This is a
phenomenon of noise-induced uncertainty, due to stochasticity.

e Choice of the loss function, which is the main topic of this paper. One can
improve the accuracy results a lot by simply choosing a better loss function,
more adapted to the problem.

4 Data imbalance in a simple toy model

In this model, the input space Q is just an interval: Q = [a,b[. The ground
truth binary function is piece-wise constant, i.e., there is a partition of €2 into a
finite number of intervals,

Q = U olai, ait1]

with a = ag < a; < --- < ap4+1 = b, and the ground truth is: y4ye = 1 on
Q4 = Ulag;, azi+1] and ygrye = 0 on Q_ = Ulagi+1, a2;4+2[. The point-wise gain
function g (9 = 1 — € where is the loss function) has n learnable parameters
01,...,0, and is of the type

g(ela ey ena l‘) = H(—¢($ - 91))
where ¢(x) is a increasing monotonous function on R such that ¢(0) = 0,

and lim, ,y ¢(z) = £1. For example, we can take ¢(x) = — arctan(x), or
™

¢(z) = + for some positive number e. (We will not worry much about
Te+€

the exact formula of ¢). Notice that the function g(ai,...,an,x) (with fixed

01 = ai,...,0, = a,) is positive on Q4 and negative on Q_. The prediction

function of the model is:

Mo(w) = 1if g(6,w) > 0
and

Mp(w) =0if g(0,w) < 0,

where 0 = (0y,...,60,). So if (and only if) § = (0,...,6,) = (a1,...,a,) then
the prediction My coincides with the ground truth, and we get 100% accuracy.

We do not know the value of (ai,...,a,), and want to find them by using
the stochastic gradient flow of the gain function

b
G(G):/ g(0, w)dw.

Unfortunately, in general the the maximal value of G(#) is not at the point
6 = (a1,...,a,) in the parameter space, but at some nearby point at best.



In other words, in general, the differential learning method with this gain/loss
function (or with any other differentiable loss function for that matter) will not
give us a prediction model with 100% accuracy even if such a model exists. This
fact is already clear in the case with just one learnable parameter (n = 1):

Proposition 4.1. With the above notations, in the case whenn =1, g(6,w) =
—¢(w — 0), we have:

i) Balanced case. If b —a; = a3 — a, i.e., a; = (a + b)/2 then ay is the
mazimal point for G(0)

ii) Biased case. When b—ay > a1 —a but |b+a—2a4] is small enough, then
the mazimal point of G is not at 0 = a1, but at a nearby point in the interval
[a, aq].

iii) Rare_event case. If b—ay >> a3 —a so that g(b—a) > 2g(a; — a), then
the argmaz of G on [a,b] is a.

The proof of the above proposition follows directly from the following deriva-
tion formula for G,

dejéﬁ) = g(6,b) + g(a) — 2g(a1) = —p(b — 0) — ¢(a — 0) + 2p(a; — 6),

and the fact that in the third case this derivative is always negative, while in

the first two cases the vanishes at the maximal point of G on the interval

[a,b]. A similar proposition holds for the case with many parameters (n > 2).

The interpretation of the above proposition is as follows:

In case i), when the two classes are balanced, i.e. they have equal weights in
the total space, then the gradient flow of G (if it is not stochastic) will converge
to the absolutely correct prediction function.

In case ii) there is a bias against the minority class in the differential learning
method: if class 1 is minority then even less inputs will be predicted as of class
1 than should be.

In case iii) when one of the two classes is too small, then the machine cannot
learning anything by the differential method.

The above very simple toy example already shows the impact of data imbal-
ance on the results of differential learning. To remedy this situation, one has
the following methods:

e Data (re)balancing: One artificially amplifies the minority class (e.g.,
change the probability measure on ) by artificially adding points to the mi-
nority class, especially during the so-called “data augmentation” process), so
that the two classes will have equal volume in €.

o Asymmetric loss functions: Most off-the-shelf loss functions are symmetric,
i.e., they treat different classes in the same manner. But one may give different
weights to different classes in the loss function. In the following sections, we
will show some asymmetric loss functions, with an asymmetry parameter which
can be tuned for each problem.

In practice, one may use both of the above methods together: depending on
what one wants, some asymmetry in the loss function may help, even when the
data are already balanced.

e Sharp loss functions: One may be tempted to increase the sharpness of
the loss function in order to fight data imbalance problems. For example, if in
the definition of the gain/loss function g mentioned earlier in this section we



use the formula ¢(z) = , then the e is the sharpness coefficient: smaller

x
€ corresponds to sharper loss functions, and when e tends to 0 then the bias in
case ii) of Proposition 4.1 also tends to 0.

However, there is a price to pay for the sharpness of the loss function.
Namely, if the loss function is too sharp, then the noise-induced uncertainty
discussed in Section 3 becomes too high, and so the end results will not be very
good either. And of course, in the limit case, when ¢ = 0 then the loss function
becomes piece-wise constant and useless for differential learning. So, in each
problem there is an optimal sharpness for the loss function.

5 Focality and polynomial loss functions

The idea of focality of loss functions (see, e.g., [1, 10]) for classification prob-
lems is as follows: If something is already correctly classified (its corresponding
loss is already below a certain threshold) then we don’t need to improve much
its loss, while things which are wrongly classified must be given much higher
attention. In differential learning, it means that the contribution to the deriva-
tive of the loss function from wrongly classified elements should be much higher
than the contribution from correctly classified elements. Intuitively, this focality
helps improve the convergence of the gradient flow to optimal accuracy results,
and this also holds true in practice. One may call it a kind of fast convergence
method in the spirit of Newton.

Popular loss functions like binary cross entropy (BCE) are not very focal,
and so we can propose more focal loss functions which often work better in
practice.

Recall that the formula for BCE is:

BCE(y) = _(ytrue 1Hy + (1 - ytrue) hl(l - y)),

where y €]0, 1] is the output which is interpreted as the “probability” that the
class is 1 (Yes), 1 — y is the “probability” that the class is 0 (No), and yyye
is the ground truth (which is 0 or 1). When y > 0.5 (or another chosen cutoff
number) then the predicted class is 1, otherwise it is 0.

In differential learning, it’s not the loss function itself, but rather its deriva-
tive which counts. For BCE, the derivative of the loss function is:

depending on whether yye = 0 or Yrye = 1. The non-focality of BCE lies
in the fact that the absolute value of its derivative is always above 1, which
means that correctly predicted elements still play too important a role in the
loss function. A simple way to improve this situation is to replace BCE by
simple nonlinear polynomial loss functions.

As an example, we created the following two new loss functions:

24(y) = cYruc(1 = 1) + (1= 1)) + (1 = yorue) (° + y*)

and
éﬁ(y) = Cytrue(l - 9)6 + (1 - ytrue)yG



(where c is the asymmetry coefficient).

When applied to Melanoma detection models, both of the above loss func-
tions gave better results than BCE: while with BCE a team at Torus Actions
SAS (a startup founded by the second author) could not make the average
validation balanced accuracy to go above 82% after days of training, with the
polynomial loss functions the team could get to 85% (before cross validation).
(See the next section for more details).

6 The demerit of sigmoid

In most machine learning models, one finds a sigmoid type “activation func-
tion” in the last layer: y = sigmoid(r) := 1/(1 + e~ "). The loss function is then
applied to the output y. The sigmoid function (or similar functions) has its
values in the interval ]0, 1], so that the output y can be conveniently interpreted
as the “probability” or “confidence level” of the answer “Yes” to the binary
question.

Despite the convenience and popularity of the sigmoid activation function,
we detected a serious demerit of this function in differential learning. Namely,
the learning process tends to push y to 1 in the cases where the class is 1 (Yes)
in the training set. It means that it is pushing x in those cases to infinity, by
definition of sigmoid. But z is usually constructed using semi-algebraic formulas
with parameters, so in order to push z to infinity, at least some of the parameters
must be pushed to infinity too. In practice, it means that, after a certain number
of epochs of learning, some of the parameters will become very high, making the
model unstable (hyperbolic: a very small change in the input can too often lead
to a large change in the output) and reducing its capability of generalization.

Our proposal is to avoid using sigmoid (and similar functions, e.g. softmax
in n-ary classification problems) in the last layer of the model. In other words,
it’s better to construct the loss function as a function of r (the result of the last
layer before sigmoid) rather than of y where y = sigmoid(r). (Sigmoid/softmax
can still be used for showing “probabilities”, but not for composing with a loss
function).

For example, we tested the following lost function:

l(’l") = C(l + ytrue)ll(r) + (1 - ytrue)ZQ(r)a

where
11(r) = 0.5 x max(—r,0) + (max(min(0.5 — r,0.5),0))%,

l(r) = 0.5 x max(r, 0) + (max(min(0.5 + r,0.5),0)),

¢ > 0 is the asymmetry coefficient (if ¢ = 1 then the loss function is symmetric),
and the values of y;rye are 1 (yes) and —1 (no).

A team at Torus Actions applied the above new function (without sigmoid)
to the problem of Melanoma detection (among dermoscopic skin lesion images).
The results are quite striking: after just 6 training epochs the validation binary
accuracy got above 88% already (on a random validation set of more than
1000 images, half of which are Melanoma), better than what could be obtained
with all the other loss functions with sigmoid activation, even after hundreds of
epochs. (Each epoch runs through 10,000 images, half of which are Melanoma).
After some fine tuning and more training, the validation accuracy (and both
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Figure 1: Training results on Melanoma detection with a new loss function
without sigmoid activation, after 6 epochs.

sensitivity and specificity together) could get above 90%. Data are mainly from
the ISIC 2019 challenge [7]. The model used is a pretrained Inception Resnet
CNN with an additional last layer.
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Figure 2: Training results on Melanoma detection, with the same model and
same environment as in the previous picture, but with sigmoid activation, and
a power six loss function.

7 How broken is a broken loss function?

In our study of focal loss functions, we also designed broken loss functions,
i.e. continuous functions which are piece-wise smooth but with jumps in the
derivative at a certain point. More concretely, we looked at the following loss
function ¢(y) = ¢(1 — y)¢1(y) + yf2(y) where c is the asymmetry coefficient and

0y = y* for y < 1/2
y—3/16 for y > 1/2

(and similarly for ¢5(y)). The above continuous loss function has a jump in
derivative, from 0.5 to 1, at y = 0.5

Surprisingly, contrary to our initial naive expectations, in our experiments
the gradient flow of the above loss function does not converge well and gives
erratic results.

It turns out that the jump in derivative at the threshold value y = 0.5 creates
a stochastic trap: the stochastic flow cannot get out from a region where y is
near 0.5 and where the prediction is very erratic.



To understand this phenomenon, imagine an input point z whose true class
is 0 and whose y value y,,(z) at some step n of the learning process is just a bit
smaller 0.5. The class of x is correctly predicted at this step n, but near the
threshold y = 0.5 the prediction is very erratic: there are many input points
very near x whose class is still 0 but whose y-values at step n are just a bit
more than 0.5, so that they are wrongly predicted. Let’s say that, in a small
neighborhood of z, the probability of being correctly predicted (true class is
0) at step m is p, where p > 0.5 but not by much. The contribution from the
correctly predicted points in the loss function pushes the y-value of x in the right
direction (the direction which diminishes y) and is approximately proportional
to 0.5p (p is the density of correct predictions at x, and 0.5 is the derivative of
the loss function for correctly predicted situations). The contribution from the
wrongly predicted points in the loss function pushes x in the wrong direction
(the direction which increases y) and is approximately proportional to 1 —p. So
when 1 —p > 0.5p (which is the case near the boundary erratic region) then the
y-value of x is pushed in the wrong direction by the gradient flow. That’s why
we have a trap at y = 0.5: right things (which are correctly predicted) tend to
become wrong by the flow (while wrong things tend to become right, and that’s
how the trap works: things are repeatedly changing their status from right to
wrong to right to wrong again).

Our conclusion is that loss functions which are broken at threshold output
values are really broken and should not be used.
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