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A B S T R A C T

The interferometric synthetic aperture radar (InSAR) small baseline subset (SBAS) technique can be applied to
land with varying deformation magnitudes ranging from mm/yr to tens of cm/yr. SBAS defines a network of
interferograms that is limited by temporal and spatial baseline thresholds that are often applied arbitrarily, or in
apparently subjective ways in the literature. We use simulated SAR data to assess (1) the influence of residual
noise and SBAS network configuration on InSAR-derived deformation rates, and (2) how the number of inter-
ferograms and data gaps in the time series may further impact the estimated rates. This leads us to an approach
for defining a SBAS network based on geodetic reliability theory represented by the redundancy number (r-
number). Simulated InSAR datasets are generated with three subsidence signals of linear rates plus sinusoidal
annual amplitudes of −2 mm/yr plus 2 mm, −20 mm/yr plus 5 mm and −100 mm/yr plus 10 mm, con-
taminated by Gaussian residual noise bounded within [−2;+2] mm, [−5;+5] mm and [−10;+10] mm,
corresponding to standard deviations of approximately 0.5 mm, 1.5 mm and 3.0 mm, respectively. The influence
of data gaps is investigated through simulations with percentages of missing data ranging from 5% to 50% that
are selected (1) randomly across the 4-year time series, and (2) for three-month windows to represent the
northern winter season where snow cover may cause decorrelation. These simulations show that small de-
formation rates are most adversely affected by residual noise. In some extreme cases, the recovered trends can be
contrary to the signal (i.e., indicating uplift when there is simulated subsidence). We demonstrate through
simulations that the r-number can be used to pre-determine the reliability of SBAS network design, indicating the
r-values between ~0.8 and ~0.9 are optimal. r-numbers less than ~0.3 can deliver erroneous rates in the
presence of noise commensurate with the magnitude of deformation. Finally, the influence of data gaps is not as
significant compared to other factors such as a change in the number of interferograms used, although the blocks
of “winter” gaps in the SBAS network show a larger effect on the rates than gaps at random intervals across the
simulated time series.

1. Introduction and motivation

Interferometric synthetic aperture radar (InSAR) has been demon-
strated to be a powerful tool for measuring the Earth's land-surface
deformation owing to its high spatial and temporal resolution, wide
spatial coverage, and ability to acquire data remotely (e.g., Hooper,
2008). However, InSAR measurements are contaminated by various
error and noise sources, such as those caused by digital elevation
models (DEMs), atmospheric signal path delay, orbital errors (ramps),
temporal decorrelation, and other noise sources (e.g., Lee et al., 2012;
Murray et al., 2019). Multi-temporal InSAR (MT-InSAR) methods were
proposed to reduce these error and noise sources (e.g., Hooper, 2008).
These methods work by analyzing a network of multiple acquisitions to

derive the deformation time series and thus deformation rate (e.g.,
Shanker et al., 2011).

MT-InSAR methods can be classified into two principal categories,
comprising the persistent scatterer (PS) method (e.g., Ferretti et al.,
2001; Hooper et al., 2007; Hooper et al., 2004) and the small baseline
subset (SBAS) method (e.g., Berardino et al., 2002; Cavalié et al., 2007;
Hetland et al., 2012; López-Quiroz et al., 2009; Lundgren et al., 2001;
Schmidt and Bürgmann, 2003; Usai, 2003). SBAS is among the most
commonly used methods that makes use of a network of interferograms
from which temporal and perpendicular baselines are limited in time
and length to reduce the effects of geometric decorrelation (e.g.,
Crosetto et al., 2016; Shanker et al., 2011; Zebker and Villasenor,
1992). This also incorporates an approach to connect multiple SBASs
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that results in an increase in temporal and spatial sampling (Berardino
et al., 2002). The SBAS method has been used to measure land de-
formation of various magnitudes, ranging from mm/yr (e.g., Elliott
et al., 2010; Furuya et al., 2007; Jiang et al., 2011; Schmidt and
Bürgmann, 2003) to cm/yr (e.g., Amelung et al., 1999; Cavalié et al.,
2013; Chaussard et al., 2014; Lee et al., 2012) or even tens of cm/yr
(e.g., Chaussard et al., 2014; López-Quiroz et al., 2009; Motagh et al.,
2007; Short et al., 2011).

InSAR data are degraded by various error and noise sources. The
error caused by DEM uncertainty can be reduced by a number of
methods correcting for interferograms (e.g., Berardino et al., 2002;
Bombrun et al., 2009) or deformation time series (e.g., Fattahi and
Amelung, 2013; Pepe et al., 2011). In order to reduce the effect of sa-
tellite orbital errors (ramps), polynomial models based on network-
sense (Biggs et al., 2007; Cavalié et al., 2008; Jolivet et al., 2012; Lin
et al., 2010) or GPS data (e.g., Neely et al., 2020; Tong et al., 2013) can
be used. A number of methods can be applied to correct atmosphere
phase errors utilizing the stacking method (e.g., Biggs et al., 2007;
Tymofyeyeva and Fialko, 2015), using local data assimilation, e.g.,
local atmospheric data (e.g., Delacourt et al., 1998) or zenith total delay
(ZTD) computed from GPS data (e.g., Williams et al., 1998; Yu et al.,
2018a; Yu et al., 2017), utilizing global or regional atmospheric models
(e.g., Doin et al., 2009; Jolivet et al., 2011), or integrating a global
atmospheric model and GPS data to an atmospheric correction model
(e.g., Yu et al., 2018b). Although these methods can be used to cope
with different errors and noise in InSAR measurements, they cannot be
conducted perfectly, which leads to remaining or residual errors and
noise. Additionally, because of scheduling or other technical issues,
SAR images are not always regularly captured, or in other cases, blocks
of images acquired during extended periods (e.g., winter snowfall) may
be omitted from processing due to very low coherence, both of which
may have a detrimental influence on the estimated time series (e.g.,
Kim et al., 2015; Kohlhase et al., 2003).

In InSAR SBAS data processing, pairs of scenes are chosen to form
interferograms from which an interferogram network is built in such a
way to reduce decorrelation noise through minimizing their time spans,
and differences in look angle and squint angle (Hooper et al., 2012).
Coherent pixels to which a specific SBAS approach are applied can
subsequently be selected based on specific criteria, e.g., amplitude
dispersion, spatial coherence, spectral coherence or their combination
(Crosetto et al., 2016). Different proposed SBAS approaches are there-
fore based on thresholds that are, to a lesser or greater extent, different
depending on various factors, e.g., applications, data availability or the
critical baseline, which in turn depends on the wavelength of the radar
sensor, spatial resolution and incidence angle (Gatelli et al., 1994;
Zebker and Villasenor, 1992).

The temporal baseline threshold has been chosen varying from
months to years (e.g., Lanari et al., 2007; López-Quiroz et al., 2009),
while the perpendicular baseline threshold has been chosen ranging
between hundreds of meters and over one thousand meters (e.g.,
Berardino et al., 2002; Chaussard et al., 2014). The SBAS network
thresholds are used with the aim of maximizing the number of InSAR
interferograms while minimizing their temporal and spatial decorrela-
tion, as well as reducing the computation time and data burden.
Baseline thresholds and pixel selection criteria used in several main
SBAS approaches are listed in Table 1. The question then arises as to
whether there is some more objective means by which to select these
thresholds, which we consider herein. In this study, we deal with
thresholds used to select InSAR image pairs with an assumption that all
pixels are of relatively high coherence so as to be considered for SBAS
processing.

We also consider the configuration of the SBAS network during our
simulations. The so-called network “optimization” problem has been
applied to geodetic (surveying) networks, which is traditionally divided
among zero-, first-, second- and third-order problems (e.g., Grafarend
and Sansò, 1985). The zero-order design (ZOD) is adopted for designing

a reference system, thus is also called “datum problem” (Teunissen,
1985). In the first-order design (FOD), a network configuration is
adopted by choosing the “optimal” locations of points in a geodetic
network that result in small changes in the positions of the preliminary
chosen network points (Berné and Baselga, 2004; Koch, 1985). The
objective of second-order design (SOD) is to select “optimal” weights
for the sometimes-different observations in which three approaches can
be utilized, including (i) direct approximation of the criterion matrix,
(ii) iterative approximation of the criterion matrix, and (iii) direct ap-
proximation of the inverse criterion matrix (Schmitt, 1985a). By ap-
plying SOD, one seeks a network with high precision (Amiri-Simkooei,
2004). In the third-order design, an existing network is improved, ex-
tended or densified by introducing new points and/or additional mea-
surements (Schmitt, 1985b). This is also called the densification pro-
blem and can be understood to be a mixture of FOD and SOD. A
combined design, introduced by Vaníček and Krakiwsky (1986), refers
to the case where FOD and SOD problems are solved simultaneously.

In the experiments presented here, we use a time series of simulated
InSAR data for which we have control on the amount of error and re-
sidual noise introduced. We then investigate the following parameters
to determine what effect they have on InSAR-derived rates of [simu-
lated] land deformation. Our overarching aim is to find an “optimal”
network of interferograms that results in reduced data processing time.
We assess 1) the influence of residual errors and noise on SBAS-derived
rates and the root mean square (RMS) of the difference between si-
mulated and SBAS-derived deformation time series for different sce-
narios of the signal to noise ratio (SNR), 2) the effect of data gaps (i.e.,
missing scene acquisitions) for both random and the three-month
“winter” cases, and 3) the use of redundancy numbers from geodetic
network theory to design an “optimal” SBAS network.

2. InSAR SBAS algorithm used for this experiment

In summary, SBAS starts by forming an interferogram network using
temporal and perpendicular baseline thresholds, followed by selecting
coherent pixels in which noise is assumed to be negligible. Phase un-
wrapping is another step implemented in SBAS that can be carried out
either before or after pixel selection, depending on the implementation
strategy (Gong et al., 2016). The inversion step is subsequently im-
plemented to convert small baseline interferograms phase differences to
a time series of displacements at the acquisition times. With m inter-
ferograms generated from (n + 1) InSAR images, the inversion equa-
tion can be written as (Berardino et al., 2002):

=A (1)

where A is the design matrix of size m × n, ϕ is the vector of n (un-
known) time series phase displacements of InSAR images at a pixel, δϕ
is the vector of m (known) phase differences between each small
baseline interferogram. In the SBAS approach applied in these simula-
tions, the interferogram phase measurements can be expressed as
(Agram et al., 2012; Gong et al., 2016):

= =
=

ij j i
n i

j

n

1

(2)

where δϕij is the interferogram phase connecting ith and jth images, ϕi

and ϕj are the phase values at ith and jth acquisitions, respectively, δφn is
the pixel phase increment between nth and (n + 1)th images. Eq. (2) is
utilized with an assumption of linear deformation between acquisitions
that are adjacent in time (Berardino et al., 2002).

In SBAS data processing, a network is formed by choosing inter-
ferometric pairs with short temporal and perpendicular baselines lim-
ited by user-prescribed thresholds, and this controls the structure of the
design matrix A in Eq. (1). With the above assumption of (n+ 1) InSAR
images, the possible number of interferometric pairs (m) satisfies
(Berardino et al., 2002):
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For each pixel selected, Eq. (1) is applied to convert the phase dif-
ference from interferograms in the chosen network to the phase time
series of displacements according to InSAR acquired times by applying
least-squares (LS) (Schmidt and Bürgmann, 2003), singular value de-
composition (SVD) (Berardino et al., 2002), or minimization of the L1-
norm (Lauknes et al., 2011). In most SBAS approaches, the design
matrix A is fixed to be used in the inversion step for all selected pixels.
This is an advantage in terms of convenience and reduced processing
time, but may suffer from decorrelation, particularly in vegetated or
snow-covered areas where many pixels may decorrelate, so that there
are large gaps in the spatial distribution of its products, e.g., a velocity
map (Sowter et al., 2013). Methods using a flexible design matrix A,
e.g., the intermittent SBAS method (Sowter et al., 2013), have been
proposed as a solution. In this simulation, however, we use a fixed-size
A matrix.

3. Network design used in geodesy

Geodetic surveying network “optimization” aims at finding a geo-
metric configuration and a set of observations of sufficient precision to
satisfy the desired positional quality criteria with lower financial and
logistical costs (e.g., Kuang, 1993). The quality of a geodetic network is
defined by the criteria of precision, reliability and economy (i.e., cost)
of the network (Schmitt, 1985a). In geodetic network design, one seeks
to minimize the objective function of economy and/or maximize that of
precision or reliability of the network (e.g., Amiri-Simkooei, 2004).

The observational precision and network geometry are two crucial
factors that influence the precision of a geodetic network. The variance-
covariance (VCV) matrix is normally adopted to represent the network's
precision. With the assumption of a minimum constraint, the VCV
matrix is expressed as (e.g., Kuang, 1996).

= +C A PA DD H H DD H H( ) ( )x T T T T T
0
2 1 1

(4)

where σ02 is the a priori variance factor, A and P are the design and
weight matrices of observations, D and H are the minimum and inner
constraint datum information matrices, respectively.

The reliability of geodetic networks, as defined classically by Baarda
(1968), is the ability of a network to detect and resist against gross
errors in observations. It is further divided into internal and external
reliability as follows.

1) The internal reliability is defined as the ability of a network to detect
gross errors, referring to the lower bounds of detectable gross errors
(aka. The minimum detectable bias, MDB) that is expressed as (e.g.,
Baarda, 1968):

=l
ri

l

i
0

0 i

(5)

where δ0 is the lower bound for the non-centrality parameter, σli and ri
are the standard deviation and the redundancy or r-number of the ith

observation, respectively. The r-numbers of the observations are the
diagonal elements of the matrix R that are expressed as (e.g., Amiri-
Simkooei et al., 2012):

=R I A A PA A P( )T T1 (6)

where I is the identity matrix.

2) The external reliability refers to the maximum effect of an un-
detectable gross error (∇0li) on the estimates of unknown para-
meters as:

= A PA A Px l( )i
T T

i0,
1

0, (7)

The internal reliability criterion is generally used as the measure for
an “optimal” design of geodetic networks aiming at high reliability
(Amiri-Simkooei, 2001), as shown in Eq. (6). In this paper, we examine
the redundancy number (r-number) as a diagnostic metric to determine
the likely effectiveness of the SBAS network design and verify this with
simulation experiments. Specifically, for a given SBAS network with a
corresponding design matrix A as shown in Eq. (1), the r-number is
computed using Eq. (6) with the weights P of interferograms computed
as the inverse of normalized (perpendicular and temporal) baseline
lengths, which will be described in Section 4.

4. Generation of simulated data

A time series of independent pixels that are reasonably re-
presentative of the range of Earth deformations detected by InSAR are
simulated, these being: mm/yr (e.g., Elliott et al., 2010; Furuya et al.,
2007; Jiang et al., 2011; Schmidt and Bürgmann, 2003), cm/yr (e.g.,
Amelung et al., 1999; Cavalié et al., 2013; Chaussard et al., 2014; Lee
et al., 2012), and tens of cm/yr (e.g., Chaussard et al., 2014; López-
Quiroz et al., 2009; Motagh et al., 2007; Short et al., 2011). Our si-
mulated data cover a four-year time span with 11-day sampling interval
that corresponds to 133 equally time-spaced InSAR images. The base-
line history of these 133 images, which is defined as the perpendicular
baselines between images and the reference one (i.e., the first scene), is
assumed to be within [−200, +200] m, which is approximately the
order of modern SAR missions such as C-band Sentinel-1 (Yague-
Martinez et al., 2016) or TerraSAR-X (TSX) (e.g., Chen et al., 2016;
Lubitz et al., 2013). The simulated baseline history of 133 images is
generated randomly with ranges between −200 m and +200 m with
that of the first scene being fixed to be zero (so leaving 132), and are
shown as a scatter plot in Fig. 1.

We take an interest in a land subsidence signal with both a linear
trend and a superposed annual sinusoidal oscillation; all pixels are si-
mulated to experience surface deformation in the SAR line of sight
(LoS) with linear plus annual periodic terms, which are expressed as:

= +d v t a sin t(2 )i j i j i j, (8)

Table 1
Summary of the main SBAS approaches.

Reference Interferogram selection thresholds Pixel selection mmcriterion

Berardino et al. (2002) Perpendicular baseline (130 m) Coherence
Mora et al. (2003) Perpendicular baseline (24 m) Coherence
Schmidt and Bürgmann (2003) Perpendicular baseline (200 m) Coherence
Lanari et al. (2004) Perpendicular baseline (130 m) Coherence
Hooper (2008) Perpendicular baseline

Temporal baseline
Doppler baseline

Amplitude and phase stability

López-Quiroz et al. (2009) Perpendicular baseline (500 m)
Temporal baseline (9 months)

Coherence

Goel and Adam (2014) Perpendicular baseline (150 m)
Temporal baseline (150 days)

Statistical homogeneity test
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where di, j is the deformation of the ith pixel at the jth image with cor-
responding acquired time tj, vi and ai are the linear rate (velocity) and
annual amplitude of the same pixel, respectively. We select this model
form because time series analysis of other environmental phenomena
do likewise (e.g., Davis et al., 2012; Didova et al., 2016).

The linear rates are chosen as −2 mm/year, −20 mm/year and
−100 mm/year over the four-year period, which are representative of
Earth deformation rates measured by InSAR (e.g., Cavalié et al., 2013;
Chaussard et al., 2014; Elliott et al., 2010). The sinusoidal annual
amplitude of Earth surface deformation has been drawn from the lit-
erature, which can range from the order of millimeters to centimeters
(e.g., Baldi et al., 2009; Bock et al., 2012; Davis et al., 2012; Dzurisin
et al., 2009; Murray and Lohman, 2018; Osmanoǧlu et al., 2011). For
example, Osmanoǧlu et al. (2011) report annual amplitudes of GNSS
stations ranging from several millimeters up to ~2.6 cm. Murray and
Lohman (2018) found seasonal amplitudes up to ~5 cm in California
detected by InSAR and peak-to-peak amplitudes of ~6 cm from GNSS in
the Amazon Basin (cf. http://geodesy.unr.edu/NGLStationPages/
stations/NAUS.sta).

While there can be large annual signals in various parts of the world,
we simulate more conservative cases of simulated deformation signal
with pairs of signal parameters of linear rate plus annual amplitudes
that are shown in Table 2. We then apply a Monte Carlo simulation
(e.g., Kroese et al., 2014) with 1000 pixels for each scenario. The
number of tested pixels is chosen to avoid prohibitive computation
times for the simulation experiments. The deformation time series of
the 1000 pixels are then computed for the 133 equally spaced 11-day
acquisition times using Eq. (8), and are termed herein the “simulated
deformation time series”. These are considered to be the “true” or noise-
free signal, and will be used to validate the SBAS InSAR data processing
results later in this paper.

With 133 InSAR images, the maximum possible number of inter-
ferograms is 8778 (Eq. (3)). These 8778 noise-free interferograms are
then computed based on this simulated deformation SAR time series:
the phase difference of an interferogram connecting ith and jth images is
computed by subtracting the simulated time series value at ith time from

that at jth time.
The simulated residual errors and noise, herein called the “residual

interferogram noise”, are then added to the noise-free interferograms.
Three sets of assumed 8778 Gaussian noise values with zero mean are
generated for each of the 1000 pixels and bounded within [−2;+2]
mm, [−5;+5] and [−10;+10] mm, which correspond to standard
deviations of approximately± 0.5 mm,±1.5 mm and±3.0 mm, re-
spectively (Table 3). Specifically, for each pixel, we first generate 8778
random samples of a Gaussian distribution with a zero mean and a
standard deviation of one. These are subsequently rescaled so that their
ranges lie exactly within the bounds set in Table 3. We acknowledge
that the residual errors and noise in real SAR data may not be Gaussian
with zero mean because they originate from a variety of sources (e.g.,
DEM error, orbital ramp, atmospheric delay, etc). However, we would
only ever be able to postulate the actual statistical distribution of real
InSAR data errors, so instead make the simple assumption of Gaussian
zero mean for our simulations.

The simulated residual interferogram noise is generated in such a
way that longer baseline lengths are assigned with noise of higher
magnitude. Additionally, they have different ranges with the temporal
baselines being from ~0.03 year to ~3.97 years, whilst the perpendi-
cular baselines being between −376 meters and 400 meters. Therefore,
they are first “normalized” by dividing all elements by the maximum
value:

=

=

norm btemp
btemp

max btemp

norm bperp
abs bperp

max bs bperp

_
( )

_
( )

[a ( )]

i
i

i
i

(9)

where norm_btempi and norm_bperpi are the “normalized” temporal and
perpendicular baselines of the ith interferogram, respectively which
correspond to their values before “normalization” btemp and bperp, abs
(.) and max(.) indicate the absolute and maximum values, respectively.

By this “normalization”, the normalized temporal and perpendicular
baselines will have ranges between ~0 and 1. The normalized baseline
lengths of all interferograms are then computed with the ith inter-
ferogram being:

= +norm bsln norm btemp norm bperp_ _ _i i i
2 2

(10)

The normalized baseline lengths computed from Eq. (10) are then
used to assign the residual interferogram noise. Specifically, for each
pixel with corresponding noise set of 8778 samples, the noise is as-
signed to interferograms by a way that an interferogram with a longer
normalized baseline length will be assigned with noise of larger mag-
nitude. We acknowledge that the influences of temporal and perpen-
dicular baselines on interferometric noise are different. While the in-
fluence of perpendicular baselines can be quantified via their
relationship with DEM error (e.g., Lee et al., 2012), the influence of
temporal baselines is more sophisticated, which is dependent on the
change of atmosphere and target environment over time (Zebker et al.,
1997; Zebker and Villasenor, 1992). Here, for the sake of simplicity, we
assume the two types of baseline are equal in terms of their weights in
calculating normalized baselines using Eq. (10).

Fig. 1. Scatter plot of simulated perpendicular baseline history. Each black dot
represents a SAR scene acquisition.

Table 2
The three cases of simulated signals showing linear rates and annual amplitudes
used for experiments in Sections 5–7.

Signal case Linear rate [mm/yr] Annual amplitude [mm]

1 −2 2
2 −20 5
3 −100 10

Table 3
Simulated noise with various ranges and standard deviations.

Noise case Range [mm] Standard deviation [mm]

A [−2;+2] ±0.5
B [−5;+5] ±1.5
C [−10;+10] ±3.0

L.K. Bui, et al. Remote Sensing of Environment 247 (2020) 111941
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5. Disruptive influences of residual noise and network
configuration

In order to assess the influence of residual noise and small baseline
network configuration on SBAS-derived land deformation rates, various
interferogram networks were formed through the use of different
thresholds for the temporal baselines. Here, for the sake of simplicity
initially, we restrict the perpendicular baseline length to 200 m and
only vary the temporal baseline. Table 4 shows the temporal baseline
thresholds that are applied with the resulting number of interferograms.

We apply the SBAS approach to subsets of our simulated noisy in-
terferograms (Table 4) using the GIAnT software package (Agram et al.,
2013; Agram et al., 2012). GIAnT incorporates most of the SBAS-based
data processing approaches mentioned in the Introduction, including
the “traditional” SBAS (e.g., Berardino et al., 2002; Cavalié et al., 2007;
Schmidt and Bürgmann, 2003; Usai, 2003), the new SBAS (NSBAS)
(Doin et al., 2011; López-Quiroz et al., 2009), and the Multiscale InSAR
Time-Series (MInTS) (Hetland et al., 2012); cf. Table 1. Time series of
deformation relative to the first-acquired SAR image time for each of
the 1000 test pixels are generated assuming that there is no deforma-
tion in the first acquisition. Both unweighted linear regression and
unweighted LS are then applied to those SBAS time series in order to
compute SBAS-derived linear rates and annual sinusoids, which are
then compared with our simulated parameters listed in Table 2. The
RMS of the difference between simulated deformation time series (the
“true” signal) and SBAS-derived deformation time series is also com-
puted in order to test dependence on the number of interferograms
chosen.

5.1. Influences on simulated linear signals

We first examine a signal where Eq. (8) is adopted solely with the
linear rate components of −2 mm/yr, −20 mm/yr and −100 mm/yr
(Table 2). Fig. 2 shows results from different combinations of simulated
deformation rates and residual interferogram error and noise. Here, the
assumed simulated linear rates are considered as the “true” rates to
which the SBAS-derived rates are compared and the differences be-
tween them are herein termed the “errors in rate determination”. The
SBAS rates are derived by fitting a linear regression to the corre-
sponding deformation time series, then the errors in rate determination
are calculated. The errors are shown in Fig. 2, and are the same in both
magnitude and sign among all three simulated linear rate cases from
Table 2. Generally, the larger simulated residual interferogram noise
(i.e., [−10;+10] mm vs. [−5;+5] mm vs. [−2;+2] mm) leads to
larger errors in the rate determination (cf. blue, green and black plo-
tlines in Fig. 2), whereas an increase in the number of chosen inter-
ferograms (by choosing a larger temporal baseline threshold) can re-
duce this error.

Additionally, while their trends are in an agreement for the cases of
larger signal rates (i.e., −20 mm/yr and −100 mm/yr, Fig. 2, middle
and right), contradictory trends exist in the cases of small deformation
(i.e., −2 mm/year, Fig. 2, left), particularly when networks of fewer
interferograms are used together with higher residual noise of [−5;

+5] mm and [−10;+10] mm. Importantly, the SBAS-derived de-
formation trends are affected by not only the magnitude of noise, but
also its relation to the signal size (see Fig. 2, left), thus low SNR is more
likely to result in incorrect or even contradictory trend estimates. In
essence, small deformation rates in the presence of proportionally large
noise may lead to spurious results, which become exacerbated in the
presence of significant data gaps.

The “errors in rate determination” are next compared for the net-
works listed in Table 4 and shown in Fig. 3 for four example pixels.
Within a specific network and pixel, the retrieved rate errors are
identical when the same residual noise is applied regardless of the
signal rates. In other words, if a specific network chosen from Table 4
with corresponding interferogram noise set is applied, then its error in
rate determination will not depend on the magnitude of simulated rate
(cf. blue, orange and yellow bars in Fig. 3). This is attributable to SBAS
using the LS principle (Schmidt and Bürgmann, 2003) or the SVD
method (Berardino et al., 2002). The results computed from applying
the LS principle depend on redundant interferograms, together with
residual interferogram error and noise that in turn depends on the
configuration of the network (Berardino et al., 2002). The SBAS net-
work configuration is specified by the design matrix A as per Eq. (1).
Both the LS principle and SVD method result in the same InSAR-derived
rates, except that the latter can cope with disconnected subsets of in-
terferogram networks, whereas the former cannot (Berardino et al.,
2002; Gong et al., 2016). Consequently, the same error in rate de-
termination will result if the same residual noise is applied to a network
regardless of the deformation rate.

5.2. Influences on non-linear signals

We next examine the signal combining both a linear trend and si-
nusoidal annual terms. As mentioned in Section 4, we apply pairs of
signal parameters of linear rate plus annual amplitude, which are −2
mm/yr plus 2 mm, −20 mm/yr plus 5 mm, and −100 mm/yr plus 10
mm (Eq. (8)) as listed in Table 2. Via this simulation, we will test the
influence of non-linearity of signal on unweighted linear fit rates, which
are derived by fitting a linear regression to the SBAS-derived de-
formation time series.

Like the previous test of a linear signal only, the simulated de-
formation time series is generated by first applying Eq. (8) for all 1000
pixels prior to forming 8778 noise-free interferograms and applying
simulated residual interferogram noise. The networks shown in Table 4
are then applied in sequence to select corresponding stacks of inter-
ferograms, which are then utilized with the SBAS method. Both the
unweighted linear fit and unweighted LS methods are subsequently
adopted to derive linear rates and annual amplitudes. Additionally, the
RMSs between simulated and SBAS-derived time series are calculated.

Fig. 4 shows unweighted linear-fit rates computed using the linear
rates from Table 2 and the simulated noise in Table 3. These results in
Fig. 4 reflect the influence of signal non-linearity on linear-fit rates
through biases in rate errors, particularly the case of large annual
amplitudes, i.e., strongly non-linear, (cf. Fig. 4 between red lines and
coloured polylines). This is due to the inappropriate functional model
used here to derive the linear rates, i.e., linear regression, which is
applied to linear plus annual simulated signal.

The simulated signal function is known (Eq. (8)), so we adopt this
for estimating both rates and annual amplitudes utilizing unweighted
LS (Fig. 5). The results indicate similar behavior as that in the case of
solely linear signals (cf. Fig. 5 (top) with Fig. 2) and those with biases
removed (cf. Fig. 5 (top) and Fig. 4). Again, this is attributable to the
SBAS method in which the results computed depend on the config-
uration of the network and residual interferogram noise but not the
deformation rate. Also, it is due to the more appropriate functional
model used to obtain the linear rates where the influence of the signal
non-linearity cancel out. It is therefore an important warning that a
suitable function should be utilized to calculate linear rates in case the

Table 4
List of networks tested in this study based on various temporal baseline
thresholds. The perpendicular baseline threshold is set fixed at 200 m (Fig. 1).

Temporal baseline threshold [days] Number of interferograms

22 263
33 376
44 498
55 621
66 745
77 863
88 986
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Fig. 2. Comparison of rates computed by unweighted linear fit from combinations of different deformation signals. From left to right are simulated linear rate cases 1
to 3 (Table 2) contaminated by simulated residual interferogram noise. Black, green and blue polylines are SBAS derived rates computed from simulated data with
simulated noise cases A to C, respectively (Table 3). Red horizontal lines represent the simulated rates. The black dashed box in the left panel is used to contrast
between positive and negative rates that indicates contradictory trends. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. Comparison of rate errors computed from different networks for four example pixels. The top, center and bottom rows correspond to simulated noise cases A,
B and C (Table 3). Note the different scale on the y-axis for each noise case. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Earth's surface experiences non-linear deformation, particularly in
strongly non-linear cases.

In the case of applying LS estimation with an appropriate function,
not only the linear rate, but also its accompanying parameters, e.g., the
annual amplitude in this study, will be obtained. This is shown in Fig. 5

(bottom), where the computed annual amplitudes indicate that more
interferograms in the SBAS network result in more accurate LS esti-
mation of the annual amplitude. In addition, the errors in those com-
puted parameters are dependent on the SBAS network configuration
and residual interferogram noise, but not the signal magnitude.

Fig. 4. Comparison of unweighted linear-fit rates from linear plus annual signals. From left to right are simulated signal cases 1 to 3 (Table 2) contaminated by
various simulated residual interferogram noise. Black, green and blue polylines indicate the results computed from simulated data with noise cases A, B and C
(Table 3). Red horizontal lines represent the simulated rates. The black dashed box in the left panel used to contrast between positive and negative rates that indicates
contradictory trends in some cases. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Comparison of unweighted LS rates (top panel) and annual amplitudes (bottom panel) computed from linear plus annual signals. From left to right correspond
to simulated signal cases 1 to 3 (Table 2) contaminated by various simulated residual interferogram noise. Black, green and blue polylines indicate the results
computed from simulated data with noise cases A, B and C (Table 3). Red horizontal lines represent the simulated rates or annual amplitudes. The black dashed box in
the top-left panel used to contrast between positive and negative rates that indicates contradictory trends in some cases. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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6. Influence of data gaps on SBAS-derived rates

In this Section, we study the influence of SAR data gaps on SBAS-
retrieved rates. This is motivated by the likelihood of irregular temporal

sampling of SAR data due to scheduling or other technical issues, such
as decorrelation during winter snow cover. We now conduct simula-
tions with a network of 986 interferograms formed by applying a
temporal baseline threshold of 88 days (~ 3 months, Table 4), with two

Fig. 6. Comparison of the interferogram network gaps in percentage. Gray lines indicate InSAR interferograms connecting images denoted by black dots. Red dots
indicate missing images (i.e., gaps). The number under each network refers to the number of interferograms. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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scenarios of data gaps. In the first scenario, missing images are due to
technical and/or scheduling issues, which are considered random, and,
in the second scenario, missing images are chosen in the northern
winter season which are assumed to have low coherence due to extreme
weather.

6.1. Random data gaps

In this Sub-section, we assume there are, in turn, 5%, 10%, …, 50%
of acquisitions missing from our simulated time series. First, missing
images are randomly chosen. Interferograms having connections with
those missing images are subsequently identified and eliminated from
the original list of 986 interferograms. Fig. 6 compares the network
without gaps and those corresponding to various amount of gaps in
percentage from 5% to 50% with an increment of 5%.

Here, we use the same linear plus annual signals as those used in
Section 5.2 according to simulated signal cases shown in Table 2. For
each network shown in Fig. 6, the SBAS approach in GIAnT is applied to
all 1000 pixels in which the deformation time series at each pixel is
derived. The unweighted LS is then applied to calculate the deformation
rates and the RMSs of the difference between simulated and SBAS-de-
rived time series are then calculated.

Fig. 7 compares SBAS-derived unweighted LS rates between the
SBAS network with no gaps and those of different percentages of data
gaps. Fig. 8 shows the corresponding RMSs of the difference between
simulated and SBAS-derived deformation time series. These RMSs are
the same for all three cases of linear plus annual signal (Table 2). Fig. 7
and Fig. 8 confirm that data gaps have an effect on the retrieved rates
and RMSs with a noticeably larger influence in cases of higher gap
percentages, particularly the 50% case. Contradictory trends are ob-
tained for some pixels the case of large residual interferogram noise and
low magnitude rates (Fig. 7, left). This is likely caused by a weak SBAS
network configuration (see Fig. 6 with the 50% gaps case).

The influence of random data gaps on the errors in rate determi-
nation and the RMSs of the difference between simulated and SBAS-
derived deformation time series is caused by a reduction in the number
of interferograms when the percentage of gaps increases. However, a
reduction in interferograms in the SBAS network can be caused by
random data gaps (Figs. 7 and 8) or by changing the temporal baseline
thresholds (as shown in Section 5). We compare errors resulting from
fewer interferograms in a SBAS network due to (1) random gaps and (2)
temporal baseline thresholds in Fig. 9 (cf. blue and green polylines).
This demonstrates the role of the network configuration, where a net-
work may have the same number of interferograms, but will have

higher errors depending on which interferograms are selected.
The random gap scenario results in more redundant interferograms,

making the network more robust, especially in the case of noisier time
series (Fig. 9, right plots). Therefore, in this case of randomly selected
data gaps, mixed interferograms covering both short and long time
spans makes the network more robust in recovering the deformation
signal compared to the case of no gaps in which only short-time in-
terferograms are chosen, which are limited by the threshold.

6.2. “Winter” data gaps

The previous test on data gaps in Section 6.1 is based on the fact
that SAR data is missing sometime due to technical and/or scheduling
issues, which we consider random. There is an alternative situation
where there may be “user-defined” data gaps in which data missing is
due to, e.g., very low coherence caused, for instance, by snow cover. We
term this situation “winter data gaps” where all images acquired in the
winter season (we use December to February for the Northern Hemi-
sphere) are removed (Fig. 10).

The results of this simulation experiment are shown in Fig. 11. We

Fig. 7. Comparison of unweighted LS rates computed from linear plus annual signals between the interferogram network of no gaps and those with randomly chosen
gaps of various percentages. From left to right correspond to simulated signal cases 1 to 3 (Table 2) contaminated by various simulated residual interferogram noise.
Black, green and blue polylines indicate the results computed from simulated data with noise cases A, B and C (Table 3). Red horizontal lines represent the simulated
rates. The black dashed box in the left panel used to contrast between positive and negative rates that indicates contradictory trends in some cases. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Comparison of the RMSs of the difference between simulated and SBAS-
derived deformation time series of all pixels between the SBAS interferogram
network of no gap and those with random gaps. Black, green and blue polylines
indicate the results computed from simulated data with noise cases A, B and C
(Table 3). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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compute unweighted LS rates and RMSs of the difference between si-
mulated and SBAS-derived deformation time series for networks with
no gaps, random data gaps and “winter data gaps”, with the latter two
having the same number of images. To avoid a disconnection in the
SBAS network, we apply a network of 1340 interferograms formed by
applying a temporal baseline threshold of 121 days (~4 months), in-
stead of ~3 months as in Section 6.1, and a perpendicular baseline
threshold of 200 m.

Fig. 11 compares unweighted LS rates for each network with RMSs
between simulated and SBAS-derived deformation time series shown in
Fig. 12. Fig. 10 shows the number of missing images is the same be-
tween the two cases of data gaps, which is 34 out of 133, and, though
the missing images are selected differently, the number of

interferograms linking the remaining images are nearly the same; 750
for random gaps and 744 winter gaps. However, the influence of these
two different data gap cases are distinct with the “winter” gaps having a
larger influence, as confirmed by both retrieved rates in Fig. 11 and
RMSs in Fig. 12.

This is caused by the strength of the network configuration, which is
more robust with interferograms at regular intervals in the random gaps
network but with “blocks” of gaps in the “winter” case, leading to a less
robust network (cf. Fig. 10 (middle) and (right)). This alerts users that,
in addition to the effect of fewer interferograms and gap percentages,
the strength of network configuration is another factor influencing the
SBAS results, in which one should try to design a SBAS network that
does not contain long gaps in the time series.

Fig. 9. The influence of the change in number of interferograms chosen by various temporal baseline thresholds (blue) and due to random data gaps (green) on SBAS-
derived unweighted LS rates. From top to bottom: simulated signal cases 1, 2 and 3 (Table 2). From left to right: residual interferogram noise cases A to C (Table 3).
Black dashed boxes in the top panel used to contrast between positive and negative rates that indicates contradictory trends in some cases. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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7. Optimal design of InSAR SBAS networks using redundancy
numbers

As has been demonstrated in Section 5, a spurious deformation
trend (uplift instead of simulated subsidence) can be retrieved by ap-
plying SBAS, particularly in the case of small deformation in relation to
large residual error and noise (i.e., a low SNR). By using more inter-
ferograms, the rate error can be decreased as the redundancy in the
network is increased. However, an increased number of interferograms
will also result in a higher computational burden. In this Section,
“optimal” network design from geodesy is adopted for InSAR based on
redundancy or r-numbers (Section 3). The motivation here is to in-
vestigate the relation between RMSs of the difference between simu-
lated and SBAS-derived deformation time series, number of selected
interferograms and the redundancy number.

Here, we test interferogram networks determined by combinations
of temporal baseline thresholds, from one month to four years long,
with a one-month increment, and perpendicular baseline thresholds of
100 m, 200 m and 300 m. As a result, 144 networks are formed with the
minimum and maximum number of interferograms being 251 and
8778, respectively. Eq. (6) is then applied to each of these networks to
compute the r-numbers.

The reliability matrix R computed from Eq. (6) contains the r-
numbers located on its diagonal (ri). The objective of this optimization

Fig. 10. Interferogram networks without (left) and with (middle, right) missing images. The number of missing images is 34 out of 133 corresponding to about 25%,
which are selected randomly (middle) and in the northern winter season (right). The networks are formed using a temporal baseline threshold of ~4 months and a
perpendicular baseline threshold of 200 m. Gray lines indicate interferograms, with images denoted by black dots. Red dots indicate missing images (i.e., gaps). The
number under each network refers to the number of interferograms. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 11. Comparison of unweighted LS rates computed from linear plus annual signals according to interferogram networks with no gaps, random gaps and “winter”
gaps. The networks adopt a temporal baseline threshold of ~4 months and a perpendicular baseline threshold of 200 m. From left to right are simulated signal cases 1
to 3 (Table 2). Black, green and blue polylines indicate the results computed from simulated data with noise cases A, B, and C (Table 3). Red horizontal lines represent
the simulated rate. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Comparison of the RMSs of the difference between simulated and
SBAS-derived deformation time series for all pixels between the interferogram
networks of no gaps and those with randomly chosen gaps and “winter” gaps
corresponding to ~25% missing images. Black, green and blue polylines in-
dicate the results computed from simulated data with noise cases A, B and C
(Table 3). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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is to maximize these r-numbers by using their minimum value to re-
present the reliability of a network so that the r-numbers of all mea-
surements in that network are larger or equal to this minimum value.
The r-number of a network is thus defined as:

=r min r( )i (11)

The SBAS method was then applied to derive deformation time
series for all 1000 pixels, again using GIAnT. We examine the same
linear plus annual signals as those tested in Sections 5.1 and 6 (Table 2).
The unweighted LS method is then utilized to derive SBAS-retrieved
rates and the RMSs of the difference between simulated and SBAS-de-
rived deformation time series are calculated.

The dependence of computed r-numbers and SBAS-retrieved annual
rates on the number of selected interferograms are shown in Fig. 13,
where the change in SBAS-derived unweighted LS rates presents the
same patterns among the three cases (Table 2) of simulated signals.
Furthermore, the higher the r-number, the closer the agreement be-
tween simulated and SBAS-retrieved rates. The two rates are, in parti-
cular, nearly identical when the r-numbers are greater than ~0.9.

The dependence of the RMSs of the difference between simulated
and SBAS-retrieved deformation time series on the number of chosen
interferograms are shown in Fig. 14 (left) for all three cases of simu-
lated noise (Table 3). The r-number increases as the number of inter-
ferograms increases, constrained by temporal baseline thresholds, and a
reduction in the RMSs. The RMSs decrease from a small r-number until
~0.8, after which the change becomes negligible.

We then apply 1/10 RMS as a trade-off value to identify the “op-
timal” r-number in which a network with a minimal number of inter-
ferograms selected and with all RMSs smaller than 1/10 noise range,
which are 0.2 mm, 0.5 mm and 1.0 mm for the simulated residual in-
terferogram noise ranges shown in Table 3. Recall that the RMSs are

dependent on the SBAS network and residual interferogram noise but
not signal magnitude (Fig. 3). Thus, Fig. 14 indicates an “optimal” r-
number being ~0.86 for a SBAS network of 1911 interferograms, sug-
gesting r-numbers between ~0.8 and ~0.9 to be a suitable range for the
“optimal” design of SBAS networks.

The efficiency of the obtained “optimal” r-numbers are confirmed
by not only the RMS trade-off, but also the computation time as shown
in Fig. 14 (right), where the network of 1911 interferograms (for the
“optimal” r-number) runs for less than four minutes compared to nearly
20 min for the largest network of 8778 interferograms. This shows ef-
ficiency in processing time for the SBAS inversion step only. In reality,
SBAS data processing with a full workflow, which comprises additional
steps of interferogram formation and error correction (e.g., DEM, or-
bital and atmospheric errors) the time difference between processing all
8778 interferograms and the optimal 1911 interferograms can be sub-
stantial. Additionally, this “optimal” design of SBAS networks keeps the
number of interferograms to a minimum, which limits the disk storage
space required.

Fig. 15 shows an example of the SBAS-derived deformation time
series of a pixel compared with a simulated linear plus annual signal of
−2 mm/yr plus 2 mm (i.e., the simulated signal case 1 in Table 2)
according to selected cases of computed r-number of ~0.2, ~0.8 and
~0.9. The results of applying residual noise cases A, B, and C (Table 3)
are shown in Fig. 15. In all cases, the results corresponding to the
computed r-numbers of ~0.8 and ~0.9 show close agreement with the
simulated signal. In contrast, however, large differences between si-
mulated and SBAS-derived deformation time series are shown in the
case when the r-number is ~0.2 (251 interferograms), particularly in
the case of large residual interferogram noise (i.e., bounded within
[−10;+10] mm) where the difference in both its trend (i.e., de-
formation or uplift) and magnitude is shown (cf. Fig. 15 (right) between

Fig. 13. The dependence of the r-numbers and SBAS-derived unweighted LS rates for 1000 pixels on the number of chosen interferograms with various linear plus
annual signals. From left to right are simulated signal cases 1 to 3 (Table 2). Black, green and blue polylines show the results for noise cases A, B and C (Table 3). Red
horizontal lines represent the simulated rates. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 14. (left): Comparison of the change in the r-numbers and the RMSs of the difference between simulated and SBAS-derived deformation time series. Black, green
and blue polylines indicate the results computed from simulated data with noise cases A, B and C (Table 3). Dashed lines indicate the “optimal” r-numbers
corresponding to the networks with smallest amount of interferograms chosen with all RMSs being smaller than the chosen trade-off values of 1/10 of the residual
interferogram noise (Table 3). (right): Comparison of the change in the r-numbers according to SBAS network interferogram numbers and computation time.
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the blue and red polylines).
Fig. 15 shows that if the r-number is too small (< 0.2), spurious or

even contradictory rates can result, as was shown similarly in Section 5.
Therefore, caution must be exercised when using InSAR to detect small
rates of deformation in the presence of large noise (low SNR). This is
where the redundancy number may be of assistance in gauging the
reliability of the estimated rates. This also shows that, though the re-
liability of a network is relevant to its ability to detect and resist against
gross errors, in this specific case of InSAR SBAS networks, a good
agreement between the r-numbers and errors in rate determination is
present that is useful for “optimal” design of InSAR SBAS networks.

8. Conclusions

This study has used simulated Gaussian noise with zero mean ap-
plied to interferograms computed from simulated linear and annual
sinusoidal trends to demonstrate the effects of interferometric noise on
InSAR SBAS derived deformation. This extends to how different SBAS
network configurations may influence the estimated deformation rates.
Different simulated rates are tested (Table 2), including the addition of
annual periodic amplitudes so as to represent a range of real SAR data.
A Monte Carlo simulation with 1000 pixels for each scenario was
adopted. Firstly, we investigated the linear deformation signal, finding
that the SBAS linear-fit deformation trends were sensitive to both the
magnitude of interferometric noise and signal size. The unweighted
linear-fit rate error was the same in both magnitude and size for all
rates if the same residual noise is applied to a given network. The trend
may become contradictory for small magnitude deformation where, for
example a − 2 mm/yr rate could be estimated from the SBAS least
squares or SVD method as a spurious uplift. This contradictory result
was shown when small temporal thresholds of 33 days or less were
used, which resulted in a less robust SBAS network configuration with
fewer interferograms.

When we tested the linear plus annual periodic signal with inter-
ferometric noise, the linear-fit rates were biased in the linear rate (from
the 1000 pixels) compared to the simulated rate. Alternatively, when
we estimated the rates using a more suitable periodic functional model,
rather than just linear regression in the presence of non-linear terms,
the estimated rates were not biased. This demonstrates the potential for
errors to be introduced by using simple linear regression when non-
linear deformation may also be occurring.

Because one of the strengths of the SBAS method is to provide re-
dundant small interferogram baselines (in space and time), we

simulated the effect of missing SAR acquisitions in the time series. We
presumed that these gaps in the time series would be (1) random that
may be due to satellite mission scheduling issues, or (2) blocks of
missing interferograms over, for example, a northern winter with snow
covered ground that causes decorrelation. Our simulation results in-
dicate that “winter” gaps causes a larger error in the estimated rates and
in the RMSs of the differences between simulated and SBAS-derived
deformation time series than for random gaps resulting from missed
acquisitions. However, the RMS for both random gaps and no gaps were
mostly 1 mm, while the winter gaps RMS was generally< 2 mm, sug-
gesting that random gaps have little influence. This is highlighted when
random gaps are compared to temporal threshold limits, showing that
for the same number of interferograms, limiting temporal thresholds
can cause errors of up to 6 mm/yr with noisy simulated data, compared
to ~3 mm/yr for random gaps when using similar interferogram
numbers. This suggests that it is the configuration of the SBAS network
that is more important, to the point that caution should be exercised
when reducing the temporal baseline to increase the coherence of the
interferograms, because the trade-off may be a geometrically weak
SBAS network that is vulnerable to incorrect rate estimation in the
presence of noisy data and non-linear deformation.

We ran an additional simulation investigating whether redundancy
numbers from geodetic theory could be adapted to design an optimal
SBAS network. The simulation results suggest that r-values between
~0.8 and ~ 0.9 indicated a robust SBAS network design, and that in-
cluding more interferograms beyond this provided little improvement
in the accuracy of the rate estimation.

We conclude finally that SBAS network design can be critical to
correctly estimate deformation rates, particularly in the case of low
signal to noise ratios, and where the deformation may be non-linear.
Notably, we found an alarming artifact in a couple of different simu-
lation scenarios, where uplift was indicated by the SBAS rather than
true simulated subsidence. It therefore appears that the configuration
(network design) is more important than simply the number of inter-
ferograms used, which is important given any limits on computing re-
sources. For this reason, we recommend the use of redundancy numbers
to help optimize SBAS network design.
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Fig. 15. An example of simulated and SBAS-derived deformation time series of simulated signal of linear rate plus annual amplitude of −2 mm/yr plus 2 mm
(simulated signal case 1 in Table 2) contaminated by residual interferogram noise cases A (left), B (middle) and C (right) as listed in Table 3. The results are computed
from applying various SBAS interferogram networks corresponding to computed r-numbers of ~0.2 (251 interferograms, blue polylines), ~0.8 (1571 interferograms,
green polylines), and ~0.9 (2330 interferograms, black polylines), respectively. Red polylines indicate the simulated deformation time series. The blue line in the
right panel shows the extreme case where spurious uplift is indicated, whereas subsidence is simulated. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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