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A Sequential Monte Carlo Framework for Noise
Filtering in InSAR Time Series

Mehdi Khaki , Mick S. Filmer , Will E. Featherstone , Michael Kuhn, Luyen K. Bui , and Amy L. Parker

Abstract— This article proposes an alternative filtering
technique to improve interferometric synthetic aperture
radar (InSAR) time series by reducing residual noise while
retaining the ground deformation signal. To this end, for the first
time, a data-driven approach is introduced, which is based on
Takens’s method within the sequential Monte Carlo framework,
allowing for a model-free approach to filter noisy data. Both
a Kalman-based filter and a particle filter (PF) are applied
within this framework to investigate their impact on retrieving
the signals. More specifically, PF and particle smoother [PaSm;
to avoid confusion with persistent scatterers (PSs)] are tested
for their ability to deal with non-Gaussian noise. A synthetic
test based on simulated InSAR time series, as well as a real test,
is designed to investigate the capability of the proposed approach
compared with the spatiotemporal filtering of InSAR time series.
Results indicate that PFs and more specifically PaSm perform
better than other applied methods, as indicated by reduced errors
in both tests. Two other variants of PF and adaptive unscented
Kalman filter (AUKF) are presented and are found to be able
to perform similar to PaSm but with reduced computation time.
This article suggests that PFs tested here could be applied in
InSAR processing chains.

Index Terms— Data-driven technique, interferometric syn-
thetic aperture radar (InSAR), non-Gaussian noise, particle
filter (PF), sequential technique.

I. INTRODUCTION

MONITORING deformation (primarily subsi-
dence/uplift) of the Earth’s surface is important

to understand its physical processes and the resulting hazards,
e.g., earthquake, volcanoes, landslides, anthropogenic
subsidence, or uplift. Various techniques are employed to
do this, but interferometric synthetic aperture radar (InSAR)
has become a standard tool to undertake such studies by
remotely sensing large areas at high spatial and temporal
resolutions [1]. In principle, InSAR uses two complex
SAR images from repeat satellite passes to produce an
interferogram over the common area. For a review of InSAR
fundamentals, see [2].

Individual interferograms are highly sensitive to various
noise sources, such as those attributed to spatial and temporal
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decorrelations [3], atmospheric effects [2], topographic effects,
thermal noise, and orbit errors [4]. These can affect the sought-
after deformation signal, both in the estimated velocities
and the time series. Advances in processing methods, such
as multitemporal InSAR where multiple interferograms are
“stacked” [5], persistent scatterers (PSs) [6], small baseline
subset (SBAS) [7], and a combination of these approaches [8]
can help reduce the effects of noise on the computed velocity,
especially when a long time series with a large number of
SAR scenes is available.

For deformation time series of interest to investigate geo-
physical events, the noise in the estimated displacement may
be more problematic. The major source of noise in the InSAR
time series is the combination of tropospheric delay, which
comprises vertical stratification and turbulent components [2].
The vertical stratification component can be estimated by its
relation with height [9], but the turbulent component is variable
in flat areas, so more difficult to determine [10].

Various filtering methods are used at different stages of
InSAR processing. For example, the Goldstein filter [11] is
applied to the wrapped interferogram phase to reduce noise
and improve the unwrapping process. A filter parameter (α)
is implemented that can be set between zero and one; if
set to zero, no filtering is done, while a setting of one will
result in heavy filtering that is likely to significantly change
the structure of the interferogram [12]. Reference [8] uses a
spectral filter on small baseline interferograms to assist in the
selection of slowly decorrelating filtered phase (SDFP) pixels
used in his combined SBAS and PS method. Spatiotemporal
filtering (STF) is used in [13] in the Stanford method for
PSs (StaMPS) (see also [14]) on postprocessed PS to reduce
temporal noise in the time series (mostly time- and space-
variable turbulent tropospheric noise [10]) and for spatial noise
relative to other PSs. Like all filters, this can be set at different
temporal and spatial scales, which will tend to remove noise,
but may also remove parts of the sought-after deformation
signal, particularly where the noise and deformation display
similar characteristics in time and/or space [15].

Here, we focus on reducing residual noise with a view to
reducing processing and observation noise in the InSAR time
series. A number of methods have been used to estimate this
component [10], [16]. The difficulty with applying such filters
is that they can remove most noise present but at the cost
of the geophysical signal of interest. Hence, it is a balance to
“tune” the filter so that its spatial and temporal settings can be
“optimal” to remove as much noise as possible while retaining
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the information of interest. Notably, the STF employed in
StaMPS assumes Gaussian noise, yet geophysical signals of
interest may be nonlinear in time, e.g., aseismic slip, or slow-
moving landslides [14].

The main objective of this article is, therefore, to test some
alternative filters that may improve upon results from STF
(e.g., available in StaMPS) to reduce the noise in InSAR
time series. Different studies have been undertaken to improve
the signal-to-noise ratio in InSAR signals, especially prior
to the unwrapping process [11], [17]. These filters can gen-
erally be categorized into two groups, i.e., filtering in the
spatial [19], [20] and frequency [11], [21] domains. These
filters have been shown to be effective for smoothing as well
as dealing with nonlinear phase noises [22]. Nevertheless,
there are a number of factors that degrade the performance
of spatial and spectral filters. For example, multiple interfer-
ograms are required in most of these filters to better model
noise, especially atmospheric noise [23]. The methods also
rely excessively on coherent pixel-wised data, which may not
always be available [24]. The spatiotemporal filters, despite
being easier to apply due to their simplicity, can alter or
remove the fringe structures in the signals [22]. A number
of studies have been put forward to address this [25], [26].
Furthermore, the Gaussian noise assumption is a fundamental
principle in a large group of filters, which, in reality, may not
always be the case [27].

In order to address these problems, an alternative InSAR
filtering approach is proposed here. The technique is based on
a data-driven method, namely Takens’s filter [28]–[30]. Our
proposed approach implements the Takens method for attractor
reconstruction within the sequential Monte Carlo framework,
allowing for a model-free approach to filter noisy data [31].
Based on Takens’s theorem, equations underlying a model,
which describe the time evolution of a system, e.g., land
deformation time series, can be replaced by the information
contained in the data. This, along with the implementation of
Monte Carlo techniques, such as Kalman filters (KFs) and par-
ticle filters (PFs) for updating the system based on the current
data, allows the handling of noise in the observed data [29].

Here, for the first time, we apply the Takens filter to reduce
residual noise in InSAR data. Contrary to previous studies that
used KF and PF techniques for phase unwrapping and/or noise
reduction [32], [33], the Takens method relies only on data and
avoids assumptions on the state-space model noises and can
be computationally faster [30]. To assess the performance of
the Takens method, we tested it on synthetic and real data
and compared with [13] STF, which is usually applied to
postprocessed PS.

II. METHODOLOGY

The proposed filtering scheme comprises two steps in a
sequential process, i.e., forecast then analysis, similar to data
assimilation techniques [34]–[36]. Sequential methods do not
require an adjoint (like variational methods) and are becoming
increasingly popular because of their reasonable computa-
tional requirements, as they do not need to record and use
historical data. In the forecast step, the state estimate at time
t (e.g., land deformation) and its corresponding probability

density function (PDF) are forwarded in time to t + 1 using a
state transition operator. Monte Carlo methods are commonly
used in the forecast step (based on ensembles or particles).
These are then filtered in the analysis step based on the
likelihood of the observations (e.g., simulated observations).
Traditionally, a dynamical model is used in the forecast step;
however, a problem arises when a model is not available.
To address this, the Takens filter is applied to form the
state transition operator (see Section II-A). Various filtering
methods can then be used for the analysis step to update
forecast PDF such as Kalman (e.g., ensemble Kalman filtering)
or point-mass weight (e.g., PF). Here, three variants of most
commonly used sequential techniques, i.e., adaptive unscented
Kalman filter (AUKF), PF, and particle smoother (PaSm), are
applied (see Sections II-B–II-C). We also test STF [13] to
assess the capability of the proposed filtering method. The
STF is “tuned” to determine the “optimal” settings for the
comparison. This includes applying different values for various
parameters used in the STF, such as bandpass phase filters and
low-pass cutoff, to reach the best performance compared to the
“truth.” The corresponding outcomes are then used to evaluate
the proposed filtering scheme.

A. Takens’s Filter

The Takens filter does not rely on a model and its corre-
sponding equations, which significantly decreases the compu-
tational burden with comparable outcomes with respect to a
standard case. The absence of a model in the InSAR time
series filtering process makes the Takens filter a potential
candidate to be used for forecasting. Reference [29] showed
that this filter has a high capability for time series filtering in
the presence of various noises. The Takens method is used to
reconstruct the model, e.g., following the terminology of [30]
shown by f , for the forecast step with a local proxy f̃ . This
is done using a set of training data based on the InSAR time
series to represent the state of the system. The training data
are obtained from the delay vector as well as neighboring
grid points. The delay vector x (at t) can be formed using the
historical state variables, e.g., d temporal delays of InSAR line
of sight (LoS), x◦, following:

xt = [x◦
t , x◦

t−1, . . . , x◦
t−d ]. (1)

Next, similar delay vectors located at the N nearest neighbors,
i.e., grid points located close to the point of interest (based on
Euclidean distance) within a set of training data, are derived by

x1
t = �

x◦1
t , x◦1

t−1, . . . , x◦1
t−d

�

x2
t = �

x◦2
t , x◦2

t−1, . . . , x◦2
t−d

�
(2)

...

xN
t = �

x◦N
t , x◦N

t−1, . . . , x◦N
t−d

�
.

Once delay vectors are calculated, a local model can be
created for the forecast step, i.e., to advance state from t to
t + 1 and correspondingly xt to xt+1. The local model f̃ can
then be generated (in its simplest from) using a weighted
average of the training data according to

xt+1 = ω1γ
1x1

t+1 + ω2γ
2x2

t+1 + · · · + ωN γ N xN
t+1 (3)
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with

ωi = e−(di/σ )2

�N
j=1 e−(d j/σ )2 (4)

where the distance between the j th neighbor of xt is
indicated by di . σ is applied to control the contribution of
each neighbor in the local model and it is called a bandwidth
parameter (here σ = 2). γ k , k = 1, . . . , N in (3) refers to the
coherence factor, which is calculated as an absolute value of
the correlation coefficient between two SAR scenes following:

γ1,2 = ||E(z1, z∗
2)||�

E(||z1||2) · E(||z2||2)
(5)

where z1 and z2 are the complex returns for two SARs and
E(.) represents the expectation function. The inclusion of
coherence in the local model formulation decreases the effect
of noisy observations with smaller γ . Afterward, the forecast
state xt+1 is updated in the next step based on Bayes’s
rule [34]. This is done to update the forecast state based on
the current observations.

As shown in [29], the availability of unpredictable noise
components in the observed data is a common context for
the application of the Kalman–Takens filter, which is able to
handle observation noise using sequential forecast and update
steps. Applying this method to the entire training data set
reduces the observation noise in the training data, which will
improve future filtering and also provide better neighbors to
improve forecasting [37]. The application of the Kalman–
Takens filter also allows for better quantification of the uncer-
tainty in the state, e.g., through the state forecast covariance
matrix, which will then be reduced using the update step
(see Sections II-B–II-C). While delay coordinate embedding
replaces the missing model, the Kalman (or particle) update
offers a maximum likelihood estimate of the reconstructed
state in the presence of noise. This combination of two filters,
therefore, contains complementary strengths of the two.

Three different methods from the sequential Monte Carlo
framework are used for the update step. These include
AUKF [38], PF [39], and PaSm [40]. The Kalman-based and
PFs are specifically selected due to their ability to deal with
different types of noise. When non-Gaussian noise exists,
the particle approach is particularly well suited [39]. These
filters are based on point mass representations of probability
densities, which generalize the traditional KF and do not rely
on a Gaussian noise assumption.

B. AUKF

An AUKF is based on the Monte Carlo scheme, which
generates random variables and propagates them through a
nonlinear function using a deterministic sampling approach for
producing 2L + 1 sigma points with L being the dimension
of the state as

x0
t = xt (6)

xi
t = xt + (

�
(L + λ)Pt )i i = 1, . . . , L (7)

xi+L
t = xt − (

�
(L + λ)Pt )i i = 1, . . . , L (8)

where Pt represents the state covariance matrix. The associated
weights to the sigma points are estimated by

w0
s = λ

(L + λ)
(9)

w0
c = λ

(L + λ)
+ (1 − α2 + β) (10)

wi
s = 1

2(L + λ)
i = 1, . . . , 2L (11)

where λ is the scaling parameter with λ = α2(L + β) − L.
α (0–1) controls the spread of the sigma points and β is
usually set to 0 [41]. The generated sigma points are then
integrated with a model using the local proxy f̃ created in the
Kalman–Takens filter to estimate the forecast state. Once done,
the forecast averages and corresponding covariance matrices
are calculated following [41]:

x f
t+1 =

2L�
j=0

w j
s x f, j

t+1 (12)

y f
t+1 =

2L�
j=0

w j
s Hx f, j

t+1 (13)

where H is the observation operator that maps the model states
into the observation space to update state estimates. Next,
the analysis step is employed, which updates the forecast state
x f

t+1 using incoming observations yt+1 to calculate the analysis
state xa

t+1 based on the Kalman update equations

xa
t+1 = x f

t+1 + K(yt+1 − y f
t+1) (14)

with K being the Kaman gain and calculated according to
covariance matrices associated with the process (Qt ) and
observation (Rt+1) (see more details in [41]). Critical to the
success of this method is the selection of the filter noise covari-
ance and, in particular, the process noise covariance matrix Q.
Reference [38] shows that unscented KF performance is highly
dependent on Q, especially for nonlinear problems. Here,
we use the method of [38] to adaptively estimate this covari-
ance matrix. The general idea of [38] is to use the increment,
�t = yt − y f

t , to estimate the noise covariance at each time
step, as per [38].

C. PF

PF is also a sequential Monte Carlo method, which repre-
sents the state PDF by a set of weighted particles [39]. The
state PDF is then decomposed as

P(xt |y1:t) ≈
M�

i=1

ωi
t δ

�
xt − xi

t

�
(15)

where {xi
t ; i = 1 . . . M} (with M being the particle size) are

the particles at time t , observations between time 1 and t are
denoted by y1:t , ωi

t are the weights of the particles (normalized
importance weight), and δ is the Dirac delta function. In the
forecast step, PF just integrates the particles forward with
the local proxy f̃ , exactly as AUKF, and their weights remain

Authorized licensed use limited to: CURTIN UNIVERSITY. Downloaded on July 30,2020 at 09:51:34 UTC from IEEE Xplore.  Restrictions apply. 



KHAKI et al.: SEQUENTIAL MONTE CARLO FRAMEWORK FOR NOISE FILTERING IN InSAR TIME SERIES 1907

the same. In the analysis step, only the weights, and not the
particles, are updated using

ωi
t = P

�
yt |xi

t |t−1

�
�

j P
�
yt |x j

t |t−1

� . (16)

PaSm is also applied in a largely similar manner by propa-
gating particle members and their associated weights in the
forecast step and updating the latter in the analysis step. The
main difference between the two approaches is estimation of
the state distribution. Contrary to PF, the distribution at a par-
ticular time is calculated in PaSm using all the observations up
to some later time. This results in using additional information
(e.g., taking advantage of a few later observations), which
leads to smoother estimates than PF and likely to a better
performance, especially if state estimation at a particular time
is not required instantly [40]. A forward–backward smoother
is assumed here, which proceeds by first making a forward
filtering pass to compute the filtered distribution at each time
step, and then a backward smoothing pass to determine the
smoothing distribution [42]. The distribution can be approxi-
mated by

P(xt |y1:T ) ≈
M�

i=1

ωi
t |T δ

�
xt − xi

t

�
(17)

with y1:T = {y1 . . . yT }, (T ≥ t+1) and corresponding particle
weights of

ωi
t |T = ωi

t

⎡
⎣

M�
j=1

ω
j
t+1|T

P
�
x j

t+1|xi
t

�
�N

k=1 ωk
t P

�
x j

t+1|xk
t
�
⎤
⎦ . (18)

A resampling technique of systematic resampling [43] is
applied to account for the so-called “degeneracy problem” in
which the weights of all particles become negligible except
only for a very few, requiring a prohibitive number of particles
to prevent the particles collapsing [39]. The method draws only
one random number u1 ∼ U(0, 1/N) and the remaining N −1
numbers are then calculated from u1 as

Ui = u1 + (i − 1)

M
, i = 2 . . . M. (19)

These are then used to select a new set of particles according
to the multinomial distribution [39]. Fig. 1 shows a summary
of the filtering framework and the applied filters for the InSAR
noise reduction process in this article.

III. EXPERIMENT SETUPS

A. Synthetic Data

InSAR LoS phase observations and their associated errors
are simulated following [18] and [23] with similar aver-
age properties to the TerraSar-X satellite mission [44].
The simulation is done over the Perth (WA, Australia)
metropolitan region with 11-day repeats from October 2012 to
October 2016 within the spatial extents of 32.25◦S–31.65◦S
and 115.60◦E–116.10◦E with ∼30 m pixel size. In sum-
mary, the process includes introducing land subsidence using
the point pressure model, simulating topographic errors,

Fig. 1. Schematic of the filtering steps based on the Takens method, as well
as sequential techniques, i.e., AUKF, PF, and PaSm at every assimilation cycle.

atmospheric artifacts, orbital errors, and temporal decorrela-
tions as per [18], and lastly creating interferograms. We then
apply the 3-D phase unwrapping method in StaMPS small
baseline MTI [14]. Once the synthetic interferograms are
produced, they are merged and converted to deformation time
series. To this end, small baseline subset (SBAS) is used
with the spatial perpendicular baselines less than 150 m and
temporal baselines less than 100 days. The proposed filtering
methods are then applied to the simulated LoS data. These
synthetic data are simpler than real interferograms and do
not include, e.g., nonlinear phase-topography gradients and
quadratic orbital ramps. Nevertheless, they can sufficiently
reproduce the primary features of InSAR data for testing the
proposed filters. For an additional analysis, real data will be
considered in Section III-B.

B. Real Data

The InSAR component of the real test data used 109 X-band
scenes (wavelength 3.1 cm) over Perth, WA, Australia, from
the TerraSAR-X (TSX) satellite mission under the Ger-
man Aerospace Center (DLR) science project LAN1499.
The scenes were acquired between October 2012 and
October 2016 with a temporal resolution of 11 days but with
some gaps due to operational priorities for the satellite. The
109 scenes were used to process 442 SBAS interferograms
using the Doris software [45] within StaMPS small baseline
MTI processing [14]. The SDFP pixels [8] were downsampled
to 30-m spatial resolution using the procedure described
in [14] to reduce the many millions of SDFP pixels to a
manageable data set. Long-wavelength orbit and ionospheric
effects were accounted for via the estimation and removal of
a phase ramp, which is suitable for the TSX scene extent
of 30 × 50 km [14]. The LoS deformation time series was
computed from the SBAS interferogram SDFP differences.

The time series is filtered to reduce the residual noise using
various filters, including the proposed Takens approach. The
results are then compared with GPS time series over the study
period (October 2012 to October 2016), which is provided
by the Nevada Geodetic Laboratory (http://geodesy.unr.edu/)
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Fig. 2. InSAR time series at a randomly selected point (latitude −31.802◦ and longitude 115.885◦) from different filtering scenarios based on the synthetic
data compared to the no filter results and the “truth.” Note that average errors between the filtered times series and “truth” are indicated on each subfigure.
The average error of noisy (unfiltered) data is 10.29 mm.

for the international GNSS service (IGS) station “PERT” in
Perth. GPS data are used to assess the performance of the
InSAR filters in the real test, albeit for a single site and not
whole area.

IV. RESULTS AND DISCUSSION

A. Synthetic Test

An evaluation of the proposed filters, also compared to the
existing method of STF, is assumed in this section. The main
objective is to reduce the impact of noise by applying different
filters and retrieve the artificially introduced subsidence signals
from the simulated phase. To this end, all the filters are applied
to the synthetic data using their “optimum” configurations and
their results are validated against the unperturbed data (the
simulated “truth”). Fig. 2 shows the time series (at a single
location) from the perturbed (red) and unperturbed (green) LoS
deformation, as well as the results of each filter applied (blue).
Moreover, detailed results can be found in Table I, where
maximum differences, RMSE, standard deviation (STD), and
correlation coefficients are reported. In Table I, average results
over the entire scene are presented. Fig. 2 shows that the
application of all the filters decreases the misfits with respect
to the unperturbed displacements. The level of improvement,
however, is different for different filters, as it can also be seen
from the indicated average error for each case. These errors are
calculated as the average of absolute differences between the
filtered time series and the unperturbed time series. The PFs,
and particularly PaSm, achieve the “best” results. We gauge
“best” as the closest agreement with the simulated “truth”
as determined by the lowest RMSE and highest correlation
coefficient (see Table I). PaSm reduces RMSE from 10.30 mm
in the perturbed data to 6.63 mm (a reduction of 36%).

The weakest performance belongs to the STF based on
both Fig. 2 and Table I. The correlation between filtered and
unperturbed (“truth”) time series for the STF is 0.57, smaller
than PF (0.78) and PaSm (0.89). From Fig. 2, in general,
smoother time series is obtained from the AUKF, which is
observed to better alleviate high-frequency noise than STF
and PF. This resulted in smaller STD (6.17 mm) compared
to STF (7.34 mm) and PF (6.81 mm). PaSm is found to better
improve the time series, which contrary to other filters, do not
rely on a Gaussian noise assumption. This allows the particle
approaches to model the errors more realistically, leading to
better performance especially for PaSm, e.g., with the lowest
RMSE (4.22 mm) and the highest correlation (0.89). The most
promising results among the three proposed filter variants
also belong to PaSm, slightly better than PF, which can be
attributed to the applied forward–backward algorithm allowing
for using more information in the filtering process.

Spatial distributions of the displacement errors (i.e., the mis-
fit between the results and the simulated “truth”) based on
the simulated data are shown in Fig. 3. At each grid point,
the temporally averaged error (i.e., average of error time series
at each grid point) is calculated for all these filters, as well as
when no filter (noisy data) is applied. Smaller errors are found
from PF and PS, and to a lesser degree AUKF, than STF. These
can be inferred from the lower differences over the entire area,
which supports the previous results indicating the superiority
of the proposed methods. Another major discrepancy among
the STF errors maps with those of the new filters refers to a
smoother spatial pattern in the latter (see Fig. 3). The smoother
errors maps of PF, PaSm, and AUKF can be explained by
the use of neighboring points in reconstructing the model for
the Takens approach. The proxy model is constructed from
N neighbor points, which means implicit spatial smoothing
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TABLE I

SUMMARY OF STATISTICS DERIVED FROM IMPLEMENTING DIFFERENT FILTERS (WITH RESPECT TO “TRUTH”) ON THE SIMULATED INSAR
TIME SERIES (2012–2016 FOR ALL FILTERS) AND OVER THE WHOLE AREA. RMSE REDUCTION IS WITH

RESPECT TO ORIGINAL DATA (I.E., NO FILTER APPLIED)

Fig. 3. Temporally averaged “error” maps from different filtering scenar-
ios (mm). Error is the difference between the filtered results and “truth” data.

is applied in the filter’s forecast steps. Fig. 3 also shows that
the PaSm results in a smoother spatial pattern and smoother
error time series than PF due to the former implementing the
filtering followed by a smoothing process [46], while the latter
only applies filtering.

Larger errors can be found around the imposed deformation
source. Such larger error amplitudes are more pronounced in
the STF and AUKF “error” maps, yet, much lesser than the
error map of noisy data. To better represent this, the filters’
RMSE results at constant distances from the deformation
source are compared in Fig. 4. For this purpose, RMSE values
are spatially interpolated to these radial distances using the
nearest neighbor approach. As the distance increases, the error
values for all filters decrease but this is more noticeable
for STF, which demonstrates the largest error close to the
deformation source. Again, PaSm and, to a lesser degree,
PF hold the best performance slightly better than AUKF and
considerably better than STF. Overall, similar to the previous
results, the particle approaches (PF and PaSm) obtain “better”
results against the other applied filters.

B. Real Test

To further investigate the performance of the filters in a
more realistic scenario, their results from real InSAR data
from TerraSar-X are compared with GPS time series. This is

Fig. 4. Filters’ average RMSE results at constant distances from the simulated
deformation source.

not an optimal evaluation, as GPS data are subject to various
error sources, which can be different than those in InSAR
data. However, in the absence of reliable validation data,
such an evaluation may provide some insight into which
the filtering method can better reflect the land displacements
albeit at one point. Fig. 5 shows the time series of InSAR
data (red), GPS (green), and filtered time series (blue). The
comparison is done over a GPS station between InSAR data
filtered by various methods and GPS time series (see Fig. 5),
which is converted to LoS data based on the TerraSar-X
satellite look and heading angles (following [47, eq. (1)]).
The correlation values, i.e., between each two time series are
also indicated for each case. Improvements can be seen for
all the applied filters based on the better agreement between
the filtered results and GPS data. Nevertheless, better results
are provided by PFs. In some time periods, e.g., after 2015,
large misfits between the STF results and GPS observations
exist. AUKF, PF, and PaSm, on the other hand, provide
better results (smaller differences to GPS), which shows their
ability to better capture changes. However, larger correlation
values are obtained between PF and PaSm results and GPS
data. Overall, AUKF, PF, and PaSm time series indicate
better agreement with the GPS data. The best performance is
obtained from applying PaSm with 0.74 correlation to GPS
time series against 0.34 for STF, 0.53 for AUKF, and 0.69 for
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Fig. 5. InSAR time series at “PERT” station (latitude −31.802◦ and longitude 115.885◦) from different filtering scenarios using TerraSar-X data compared to
no filter and the GPS time series. Note that the correlation between the filtered times series and GPS is indicated on each subfigure. The correlation between
noisy data and GPS time series is 0.18.

PF. These results agree with the synthetic experiment results,
in which PFs also performed better.

V. CONCLUSION

An alternative InSAR noise filtering scheme was proposed
in this article, which comprises different steps, including the
Takens method for attractor reconstruction, followed by the
sequential Monte Carlo framework, allowing for a model-
free approach to filter noisy data. The method has significant
benefits because of its capability to deal with non-Gaussian
noise. A synthetic test was designed based on the simulated
InSAR LoS phase data to investigate the capability of the
proposed approach compared with the STF with the results
indicating that the particle approaches (PF and PaSm), and to
a lesser degree AUKF, show a larger reduction in residual noise
both temporally and spatially. Specifically, PaSm successfully
reduced RMSE by 34%, approximately 5%, 10%, and 15%
better than PF, AUKF, and STF, respectively. Moreover, PFs,
especially PaSm, appear to agree better with GPS in a real test.
The capability of PaSm and PF in dealing with non-Gaussian
noise can explain their better performance, especially against
the Kalman-based filter AUKF; however, for the PaSm, this
was obtained at the expense of a heavier computational burden.
PF, on the other hand, achieved the closest performance among
other filters in a more efficient manner, e.g., in terms of
processing time and complexity. The next alternative can be
AUKF, which is highly capable of reducing noise using much
less population size. These results suggest that the PFs tested
here using the Takens approach can offer alternative methods
for dealing with noisy InSAR signals, which depends on the
filters’ optimization.
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