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The Stable Model Semantics of Normal
Fuzzy Linguistic Logic Programs

Van Hung Le®™)
Faculty of Information Technology, Hanoi University of Mining and Geology,
Duc Thang, Bac Tu Liem, Hanoi, Vietnam
levanhung@humg.edu.vn

Abstract. Fuzzy linguistic logic programming is a framework for rep-
resenting and reasoning with linguistically-expressed human knowledge.
It is well known that allowing the representation and the manipulation
of negation is an important feature for many real-world applications. In
this work, we extend the framework by allowing negation connectives to
occur in rule bodies, resulting in normal fuzzy linguistic logic programs,
and study the stable model semantics of such logic programs.

Keywords: Fuzzy logic programming - Stable model - Hedge algebra

1 Introduction

Humans mainly use words, which are essentially qualitative and vague, to
describe real world phenomena, to reason, and to decide. Also, humans often
express knowledge linguistically and hence make use of fuzzy predicates. More-
over, in linguistically-expressed human knowledge, various linguistic hedges are
usually used simultaneously to express many levels of emphasis. Thus, it is nec-
essary to have formalisms that can directly deal with linguistic terms and hedges
since those systems can represent and reason with linguistically-expressed human
knowledge to some extent.

Fuzzy linguistic logic programming (FLLP), introduced in [1], is a logic
programming (LP) framework without negation for dealing with vagueness in
linguistically-expressed human knowledge, where truth values of vague sentences
are linguistic terms, and linguistic hedges can be utilized to state various levels
of emphasis. In FLLP, every fact or rule is evaluated to some degree stated by
a linguistic truth value, and hedges can be utilized as unary connectives in rule
bodies. For instance, the statement “(A worker is good if he is rather skillful and
very hard-working) is highly true” can be represented using the following rule:

good(X) «— A(Rather skillful(X), Very hard_working(X)).HighlyTrue

The framework can have a counterpart for most of the concepts and results of
traditional definite LP [1,2]. The procedural semantics [1] and tabulation proof
procedures [3] of FLLP can directly compute on linguistic terms to give answers
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to queries. Hence, in the presence of vagueness, FLLP can provide to human
reasoning a computational approach.

It is well known that allowing the representation and the manipulation of
default negation is an important feature for many real-world applications. In
this paper, we extend FLLP by allowing negation connectives to occur in rule
bodies, resulting in normal fuzzy linguistic logic programs, and present the stable
model semantics of such programs.

The paper is organized as follows: Sect. 2 gives an overview of FLLP with-
out negation while Sect.3 presents FLLP with negation and its stable model
semantics. Section 4 discusses related work and Sect. 5 gives several directions
for future work and concludes the paper.

2 Preliminaries

2.1 Linguistic Truth Domains

In hedge algebra (HA) theory [4,5], values of the linguistic variable Truth,
e.g., Very True, Very Slightly False, can be regarded as being generated from
the set of primary terms G = {False,True} using hedges from a set H =
{Very, Slightly, ...} as unary operators. There is a natural ordering among
such values, for instance, Very False < False, where x < y states that = repre-
sents a truth degree less than or equal to y. Hence, a set X of such values of Truth
is a partially ordered set and can be characterized by an HA X = (X, G, H, <).

Linguistic hedges either decrease or increase the meaning of terms, thus they
can be considered as order operations, i.e., for all h € H and for all x € X, we
have either hx > z or hx < z. We denote by h > k if h modifies terms more
than or equal to k, i.e., for all z € X, either hx < kx < z or z < kx < hx.
Note that ‘H and X are disjoint, so the same notation < can be used without
confusion for the order relations on H and X. Let V, R, H, S, A, M, c¢t, and
¢~ stand respectively for Very, Rather, Highly, Slightly, Approzimately, More or
less, True, and False. We have S > R (h > k iff h > k and h # k) since, e.g.,
Sct < Ret < ¢t and ¢ < Re™ < Sc™, and V > H since, e.g., cm < He™ <
Vet and Veo < He™ < c™.

‘H can be split into disjoint subsets H™ and H~ characterized by HT =
{hlhct > ¢t} = {hlh¢™ < ¢} and H™ = {h|hc™ < ¢*} = {hlhc¢™ > ¢ }. For
instance, given the set H = {V,H, A, M, R, S}, H can be divided into Ht =
{V,H} and H~ = {A,M,R,S}. Two hedges in each of H* and H~ might
be comparable, e.g., V and H, or incomparable, e.g., A and M. An HA X =
(X,G,H,<) is called a linear HA (lin-HA) if both H™ and H~ are linearly
ordered. For instance, the HA X = (X,G,{V,H, R, S}, <) is a lin-HA since H
is split into H* = {V, H} with V > H and H~ = {R, S} with S > R. For any
lin-HA X = (X,G,H, <), we have X is linearly ordered.

A linguistic truth domain (LTD) X taken from a lin-HA X = (X,G,H, <)
is the linearly ordered set X = X U {0,W, 1}, where 0 (AbsolutelyFalse), W
(the middle truth value), and 1 (AbsolutelyTrue) are respectively the least, the
neutral and the greatest elements of X, and for all z € {0,W,1} and for all
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h € H, we have hx = x [1,3]. To have well-defined Lukasiewicz operations, we
consider only finitely many truth values. An [-limit HA, where [ is a positive
integer, is a lin-HA in which all terms have a length of at most [+ 1, i.e., at most
[ hedges. An LTD taken from an [-limit HA is finite.

Ezample 1. The 1-limit HA X = (X, {c™,c"},{V,H, R, S}, <) gives the LTD
X = {vo =0,v1 = Ve ,v9 = Hc ,v3 =c¢ ,u4 = Rc,v5 = Sc™,v5 = W,v7; =
Sct vg = Ret,vg = ¢, v190 = Het,v1; = Vet v = 1}, in which truth values
are listed in ascending order.

2.2 Truth Functions of Hedge Connectives

Let I ¢ H be an artificial hedge, called the identity, defined by Vo € X, Iz = «.
I is the least element in each of HT U{I} and H~ U{I} [1,3]. An extended order
relation <, on H U {I} is defined by: Vh,k € HU {I}, h <. k if one of the
following conditions is satisfied: (i) h € H™,k € H™; (ii) h,k € HT U {I} and
h <k (iii) h,k € H- U{I} and h > k. We denote h <. k if h <. k and h # k.

Let X = (X,{c*,c™},H,<) be a lin-HA. Truth functions h® : X — X of all
hedges h € H U {I} satisfy the following conditions [3,6,7]:

Vo e {0,W,1},h®%(z) = = (1)

Ve e X, I*(x) =2z (2)

h®(het) =" (3)

it 2> g, b (@) > B (y) ()

Vk € HU{I} such that h <. k,h®(x) > k*(x) (5)

Truth functions of hedges are non-decreasing and preserve 0 and 1. Moreover,
truth functions of all truth-stressing hedges h € H* are subdiagonal (h*(z) < z),
and those of all truth-depressing hedges h € H~ are superdiagonal (h®*(z) > z).
Condition (3) ensures that if the truth value of the sentence “Lucia is young”
is very true, then that of the sentence “Lucia is very young” is true [8,9]. It is
shown in [1] that truth functions of hedges always exist.

2.3 Operations on Linguistic Truth Domains

Godel t-norm, its residuum, and Godel t-conorm can be defined as [1,3]:
Cq(vi,v;) = min(v;, vj),
2 (00 = {

V& (vi,v5) = max(v;, v;).

v, i< g
v; otherwise,
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Lukasiewicz t-norm, its residuum, and Lukasiewicz t-conorm can be defined
on a finite LTD X = {vg,...,v,} with vg <wv; <--- < v, as [1,3]:

N vi+j_nifi+jfn>0
Crvi,vj) = { Vo otherwise,
e y_ Jun ifie <y
=1 (vj,vi) = {vnﬂ_i otherwise,
o/ N _ vi+jifi—|—j<n
VL (vi,v5) = {vn otherwise.
All the residua are non-decreasing in the first argument and non-increasing in
the second, and all the other operations are non-decreasing in all arguments.
The negation is defined as follows [1]: given = oc, where o is a string of
hedges (including the empty one) and ¢ € {ct, ¢}, then y = —x, if y = o’ and
{¢,d} = {cT,c7}, eg., Vet = =V and Ve = -Vt
Each of the t-norms and its residuum satisfy the following properties [10]:

C(b,r) < hiff r <—* (h,b) (6)
(Vb)(Yh) C(b, —* (h,b)) < h (7)
(Vb)(Vr) «* (C(b,7),b) >r (8)

2.4 Fuzzy Linguistic Logic Programming Without Negation

The language is a many-sorted (or typed) predicate language without function
symbols. Clauses in logic programs are without negation. The fact that function
symbols do not appear in the language makes FLLP implementable. Without
function symbols, Herbrand universes of all sorts of variables of a finite logic
program are finite, and so is the Herbrand base (consisting of all ground atoms)
of the program. This, together with a finite LTD, allows obtaining the least Her-
brand model of a logic program by finitely iterating an immediate consequence
operator from the least Herbrand interpretation. As usual the underlying lan-
guage of a program P is assumed to be defined by constants (if no such constant
exists, we add some constant a to form ground terms) and predicate symbols
occurring in P.

Connectives consist of the following: Ag, A (Godel and Lukasiewicz con-
junctions); Vg, Vy (Godel and Lukasiewicz disjunctions); «q, < (G6del and
Lukasiewicz implications); and hedges as unary connectives. For a connective c,
its truth function is denoted by ¢®*. Moreover, it is shown in [2] that linguistic
aggregation operators can be used in rule bodies.

A term is either a constant or a variable. An atom (or atomic formula) is
of the form p(ty, ..., t,), where p is an n-ary predicate symbol, and t1, ..., ¢, are
terms. A fact is a graded atom (A.a), where A is an atom called the logical
part of the fact, and a is a truth value apart from 0. A body formula is defined
inductively as follows: (i) an atom is a body formula; (ii) if B; and By are
body formulae, then so are A(By, Bs), V(B1, Bs), and hBjy, where h is a hedge
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connective. A rule is a graded implication (A < B.r), where A is an atom called
rule head, B is a body formula called rule body, and r is a truth value apart from
0; (A < B) is called the logical part of the rule. In a graded formula (¢.t), ¢ is
understood as a lower bound to the exact truth value of . A fuzzy linguistic
logic program (positive program, for short) is a finite set of facts and rules, and
there are no two facts (rules) having the same logical part, but different truth
values. Thus, a program P can be represented as the following partial mapping:

P : Formulae — X \ {0},

where the domain of P, denoted dom(P), is finite and composed only of logical
parts of facts and rules. For each formula (¢.t) € P, P(p) = t.

Let P be a program, and X the LTD; a fuzzy linguistic Herbrand interpreta-
tion (interpretation, for short) f of P is a mapping from the Herbrand base Bp
to X, associating with each ground atom in Bp a truth value in X.

The ordering < in X is extended to interpretations pointwise as follows: for any
interpretations f1 and fs of a program P, f1 T fo iff f1(A) < f2(A), VA € Bp.
Let ® and @ denote the meet (or infimum, greatest lower bound) and join (or supre-
mum, least upper bound) operators, respectively; for all interpretations f; and fo
of P and for all A € Bp, we have: (i) (f1 ® f2)(4) = f1(A) ® f2(A), and (i)
(fr® f2)(4) = f1(A) & f2(A).

Every interpretation f can be extended to all ground formulae, denoted
f, as follows: (i) f(A) = f(A), if A is a ground atom; (ii) f(c(B1,Bz)) =

c*(f(Bi1), f(Bz)), where By, By are ground formulae, and ¢ is a binary con-
nective; and (iii) f(hB) = h*(f(B)), where B is a ground body formula, and h
is a hedge. For non-ground formulae, since all variables in formulae are assumed

to be universally quantified, the interpretation f is defined as

fl@) = fF(Vp) = @{f(pI)|pV is a ground instance of ¢},

where Vo denotes the universal closure of p, which is obtained from ¢ by adding
a universal quantifier for every variable having a free occurrence in .

An interpretation f is an Herbrand model (model, for short) of a program P
if for all formulae ¢ € dom(P), we have f(¢) > P(p).

Theorem 1. [2] Let P be a positive program.

(i) Let Fp be the set of all interpretations of P. Then (Fp,®,®) is a complete
lattice.
(ii) Let F be a non-empty set of models of P. Then QF is a model of P.
(iii) Mp = @{f|f is a model of P} is the least model of P.

Definition 1 (Immediate consequence operator). Let P be a positive
program. The operator Tp that maps from interpretations to interpretations is
defined as follows: for any interpretation f and each ground atom A € Bp,

Tp(f)(A) = max{®{C;(f(B),r) : (A +; B.r) is a ground instance of a rule
in P}, ®{a: (A.a) is a ground instance of a fact in P}}.
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Since the Herbrand base Bp is finite, for each A € Bp, there are a finite
number of ground instances of rule heads and logical parts of facts which match
A. Therefore, both @ operators in the definition of T are, in deed, maxima. Tp
is shown to be monotone and continuous [1].

The bottom-up iteration of Tp is defined as follows:

1 ifk=0
TE(L) =< Tp(TE (L))  if k is a successor ordinal
S{TE(L)|n < k} if k is a limit ordinal,

where L denotes the least interpretation, mapping every ground atom to 0.
The least model Mp is exactly the least fixpoint of Tp, denoted [ fp(Tp), and
can be obtained by finitely bottom-up iterating Tp.

Theorem 2. [1] Let P be a positive program. Then there exists a finite number
a such that n > o implies TR(L) = lfp(Tp) = Mp.

3 Normal Fuzzy Linguistic Logic Programs

We extend FLLP with negation by allowing negative literals to occur in rule
bodies, resulting in normal fuzzy linguistic logic programs (normal programs,
for short). An extended positive fuzzy linguistic logic program (extended positive
program, for short) is a (positive) fuzzy linguistic logic program in which elements
of the truth domain can appear in the places of atoms in rule bodies, and the
value of such an element under any interpretation of the program is itself.

The notions of an interpretation, a model and the immediate consequence
operator of a normal or extended positive program can be defined similarly to
those of a positive program.

Definition 2 (Stable model). Let P be a normal program and I an interpre-
tation of P. Let P* denote a program consisting of all ground instances of rules
and facts in P. I is a stable model of P iff I = I', where the interpretation I’
is obtained according to the Gelfond-Lifschitz transformation [11] as follows:

(i) first, substitute (fix) in P* all negative literals by their values w.r.t. I, which
are computed as 1(~A) = —I(A) for all ground atoms A. Let P! denote
the resulting extended positive program, called the reduct of P w.r.t. I;
(ii) then, compute the least model I' of P.

This approach defines a whole family of models of a normal program P,
called the stable model semantics of P. In the subsequent proofs, it can be easily
seen that when proving a model of P being a model of P! or vice versa, since
the fact parts of the programs have the same ground instances, we only need
to deal with the rule parts. For each rule (A «— B.r) in P, B can be denoted
by B[Bi,...,Bm,Bmi1,...,7By], where 1 < m < n and By,..., B, are all
atoms appearing in B. Each ground instance of the rule in P* is of the form
(AY «— B[B1Y,...,Bn¥, By i19,...,~Byd].r), and the corresponding one in
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P! can be denoted as (AY « B[BY,..., B9, —I(By19),...,—1(Bp,9)].r),
where every negative literal —=B;¢, m 4+ 1 < ¢ < n, is replaced by its value under
1. Let B be the expression obtained from B by replacing every connective apart
from the negation with its truth function.

Theorem 3. Any stable model of a normal program P is a model of P.

Proof. Let (A «— B[By,...,Bm,"Bm+1,...,By].r) be any rule in P and I be
a stable model of P. By definition, I is the least model of P, so for all ground
instances (A «— B[B1Y,..., Bn9d, 7 Bmni1d, ..., B,d].r) in P* of the rule and
the corresponding one (AY « B[B1Y,..., Bp9, —1(By119),...,—I1(B,9)].r) in
P! we have:

Thus, for all ground instances (AY «— B[B1Y,..., Bp9, 7By 19, ..., Byd]) of
(A« B[By,...,Bn,"Bmnt1,...,7By]), we have:

r < @{I(AV — B[B19, ..., B9, ~Bpi19, ..., Bad])}
= T(A — B[Bh e ,Bm,ﬁBm+1, e ,ﬁBnD

Hence, I is a model of the rule (A «— B[By,..., By, 7 Bmnt1,. .., By].r). Since
the rule is arbitrary, I is a model of P. a

A normal program may have several stable models as in the following
example.

Ezxample 2. Given the LTD in Example 1, consider the program P consisting of
the following rules:

(good(X) «¢g —bad(X).VeT)
(bad(X) «¢g —good(X).Ve')

We will determine stable models of P. Let I = {(good(a),x), (bad(a),y)} be an
interpretation of P, where the constant a is added to form ground terms. The
reduct P! consists of the following rules:

(good(a) g —y.VeT)
(bad(a) ¢ —z.Vct)

The least model of P! is Mpr = {(good(a),Cq(—y,Vc")), (bad(a),Cq(—x,
Vet))}. Thus, [ is a stable model of P iff z = Co(—y, Ve') = min(—y, Ve™) and
y=Cq(—z,VeT) =min(—z, V). It can be seen that all Ve~ <z = —y < Ve©
(so Veo <y = —z < Vct) satisfying the conditions. That is, we have 11 stable
models I = {(good(a), z), (bad(a), —x)} such that v; = Ve~ <z < Vet = vqy.
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Furthermore, we have the following result. Note that as shown in Example 2,
a normal program may not have a least model, but may have several minimal
models.

Theorem 4. Any stable model of a normal program P is a minimal model of
P.

Proof. Let I be a stable model of P. By definition, I is the least model of PI.
We will prove that I is a minimal model of P. Suppose that there exists a model
J of P such that J = I. We will show that J is a model of P!. Since I is the
least model of P!, we have I C J, which is a contradiction to the hypothesis.
Let (A <« B[B1,...,Bm, Bm+1,-..,7By].r) be any rule in P. Each of
its ground instances in P* is of the form (AY <« B[B1Y,...,Bn?, " Bnt1
9,...,mB,Y].r), and the counterpart in P! is (AY <« B[BY,...,
B9, —1(By19),...,—1(B,9)].r). Since J C I, we have, for all m—+1 < i < n,
J(B;9) < I(B;9), hence —J(B;¥) > —I(B;9). J is a model of P, so we have:

r <J(A— B[B,...,Bm,~Bmit,s. .., Bn)])
< J(AY — B[ByY, ..., Bn®, B9, ..., ByY))
= —* (J(A9), B(J(B1Y), ..., J(Bn®), —J(Bins19), - .., —J (Bn?)))
< —* (J(AY), B(J(B19), ..., J(Bm®), —I(Bmsr?), ..., —I1(Bn9)))
= J(AY — B[B1Y,. .., B9, —I(Bpi1?0), ..., —I(B,9)])

The last inequality holds due to the fact that every truth function
in B (apart from the negation) is non-decreasing, and <«°® is non-
increasing in the second argument. Thus, J is a model of (AY
B[B1Y,...,By9, —I(By19),...,—I(B,9)].r) in PL. Since the rule in P is arbi-
trary, J is a model of P!, O

The notion of the immediate consequence operator Tp for a normal program
P is defined analogously to the case of positive programs. Similar to the case of
positive programs, a model of P is a pre-fixpoint of Tp and vice versa [12] as
follows.

Theorem 5. Let P be a normal program. Then an interpretation f is a model

of Piff Tp(f) E f.

Proof. First, let f be a model of P; we prove that Tp(f) C f. Let A be any
ground atom; consider the following cases:

(i) If A is neither a ground instance of the logical part of a fact nor a ground
instance of a rule head in P, then Tp(f)(A) =0 < f(4).

(ii) For each ground instance (A.a) of a fact, say (C.a), in P, since f is a model
of P, and A is a ground instance of C, we have a = P(C) < f(C) < f(A).
Hence, f(A) > @{a|(A.a) is a ground instance of a fact in P}.
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(iii) For each ground instance (A «; B.r), where i € {G, L}, of a rule, say (C.r),
in P, we have: C:(F(B).r) = Ci(F(B), P(C)) <) C(F(B), F(A —, B)) =
Ci(F(B), =2 (F(4), F(B))) <) f(4), where () holds since (4 —, B)
is a ground instance of C, and (**) follows from (7). Therefore, f(A) >
&{C:(f(B),r)|(A «; B.r) is a ground instance of a rule in P}.

By definition, Tp(f)(A) < f(A). Since A is arbitrary, we have Tp(f) C f.

Finally, let us show that if Tp(f) C f, then f is a model of P. Suppose there
is an interpretation f such that Tp(f) C f. Let C be any formula in dom(P).
There are two cases:

(i) (C.c), where c is a truth value, is a fact in P. For each ground instance A of
C, by the assumption Tp(f) C f, we have f(A) > Tp(f)(4) > ®{a|(A.a) is
a ground instance of a fact in P} > ¢ = P(C). Therefore, f(C) = @{f(A)|A
is a ground instance of C} > P(C).

(ii) (C.c) is a rule in P. For each ground instance A «; D of C, where j €
{G, L}, since Tp(f) C f, we have f(A) > Tp(f)(A4) > &{C;(f(B),r)|(A —;
B.r) is a ground instance of a rule in P} > Cj(f(D),c) =
C;(f(D), P(C)). Hence, f(A «; D) =<3 (f(4),F(D)) >() e
(C;(F(D), P(C)), f(D)) >t P(C), where (*) holds since «$ is non-
decreasing in the first argument, and (**) follows from (8). Consequently,
f(C) = ®{f(A <, D)|(A —; D) is a ground instance of C} > P(C).

Since C' is arbitrary, by definition, f is a model of P. a

However, for a normal program P, Tp may not be monotone as in the fol-
lowing example, so it does not necessarily have a least fixpoint.

Example 3. Consider a normal program P consisting of the following rule:
(good(X) «—¢g —bad(X).1)

Given an interpretation I = {(good(a), x), (bad(a),y)}, where x and y are truth
values, Tp(I) = {(good(a), —y), (bad(a),0)}. Clearly, Tp(I) is not monotone.

Theorem 6. Any stable model of a normal program P is a minimal fixpoint of
Tp.

Proof. First, we show that, for every interpretation I, Tp(I) for P coincides with
Tpr(I) for the extended positive program P’. In Definition 1,

(i) The second & operator is obviously the same for both Tp(I) and Tp:(I).

(ii) Concerning the first @, let (A < B[Bi,...,Bm, " Bmt1s...,Bn].1)
be any rule in P. For each of its ground instances (AY «—
B[B:1Y,...,B,0,7By19,...,mB,Y].r) and the counterpart (AY «
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B[B19, ..., Bpd, —1(Bpmi19), ..., —I1(Bpd)].r) in P, we have the follow-
ing:

C(I(B[B1Y,...,Bn¥,~Bmi1V,...,~B,V]),r)
=C(B(I(B1Y),...,I1(BnY),I(=Bp+19),...,1(=B,9)),r)
=C(B(I(B1Y),...,1(BynY), —I(Bm+19),...,—I1(Bp9)),r)
=C(I(B[B1Y,...,Bn9, —I(Byi19),...,—1(B,9)]),r)

By taking suprema for all the ground instances, we have:

&{C(I(B[B1Y,..., By, By 19, ...,~B,0]),r)}
= {C(I(B[B1Y, ..., Bpd, —I(Bypi19),...,—1(B,9)])),7)}

Therefore, Tp(I) = Tpr(I) for every interpretation I.

Now, let M be a stable model of P. By definition, M is the least model of
the extended positive program PM. By Theorem 2, M is the least fixpoint of
Tpm,s0 M =Tpu (M) =Tp(M), ie., M is a fixpoint of Tp. It remains to show
that M is a minimal fixpoint of Tp. Assume that there is a fixpoint N of Tp
such that N C M. By Theorem 5, N is a model of P. Moreover, by Theorem 4,
M is a minimal model of P, so we have M = N. a

As shown in the following example, for a normal program P, Tp may have
many minimal fixpoints, which might not be obtained by the bottom-up iteration
of Tp. Moreover, a minimal fixpoint of Tp may not be a stable model of P.

Example 4. Consider a normal program P consisting of the following rules:

(good(X) «—¢ good(X).1)
(bad(X) «—¢g —good(X).1)

First, we determine stable models of P. Let I = {(good(a), x), (bad(a),y)}, where
x and y are truth values, be an interpretation of P. The reduct P' is as follows:

(good(a) «—¢g good(a).1)
(bad(a) —¢ —x.1)

The least model of P! is Mpr = {(good(a),0), (bad(a), —z)}. Thus, I is a stable
model of P iff I = Mpr, ie., I = {(good(a),0), (bad(a),1)}.

Finally, we determine the set of fixpoints of Tp. Given an interpretation I =
{(good(a),x), (bad(a),y)}, we have Tp(I) = {(good(a), x), (bad(a), —x)}. Hence,
I is a fixpoint of Tp iff I = {(good(a), ), (bad(a),—x)}, for all truth values x.
It can be seen that all such fixpoints are minimal, but only the interpretation
{(good(a),0), (bad(a),1)} is a stable model.
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4 Related Work

Of the various approaches to the management of negation in logic programming,
the stable model semantics approach, introduced by Gelfond and Lifschitz [11],
has become one of the most widely studied and commonly adopted proposal.
There are several works on fuzzy logic programming with negation. The authors
of [13] and [14] deal with normal propositional residuated logic programs and
normal propositional multi-adjoint logic programs, respectively. In addition to
studying the fixpoint characterization of the stable model semantics, they show
that there exists a stable model for such finite programs if the truth domain is a
convex compact set in an euclidean space and truth functions of all connectives
except the implication are continuous. They also give sufficient conditions for
the unicity of stable models for several particular truth domains. Nevertheless,
the existence of stable models of normal fuzzy linguistic logic programs seems
to be more complicated due to the fact that our truth domains are discrete.

Besides the stable model semantics, there are several other approaches to
studying the semantics of normal programs as follows:

(i) define the compromise semantics [15] based on van Gelder’s alternating fix-
point approach [16]. The binary immediate consequence operator Tp(1,J)
for a normal program P is an extension of the one for positive programs in
which the interpretation I (resp., J) is used to assign meaning to positive lit-
erals (resp., negative literals); Tp(I, J) is similar to the operator ¥p (I, J) in
[17,18]. Tp is continuous in the first argument and anti-monotone in the sec-
ond. Then, the operator Sp(J) is defined as the least fixpoint of Tp (I, J), i.e.,
the least model of P7, denoted Sp(J) = T (L, J). Since Sp is anti-monotone,
Sp o Sp is monotone. It is known that Sp has two extreme oscillation points
St = (Sp o Sp)>®(L)and S}, = (Sp o Sp)°°(T), where T is the greatest
interpretation mapping every ground atom to 1, and Sp C S}. Asin [16], S
and S}, are an under-estimation and an over-estimation of the semantics of
P, respectively. The compromise semantics of P is defined as a partial inter-
pretation C'S(P) = S N S} This semantics coincides with the well-founded
semantics for traditional Datalog programs with negation [19].

(ii) define different semantics, e.g., the stable model semantics and the well-
founded semantics, of normal programs over bilattices [20], in which the
truth domain is a complete lattice under the truth ordering as well as the
knowledge ordering. For example, in interval bilattices, an element is greater
than another under the knowledge ordering if the former is more precise
than the latter. Following this idea, it can be seen that all linguistic truth
values generated from x using hedges are greater than z in the knowledge
ordering since they are more precise values than x; for instance, we have
True <g VeryTrue < SlightlyVeryTrue, where <j is the knowledge
order relation. Thus, an LTD is also a poset under <j. However, it is still
not a complete lattice under <j since it does not have a top element and a
bottom element.
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5 Conclusion and Future Work

In this paper, we extend fuzzy linguistic logic programming with negation and
present the stable model semantics of normal fuzzy linguistic logic programs,
called normal programs. More precisely, a stable model of a normal program
is obtained according to the usual Gelfond-Lifschitz transformation. We prove
that a stable model of a normal program P is a minimal model of P and a
minimal fixpoint of the intermediate consequence operator Tp. We also show that
a normal program P can have multiple stable models and a minimal fixpoint of
Tp may not be a stable model of P. For future work, we will study the conditions
for the existence and unicity of stable models of normal programs and a method
to compute such models.
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