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Prediction of Blast-Induced Ground Vibration Intensity
in Open-Pit Mines Using Unmanned Aerial Vehicle
and a Novel Intelligence System
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Predicting and reducing blast-induced ground vibrations is a common concern among
engineers and mining enterprises. Dealing with these vibrations is a challenging issue as they
may result in the instability of the surrounding structures, highways, water pipes, railways,
and residential areas. In this study, the effects of blasting in a quarry mine in Vietnam were
examined. A total of 25 blasting events were investigated with the help of an unmanned
aerial vehicle, micromate instruments, and blast patterns, and 83 observations were re-
corded. Subsequently, the fuzzy C-means clustering (FCM) algorithm was applied to classify
the 83 observations based on the blast parameters. Finally, based on the classification of the
blasts, quantile regression neural network (QRNN) models were developed. The combi-
nation of FCM and QRNN models resulted in a novel, hybrid model (FCM-QRNN) for
predicting blast-induced ground vibration. The US Bureau of Mines (USBM), random forest
(RF), QRNN (without clustering), and artificial neural network (ANN) models were also
considered and compared with the FCM-QRNN model to obtain a comprehensive assess-
ment of the proposed model. The results indicate that the proposed FCM-QRNN model has
a higher accuracy than the other models: USBM, QRNN, RF, and ANN. The proposed
model can be used to control the undesirable effects of blast-induced ground vibration.
Although this study and the proposed FCM-QRNN model are original works with positive
results, the performance of this model in other locations still needs to be considered as a case
study for further scientific information.

KEY WORDS: Fuzzy C-means clustering, Quantile regression neural network, Blasting, Ground
vibration, Unmanned aerial vehicle.
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INTRODUCTION

Rock fragmentation is an important process in
open-pit mining. Many techniques, such as drilling
and blasting (Hustrulid 1999), hydraulic rock
breaking (Nguyen and Bui 2015), high-pressure
water jet utilization (Hagan 2010), and the use of
mechanical equipment (Bui 2016), can be used for
rock fragmentation. Of these techniques, blasting,
which has the highest efficiency considering tech-
nological and economic factors, is the most com-
monly used method.

According to previous studies (e.g., Ak and
Konuk 2008; Armaghani et al. 2014), approximately
20–30% of the explosive energy is utilized in
breaking/removing the rock mass. The remaining
energy is wasted and generates undesirable effects
such as vibrations, fly rock, blast overpressure, toxic
byproducts, and dust (Monjezi et al. 2013b; Arma-
ghani et al. 2016; Ghasemi 2017; Hasanipanah et al.
2017a). Of these effects, blast-induced ground
vibrations, which are considered to be the most
dangerous effect, are measured in terms of their
peak particle velocity (PPV). Blast-induced ground
vibrations are a threat to surrounding buildings,
slopes, benches, and groundwater (Nguyen et al.
2019d). The extent of structural damage caused by
these vibrations depends on the intensity of the
vibration, which varies based on the region/country
and PPV (Nateghi et al. 2009). Numerous open-pit
mines worldwide are facing lawsuits owing to the ill
effects of PPV (Aldas and Ecevitoglu 2008;
MacGlennon et al. 2017). However, accurate
assessment and estimation of the PPV in open-pit
mines is a challenging task for engineers and open-
pit mining enterprises.

Over the years, efforts have been made to ob-
serve and record blast-induced ground vibrations.
PPV is considered a standard for measuring the
intensity of ground vibrations. Minimate, blastmate,
micromate, and other wireless monitoring systems
have been utilized to obtain the PPV values for
open-pit mines (Ak et al. 2009; Ragam and Nimaje
2018). These experimental datasets were combined
with statistical techniques to estimate PPVs.
Empirical methods have been used for many years
(Nguyen et al. 2019d). Many researchers have ap-
plied various empirical models to estimate PPV,
based on their convenience (Murmu et al. 2018;
Ongen et al. 2018). However, a review of the liter-
ature reveals that empirical techniques have low
accuracy (Monjezi et al. 2011, 2013a; Ghasemi et al.

2013; Nguyen et al. 2019c). Hu and Qu (2018)
developed a new empirical equation for the deter-
mination of PPV, considering the drawbacks of
previous empirical equations. It is called the equiv-
alent-path-based equation, and its performance was
justified. In addition, the properties of rock masses
in different rock sites were also investigated to
determine PPVs, based on empirical methods (Ku-
mar et al. 2016).

In recent years, artificial intelligence (AI) has
been recognized as an advanced tool for solving
complex issues in real-life, particularly in mining and
natural resource research (Jang and Topal 2014;
Asteris et al. 2019a; Brantson et al. 2019; Nourani
et al. 2019; Roshanravan et al. 2019). PPV prediction
models have also been considered and developed
with the aim of reducing the ill effects of vibrations
on the surrounding environment. Accordingly, many
researchers considered the use of fuzzy logic, ma-
chine learning algorithms (MLAs), optimization
algorithms (OAs), and artificial neural networks
(ANN) for estimating PPVs. Nguyen et al. (2019c)
developed three AI systems for estimating the PPV.
These systems included boosted adaptive general-
ized models (BGAMs), ANNs, and support vector
machines (SVMs). They concluded that the BGAM
was a highly reliable system to estimate PPV. When
compared with empirical models, the ANN model
exhibited higher accuracy in predicting PPV (Das
et al. 2019). To optimize the ANN model for pre-
dicting PPV, Armaghani et al. (2014) applied a
swarm optimization algorithm [i.e., particle swarm
optimization (PSO)], and the combined model was
called the PSO-ANN model. They demonstrated the
feasibility and high performance of their PSO-ANN
model in estimating PPV. Hasanipanah et al.
(2017b) also considered the feasibility of the PSO
algorithm in estimating the PPV with linear and
power forms. Their findings showed that the PSO
algorithm with a form of power equation had a
higher performance than other models. Similar to
the PSO algorithm, the robust meta-heuristic algo-
rithm, i.e., gene expression programming (GEP),
was also developed to predict and minimize the
PPV, by Faradonbeh and Monjezi (2017). They
demonstrated that their GEP model had better
performance and higher accuracy than the other
models in their study. Mokfi et al. (2018) proposed a
soft computational model, using the group method
of data handling, to estimate the PPV in an open-pit
mine in Malaysia, and the model exhibited a domi-
nant performance. In another study, Zhongya and
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Xiaoguang (2018) applied dimensionality reduction
to the factor analysis and mean impact value to
optimize an ANN model (ANN-FA-MIV) for pre-
dicting PPV. They claimed that the ANN-FA-MIV
model had superior performance compared to other
models such as models without FA-MIV, extreme
learning machines, and back-propagation neural
network. Based on clustering techniques, MLAs,
and ANNs, two highly reliable hybrid models,
HKM-CA and HKM-ANN, were developed for
estimating PPV (Nguyen et al. 2019b, d). Xue (2019)
also applied two forms of the clustering algorithm,
the fuzzy C-means (FCM) and subtractive algo-
rithms, and neuro-fuzzy (ANFIS) to evaluate the
intensity of vibration. Their findings showed that the
FCM-ANFIS model yielded a more precise evalua-
tion of the PPV. In addition, other hybrid models
based on a combination of OAs, MLAs, and ANN,
namely PSO-XGBoost and FFA-ANN, were also
developed to predict PPV in open-pit mines, by
Zhang et al. (2019) and Shang et al. (2019). A
variety of PPV prediction models have been evalu-
ated and proposed in various studies (Singh and
Singh 2005; Khandelwal et al. 2011; Monjezi et al.
2011; Saadat et al. 2014; Hasanipanah et al. 2015;
Ghoraba et al. 2016; Taheri et al. 2017; Prashanth
and Nimaje 2018; Nguyen et al. 2019a).

Although many AI techniques for predicting
PPV have been proposed, none of the models are
capable of considering all the factors in predicting
PPV. Therefore, novel AI techniques with high
reliabilities are a growing concern among scientists
and blast engineers. This work proposes a novel
intelligent approach based on FCM clustering and
QRNN models, to predict PPVs at an open-pit mine
in Vietnam, with many sensitive areas. The US Bu-
reau of Mines (USBM), QRNN (without clustering),
ANN, and random forest (RF) techniques were also
considered for comparison purposes. The main
innovations of the present study are highlighted as
follows:

� An unmanned aerial vehicle (UAV) was used
to collect the dataset for predicting PPVs in
this study.

� For each blast, five instruments were used to
record the PPV at different locations.

� The validity of QRNN as a new AI method
for predicting PPVs was investigated.

� The proposed model (FCM-QRNN) is a
combination of the FCM technique and

QRNN and exhibits high accuracy. It is a
novel AI technique for predicting PPV.

� A comprehensive comparison and assessment
of the proposed FCM-QRNN model and
other techniques, such as the USBM, QRNN,
ANN, and random forest models, was con-
ducted. The results of the study are original
and positive.

DESCRIPTION OF THE STUDY AREA

This study was conducted at a quarry mine in
Southern Vietnam. The mine is surrounded by many
sensitive areas, as shown in Figure 1a. A highway,
railway line, water pipe, and residential areas are the
main surrounding affected by blast-induced ground
vibrations. In this study, four blasts were performed
daily, with approximately 3000 kg of explosives (Tan
Dong Hiep company 2018). As shown in Figure 1,
the work sites (designated blast sites) and the sen-
sitive areas (the highway, railway line, water pipe,
and residential areas) are close to each other (ap-
proximately less than 100 m). Therefore, the ill ef-
fects of PPV are very dangerous.

The geological structure of the study site is not
complex, as shown in Figure 1b. The entire study
site is located in the Long Binh formation, which
includes andesite, rhyolite, and tuff. Therefore, the
rock mass is significantly hard, and blasting is a good
method for rock fragmentation (Murat et al. 2006).
Blasting has many undesirable effects, as mentioned
in the previous section. Thus, this study area is an
ideal area for studying PPV prediction using AI
techniques.

DATA COLLECTION

We set up a plan for data collection. The values
of maximum explosive charge capacity (W), moni-
toring distance (R), burden (B), bench height (H),
stemming (T), length of borehole (L), spacing (S),
power factor (P), and PPV were collected and re-
corded. A total of 25 blasting events were investi-
gated. For each blast, five micromate instruments for
the PPV measurements were placed at the moni-
toring locations, as shown in Figure 2c. Subse-
quently, a total of 83 PPV observations were
recorded. The unmanned aerial vehicle (UAV)
Phantom 4 Pro and ArcGIS software (Yilmaz et al.

Prediction of Blast-Induced Ground Vibration Intensity



2008) were used to obtain the study area map and
accurately determine the distance between the blast
sites and the PPV monitors (i.e., R), as illustrated in
Figure 2b. The effectiveness and accuracy of these
equipment have been demonstrated in a previous
study (Tien Bui et al. 2018). Furthermore, ArcGIS

was used to manage and query the geodatabase of 83
datasets based on the map set up by the UAV
Phantom 4 Pro (Zeiller 2010). The remaining factors
were extracted from the blast patterns. Table 1 lists
the properties of the input and output parameters
used in this study.

Figure 1. Overview of the study site and its geological properties. (a) The study site and its landscape; (b) geological properties of the

study site.
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OVERVIEW OF THE METHODOLOGY
USED

Empirical Method

As mentioned in ‘‘Introduction’’ section, vari-
ous experimental methods for the prediction of PPV
have been studied and proposed. The experimental

procedures are based on the relationship between W
and R. Also, B is one of the factors in the experi-
mental methods proposed by Murmu et al. (2018).
The ratios of the distances between R, W, and B, as
well as the site factors for each region are different.
These factors directly affect the estimation of PPV.

Among the existing experimental techniques,
the USBM model extensively utilized the empirical

Figure 2. Data collection. (a) PPV measuring micromate instrument; (b) UAV Phantom 4 Pro used to establish study area map and

monitoring distance; (c) PPV monitoring sites at the Tan Dong Hiep quarry mine.
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method to predict PPV, as proposed by Duvall and
Petkof (1958). Hence, we selected a USBM novel
formula and experimental methods to measure PPV.
The USBM experimental approach is demonstrated
as follows:

PPV ¼ k
R
ffiffiffiffiffi

W
p

� ��a

ð1Þ

where W stands for explosive capacity, R stands for
the distance between the blast site and analysis
point, and k and a represent the site parameters
specified using the multivariate regression evalua-
tion.

Fuzzy C-Means Clustering

FCM is recognized as one of the most efficient
methods of dividing an original dataset into clusters
(or partitions) (Bezdek et al. 1984). This method was
proposed by Dunn (1973) and developed by Bezdek
(1981). It is an unsupervised learning algorithm
based on the uncertainty of attributes and described
by memberships (Ouma and Hahn 2017). FCM
provides opacity to the characteristic of each sub-
sample. Each sample is assigned a membership level
ranging from 0 to 1 (Gu et al. 2018). Fuzzy members
and similar attributes are grouped into a single
cluster by FCM clustering. Thus, following FCM, the
characteristics of the datasets are classified by min-
imizing the cost function as follows:

Jm ¼
X

N

i¼1

X

N

j¼1

unij xi � cik k2 ð2Þ

where uij is the membership degree of xi in the

cluster j; n is the number of clusters; cj is the m-

dimensional center of the cluster; and xi is the ith
element of the m-dimensional data.

As mentioned in the preceding sections, 25
blasting events were created, and 83 observations
were recorded. Therefore, a clustering algorithm
would be more efficient in splitting data into groups
of similar characteristics. The existence of multiple
populations as opposed to a single population in the
data was considered. As mentioned in previous
studies, FCM is commonly used in various fields and
achieves convincing results (Dong and Wang 2017;
Qin et al. 2017; Yang and Nataliani 2017; Demircan
and Kahramanli 2018). In this study, as the first step
in building prediction models, FCM clustering was
used to segment the measured PPV datasets of the
Tan Dong Hiep quarry. Additional details on FCM
can be found in numerous published materials
(Bezdek et al. 1984; Cannon et al. 1986; Hung and
Yang 2001; Liu et al. 2008; Zainuddin and Ong
2013).

Quantile Regression Neural Network

ANN is recognized as a flexible tool that facil-
itates the estimation of nonlinear models without
specifying an exact function. Among the various
types of ANN, the feedforward ANN with a single
hidden layer is commonly used for prognostication
problems (Zhang et al. 1998). The principle of this
method is based on the use of input parameters and
hidden neurons to predict the output variables.
Based on the relevant theory of the feedforward
ANN with a single hidden layer, Taylor (2000)
proposed a QRNN as a robust technique for solving
nonlinear regression problems.

Generally, QRNN is an artificial neural net-
work with a single input, hidden, and output layer.
Similar to the neurons in ANNs, the input neurons
of QRNN receive the input signals and send them to
the hidden layer in the form of weights. In the hid-
den layer, the hidden nodes are defined to calculate
and process the masses and send them to the output
layer. More details on QRNN can be found in pre-
viously published papers (Cannon 2017; Amalia
et al. 2018).

On reviewing the literature pertaining to min-
ing, it was found that QRNN has never been used to
estimate problems in an open-pit mine, especially

Table 1. Input and output parameter characteristics

Element W (kg) R (m) H (m) L (m)

Minimum 1936 198.8 8.20 9.70

Mean 2797 358.5 10.48 11.54

Maximum 3813 591.0 12.40 12.90

Standard deviation 408.975 107.091 0.949 0.749

S (m) B (m) P (kg/m3) T (m) PPV (mm/s)

Minimum 3.100 3.100 0.4000 2.200 0.336

Mean 3.414 3.208 0.4437 3.388 3.391

Maximum 3.700 3.400 0.4800 4.500 8.564

Standard

deviation

0.142 0.083 0.014 0.505 1.934
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blast-induced PPV predictions. Therefore, in this
work, to estimate blast-induced PPV, a QRNN
model was proposed. The general structure of a
QRNN for estimating the PPV is illustrated in Fig-
ure 3. In the figure, X1–X8 represent the predictors
(input variables) of the QRNN model, i.e., W, R, H,
L, S, B, P, and T. Wij and Wj denote the weights
between neurons, and their value can be negative or
positive. bj and b are the biases of the weights in the
neurons. Additional details regarding QRNN
architecture have been discussed by Cannon (2011).

Artificial Neural Network

The ANN is known to be one of AI methods,
built based on the design of the human brain
(Schalkoff 1997). This method is capable of con-
necting neurons to solve issues from the input neu-
rons, via the assistance of computers (Schalkoff
1997). The complete structure of an ANN includes
three layers: the input layer, hidden layers, and
output layer (Schalkoff 1997). Figure 4 illustrates a
typical structure of an ANN to estimate blast-in-
duced PPV. The layers consist of neurons with dis-
tinct functions. The hidden layer as well as the
neuron numbers is indeterminate in each layer.
Different neurons can lead to underfitting, and a
lower number of neurons will not be able indicate

the characteristics of the data (Nguyen et al. 2018a).
Furthermore, the training time is also influenced by
the number of hidden layers. Nguyen et al. (2018b)
suggested that an ANN with two hidden layers is
capable of solving such issues. Different hidden
layers can affect the training time of the process and
lead to underfitting or overfitting (Asteris et al.
2019b).

An ANN network model functions with the
help of an input layer. The neurons intercept input
signals along with weights. After that, the signals are
evaluated and dispatched to the neurons located on
the first hidden layer, via the transfer function (As-
teris and Plevris 2017). In addition, neurons are
capable of intercepting the outcomes at the input
and processing factor stages, predicting the weights,
and launching them to the second hidden layer via
the transfer function. The procedural outcomes are
sent to the output layer (Zerguine et al. 2001).

The outcomes of the ANN model are closely
related to the learning network approach. The
learning approach of artificial neural networks con-
sist of two types of learning: controlled learning and
unsupervised learning (Perez et al. 1994). For the
PPV estimation, numerical information, utilizing
regression approaches, acts as the input. Therefore,
according to input data and output demands, most of
the data utilize supervised learning.

In this study, five neural networks with two or
three hidden layers were expanded for the purpose
of estimating PPV caused by blasting operations in
the Tan Dong Hiep quarry mines. The neural net-
works were compared with QRNN and FCM-
QRNN.

Figure 3. Usual structure of a QRNN model for PPV

estimation.

Figure 4. Complete structure of ANN model for estimating

PPV.
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Random Forest (RF)

The RF algorithm suggested by Breiman (2001)
has the ability to combine the estimations of
numerous decision trees in a forest. In a previous
study, a planted forest with abundant trees was
constructed using the algorithms of classification and
regression (Belgiu and Drăgut 2016). Because each
tree in a forest is similar, each tree�s decision was
considered a vote for the PPV estimation. Bootstrap
resampling was also utilized in this algorithm to
ensure precise estimation. Like public elections, RF
seems to be an appropriate high-precision method
applicable in a noisy environment (Chen et al. 2016;
Brokamp et al. 2017). However, the use of RF for
estimating PPV after blasting operations in an open-
pit mine appears to be rare in previous studies.

In this study, we considered Tðxi;PPVÞ to be
the function representing the training databases that
xi considered the matrix of nine input parameters;
PPV is the estimation amount. The RF modeling
method can determine decision tree numbers for a
forest to minimize the deviation between the calcu-
lated and evaluated PPV amounts. Therefore, the
decision tree numbers for a forest and the input
factors are determined based on the goal of
enhancing precision. Further, the forest needs to be
diversified using different decision trees to account
for predictable and objective outcomes. Hence,
many decision trees and input factors could be uti-
lized in the expansion of the RF for estimating PPV.
For perfect comparison and outcome, the RF was
compared to the other models. The results are dis-
cussed in the following sections.

DATA PRE-PROCESSING

Preparing Data Without Clustering

To establish prediction models for blast-in-
duced PPV estimation, preparation and pre-pro-
cessing of the dataset are necessary. Ding et al.
(2019), Guo et al. (2019) and Luo et al. (2019) rec-
ommended that the dataset be divided into two parts
(80/20) before developing the prediction models
such that 80% of the data is used for training and
20% is used for testing. A splitting procedure was

performed using 71 blasting events (� 80%) for
training and the remaining 12 observations (� 20%)
to verify the efficiency of the established models. It
is worth noting that all models used the same sets of
training and testing data. Accordingly, 71 observa-
tions were selected randomly for use with eight in-
put parameters, as illustrated in Figure 5.

Preparing Data with Clustering

In the preparation with the clustering tech-
nique, training datasets consisting of 71 blasting
events were subdivided into clusters utilizing the
fuzzy C-means (FCM) algorithm. A clustering pro-
cedure was performed with 25 starting times in turn
for 2, 3, and 4 clusters. Two well-known indices,
partition entropy (PE), partition coefficient (PC),
and modified partition coefficient (MPC) were used
to evaluate the goodness of the clustering result. The
PC values were in the range [1/k, 1], where k is the
cluster number (Ferraro and Giordani 2015;
Maechler et al. 2017), as illustrated in Table 2.

According to Ferraro and Giordani (2015), the
optimal number of clusters k is achieved when the
PE value is minimized and PC value is maximized.
From Table 2, it can be seen that clustering with
FCM for 2 clusters is most effective with PE = 0.289
(the smallest of all clusters) and PC = 0.827 (the
largest of clusters). Also, an excellent property of
the MPC is that it ranges within [0, 1]. For further
analysis, the number of clusters was determined
using the silhouette method (Rousseeuw 1987;
Dembele and Kastner 2003). The silhouette value
lies in the range [� 1, 1]. Figure 6 shows that the
optimal number of clusters is also 2.

Thus, FCM clustering with 2 clusters was per-
formed to construct PPV prediction models with
cluster 1 consisting of 34 blasting events and cluster
2 including 37 blasting events, as illustrated in Fig-
ure 7. Based on this, it can be seen that the 57.3%
variability of the datasets is based on two principal
components Dim1 and Dim2 with FCM clustering.
The models were built upon the clusters and then
compared to determine the best model. The testing
datasets including 12 blasting events were divided
into two clusters to evaluate the performance of the
prediction models based on each cluster.

X.-N. Bui et al.



ESTABLISHING THE PPV PREDICTION
MODELS

Configuration of the USBM Model Empirical
Parameters

As aforementioned, USBM model was used to
estimate blast-induced PPV in this study due to its
simplicity. According to Eq. 1, k and a are the site

factors determined using multivariate regression.
The 71 blasting events in the training databases were
used to identify the site parameters k and a. How-
ever, only two input parameters, i.e., W and R, were
utilized based on Eq. 1. Microsoft Excel 2016 was

Figure 5. A view of the training datasets prepared without clustering.

Table 2. Evaluation process for the goodness of the clustering

result

Number of clusters Internal indices

PE PC MPC

2 Clusters 0.289 0.827 0.654

3 Clusters 0.446 0.750 0.625

4 Clusters 0.408 0.796 0.728

Figure 6. Optimal number of clusters.
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employed for the multivariate regression. k and a
were determined to be 78.524 and 1.783, respec-
tively. The USBM model empirical parameters were
identified using Eq. 1:

PPV ¼ 78:524
R
ffiffiffiffiffi

W
p

� ��1:783

ð3Þ

Configuration of the QRNN Model

In the QRNN model, it was difficult to deter-
mine the number of hidden nodes in the hidden
layer. A grid search technique for hidden nodes was
applied to accomplish this task. To avoid creating an
overly complicated QRNN model, the hidden nodes
were limited to within the range 1–10. To avoid
overfitting, the penalty criteria were used along with
penalty parameter values of 0.0001, 0.001, 0.01, 0.1,

and 0. A tenfold cross-validation with three resam-
plings was also performed to configure QRNN. Fi-
nally, the QRNN model had an optimal value for a
hidden node equal to 1 and penalty parameter equal
to 0.1. The effect of searching is shown in Figure 8.

Proposing the FCM-QRNN Hybrid Model

The FCM was used to divide the training da-
tasets into two clusters. The QRNN training process
was conducted sequentially on the clusters along
with a pre-processing procedure. The framework for
the proposed blast-induced PPV prediction model is
presented in Figure 9.

Accordingly, the FCM-QRNN model was set
up based on Clusters 1 and 2. The grid search
technique with the parameters input to the QRNN
model with clusters was similar to that for the
QRNN model without clustering. The tenfold cross-
validation with three resampling was used in the
FCM-QRNN model for both clusters. Figures 10
and 11 show the performance of the FCM-QRNN
models for the clusters. It can be seen that the FCM-
QRNN model based on Cluster 1 is optimal at hid-
den nodes = 2 and penalty = 0.01. The FCM-QRNN

Figure 7. Clustering PPV data using the fuzzy C-means

algorithm.

Figure 8. Performance of the QRNN model with various

hidden nodes in the training datasets.

Figure 9. Proposed framework for estimating blast-induced

PPV.
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model based on Cluster 2 is optimal with a hidden
node of 1 and a penalty of 0.1.

Development of the ANN Models

Five ANN approaches consisting of two and
three hidden layers were expanded for comprehen-
sive evaluation and comparison with the QRNN and
FCM-QRNN models. An important factor in the
utilization of ANNs is the determination of the
number of the neuron(s) in each hidden layer. Using
too few neuron(s) causes the characteristics of the
input information to not show and overfitting to
occur. Several neurons in the hidden layers could be
increasing the training time and causing overfitting

(Nguyen et al. 2018a). Therefore, a ‘‘trial and error’’
procedure was employed with different hidden
neurons in each hidden layer. For the ANN tech-
nique, the min–max scale method was applied to
avoid overfitting, by ensuring that the scale data lies
within the interval [0, 1]. 200 repetitions were used
for the development of the ANN models. The five
ANN models were expanded to estimate blast-in-
duced PPV: ANN 8-8-6-1, ANN 8-6-12-1, ANN 8-8-
6-10-1, ANN 8-8-12-6-1, and ANN 8-6-10-8-1. Their
architectures are illustrated in Figure 12.

Random Forest Model

The number of trees was selected as 2000 to
affirm the diversity of the forest in the RF model.
mtry was the parameter utilized to control the
quality of the model. A search grid method was used
to determine the optimal values formtry;mtry lies in
a constant range of 1–50. To avoid overfitting, ten-
fold cross-validation with three resampling was used
to develop the RF model. The RF model achieved
optimal results with mtry = 7. Figure 13 illustrates
the efficiency of the RF model for distinct mtry
values.

RESULTS AND DISCUSSION

Model assessment Indicators

To analyze the efficiencies of the developed
prediction approaches, efficiency indicators were
utilized, such as the coefficient of determination
(R2), root-mean-squared error (RMSE) and mean
absolute error (MAE), which were determined using
Eqs. 4 to 6, respectively.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðyPPV � ŷPPVÞ2
s

ð4Þ

R2 ¼ 1�
Pn

i¼1 ðyPPV � ŷPPVÞ2
Pn

i¼1 ðyPPV � �yPPVÞ2
ð5Þ

MAE ¼ 1

n

X

n

i¼1

yPPV � ŷPPVj j ð6Þ

Figure 10. Parameter configuration of the FCM-QRNN

model based on Cluster 1.

Figure 11. Parameter configuration of the FCM-QRNN

model based on Cluster 2.
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where n stands for the total number of data, yPPV
stands for the measured amount, ŷPPV is the calcu-
lated amount, and �yPPV stands mean of measured
amounts.

Comparing and Evaluating the Prediction Models

To compare and analyze the efficiencies of the
prediction models, the training and testing datasets
were utilized. The performance indicators were
calculated according to Eqs. 4 to 6 for both the
training and the test datasets.

Five ANN models were developed in this study
to predict blast-induced PPV. Their performances
are shown in Table 3.

In Table 3, it can be seen that the ANN models
performed well in the estimation. The ANN 8-8-12-
6-1 model performed the best. This model was used
for comparison with the remaining models in this
study.

Further, the USBM, QRNN, ANN, and RF
models using 71 blasting events for training and 12
blasting events for testing were employed for the
comparison and evaluation of performance. In
FCM-QRNN, the test datasets were split into two
clusters as were the training datasets. Accordingly,
there were 4 blasting events in Cluster 1 and 8
blasting events in Cluster 2 for FCM-QRNN. The
performances of the forecasting models are shown in
Table 4.

In Table 4, it can be seen that the USBM
empirical method was the least efficient. The
remaining advanced models used artificial intelli-
gence and provided much higher efficiency. QRNN
had higher performance than conventional ANNs.
In contrast, the ANN model only achieved lower
performance than FCM-QRNN model. For com-
prehensive comparison, RF was also used to esti-

mate blast-induced PPV. Table 4 shows that the RF
model also had a slightly lower performance than
the QRNN and FCM-QRNN models.

It can be seen that QRNN is a powerful model
for estimating blast-induced PPV. More particularly,
the FCM clustering technique appears to add to the
QRNN power to create a powerful hybrid model,
i.e., FCM-QRNN, as shown in Table 4. Thus, FCM-
QRNN was the most prominent of the five models in
Table 4. Figure 14 illustrates the relationship be-
tween the measured and predicted values for the five
developed PPV prediction models.

Importance of the Estimation Variables

The number of input variables was high, and
not all input variables had sufficient effect on the
efficiency of the models. To assess the impacts of the
input variables, a method to estimate the importance
of the input variables was developed (Quinlan 1992;
Gevrey et al. 2003). Figure 15 illustrates the impor-
tance of the input variables in this study.

S, W, and R had the most significant effect on
the efficiency of FCM-QRNN (Fig. 15). The impact
of the remaining variables was not high. Therefore,
S, W, and R should be selected as the primary input
variables for predicting blast-induced PPV using the
FCM-QRNN model.

CONCLUSIONS
AND RECOMMENDATIONS

Blasting is indispensable in open-pit mines.
Therefore, the damage from ground vibration
(PPV), air-blast overpressure, fly rock, and the back-
break need to be carefully controlled. Based on the
results of this study, we arrived at the following
conclusions:

� Data collection should be performed care-
fully to prevent outliers from reducing the
quality and accuracy of the PPV predictions.

bFigure 12. ANN structures for estimating blast-induced PPV. (a)

ANN 8-8-6-1 model; (b) ANN 8-6-12-1 model; (c) ANN 8-8-6-10-

1 model; (d) ANN 8-8-12-6-1 model; (e) ANN 8-6-10-8-1 model.
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Figure 13. Performance of the RF model.

Figure 12. continued.
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A more voluminous set of data could be
advantageous for PPV prediction involving
clustering techniques.

� FCM clustering techniques are excellent for
classifying and optimizing input data. They
play a vital role in improving the perfor-
mances of the forecasting models.

� QRNN is a robust nonlinear regression
model, particularly for the PPV prediction in
this study. This has been proven to be more
robust than both the ANN and RF models.
QRNN becomes even more robust when
combined with FCM algorithm (FCM-
QRNN) to predict blast-induced PPV by

adjusting undesirable influences on the sur-
rounding protected structures.

� FCM-QRNN model could be utilized to
predict blast-produced PPV in the Tan Dong
Hiep quarry. The blast-induced PPV could be
accurately predicted before conducting the
blasts. The parameters of the blast design
could then be adjusted to ensure the safety of
the surrounding structures, especially S, W,
and R. This model is can help improve the
blasting performance and environmental
protection during and after blasting opera-
tions.

Table 3. Efficiency indices of the ANN models

Models Training datasets Test datasets

RMSE R2 MAE RMSE R2 MAE

ANN 8-8-6-1 0.477 0.94 0.295 0.458 0.932 0.31

ANN 8-6-12-1 0.483 0.939 0.291 0.483 0.923 0.355

ANN 8-8-6-10-1 0.414 0.955 0.230 0.493 0.926 0.291

ANN 8-8-12-6-1 0.454 0.946 0.258 0.436 0.937 0.282

ANN 8-6-10-8-1 0.495 0.936 0.311 0.457 0.931 0.339

The best ANN model was shown in bold type

Table 4. Performance indices of the proposed PPV prediction models

Models Training datasets Test datasets

RMSE R2 MAE RMSE R2 MAE

USBM (empirical) 1.345 0.658 0.750 1.017 0.793 0.708

QRNN 0.512 0.920 0.306 0.392 0.952 0.189

FCM-QRNN 0.426 0.952 0.245 0.348 0.961 0.237

ANN 0.454 0.946 0.258 0.436 0.937 0.282

RF 0.629 0.894 0.371 0.425 0.950 0.290

The best ANN model was shown in bold type
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