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A B S T R A C T   

This study aims to propose a novel artificial intelligence model for forecasting the capital cost (CC) of open-pit 
mining projects with high accuracy. It is a unique combination of a deep neural network (DNN) and ant colony 
optimization (ACO) algorithm, abbreviated as ACO-DNN. In this model, MineAP (annual mine production), SR 
(stripping ratio), MillAP (annual production of the mill), RMG (reserve mean grade), and LOM (life of mine) were 
used to consider the CC of open-pit mining projects. A series of simple and complex artificial neural networks 
(ANN) was developed for forecasting CC of 74 copper mining projects herein. Subsequently, the ACO algorithm 
has been applied to optimize the developed ANN and DNN models to improve the accuracy of them. Finally, an 
optimal hybrid model was defined (i.e., ACO-DNN 5-25-20-18-15-1) with superior performance than other 
models (i.e., RMSE of 130.988, R2 of 0.991, MAE of 115.274, MAPE of 0.072, and VAF of 99.052). The findings of 
this study showed that the DNN models could predict the CC for open-pit mining projects with more accuracy 
than those of the simple ANN models. In particular, the ACO algorithm played an essential role in improving the 
accuracy of forecasting models. Also, MineAP, MillAP, SR, and LOM have been confirmed as critical parameters 
that affect the accuracy of the selected model in forecasting the CC of open-pit mining projects, especially 
MineAP. In conclusion, this study offers a useful tool to improve resource policies of mining projects, especially 
copper mining projects.   

1. Introduction 

In mining projects, the capital cost (CC) of mining usually includes 

two main groups (1) the initial and (2) working capital costs (start-up 
and stay-in-business capital costs) (Mohutsiwa and Musingwini, 2015). 
The costs usually focus primarily on infrastructure, equipment, 
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mine-site development, and exploration, keeping the mine running, to 
name a few. Besides, advances in mining technology also have signifi
cant impacts on the CC for open-pit mining projects (Wheeler, 2019). 
Meanwhile, the changing speed of science and technology of the mining 
industry is enormous (Aznar-S�anchez et al., 2019). Therefore, many 
mining companies are facing various risks of finance due to the uncer
tainty in the CC estimation in open-pit mining projects. 

In mine design, the CC for open-pit mining projects is considered as 
one of the critical criteria to evaluate the feasibility of mining projects. 
In addition, it is also one of the factors that significantly influence the net 
present value (NPV) of mining projects (O’Regan and Moles, 2006). 
Many scholars attempted to study and optimize the uncertainty issues of 
open-pit/underground mines (e.g., mine planning, mine design, cut-off 
grade, and scheduling, to name a few) aiming to improve the NPV of 
the projects (Ahmadi and Bazzazi, 2019; Asad and Dimitrakopoulos, 
2013; Ben-Awuah et al., 2016; Goodfellow and Dimitrakopoulos, 2016; 
Ramazan, 2007; Souza et al., 2010). Nevertheless, their reports do not 
seem to provide a high accuracy level in estimating NPV due to the 
uncertainty in the CC estimation for mining projects (Dehghani and 
Ataee-pour, 2012; Rendu, 2002; Shafiee and Topal, 2012). Therefore, it 
is useful for mining companies and economists to improve the accuracy 

of the CC estimation in evaluating and forecasting NPV of mines. 
From the CC estimation point of view, many approaches were pro

posed by previous researchers. For example, Niazi et al. (2006) reviewed 
and evaluated a variety of technologies developed over the years for 
estimating product costs. Besides, Huang et al. (2012) also employed an 
estimation of the product cost for mining projects. Subsequently, the CC 
for mining projects can be estimated and analyzed based on technologies 
and product costs. Besides, approaches to univariate and multivariate 
regression models were also considered to forecast the CC of mining 
projects (Darling, 2011; Long and Singer, 2001; Pytel et al., 2013; Sayadi 
et al., 2012; Smith and Mason, 1997; Stebbins, 1987). Polynomial least 
square technique was also used to estimate the CC of mining projects by 
O’Hara (1980). However, the accuracy level does not seem to satisfy the 
mining companies with the error percentage which lies in the range of 
10% to 100% (Noakes and Lanz, 1993). To overcome the disadvantages 
of the abovementioned traditional methods, Nourali and Osanloo 
(2018a, 2018b) used machine learning algorithms, such as support 
vector regression (SVR) and regression tree (CART) for estimating the 
CC for open-pit mining projects. Their studies provided a promising 
result with an error percentage of less than 10%. Guo et al. (2019) also 
developed an artificial neural network (ANN) model that the accuracy 

Fig. 1. Pseudo-code for the ACO algorithm.  
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was improved (i.e., mean absolute percentage error of 7.77%). 
A review of relevant works showed many approaches that can be 

applied to forecast the CC for open-pit mining projects, especially arti
ficial intelligence (AI) approaches that offer higher accuracy. Never
theless, previous studies did not seem to be optimized. They were only 
considered as the traditional techniques/models in artificial intelligent 
applications (Loterman et al., 2012; Nguyen and Bui, 2018). Whereas 
hybrid machine learning algorithms with the combination of optimiza
tion algorithms are considered to be the perfect solution to forecasting 
problems aiming to improve the accuracy of models (Dellermann et al., 
2019; García and Kristjanpoller, 2019; Shang et al., 2019). In addition, 
deep learning for ANN is also evaluated as a new approach to minimize 
errors of forecasting models (Elola et al., 2019; Hassanpour et al., 2019). 
Therefore, this study investigated the feasibility of deep neural network 
(DNN) and optimization algorithms for forecasting the CC for open-pit 
mining projects. Finally, a DNN model was optimized by the ant col
ony optimization (ACO) algorithm for estimating the CC for open-pit 
mining projects in this study, namely ACO-DNN model. To have a 
comprehensive assessment of the proposed model, ten ANN and DNN 
models were optimized by the ACO algorithm and compared to each 
other. The ANOVA test was applied to assess the strength, as well as the 
statistical significance of the developed models. The remainders of this 
study are structured as follow:  

- Section 2 summarizes the principle of ACO, ANN, and DNN.  
- The methodology is presented in section 3. Herein a novel AI method 

(i.e., ACO-DNN) is proposed for estimating the CC of open-pit mining 
projects.  

- Section 4 describes the performance metrics used to evaluate the 
models’ performance.  

- Section 5 describes the dataset used and its characteristics.  
- The models’ development process is detailed in section 6.  
- Section 7 presents and discusses the results of the study.  

- Section 8 investigates the importance of the input variables for 
predicting the CC of open-pit mining projects.  

- Finally, conclusions are given in section 9. 

2. Principle of ACO, ANN, and DNN 

2.1. Ant colony optimization (ACO) 

First introduced in 1999 by Dorigo and Di Caro (1999), ACO has 
become one of the widely used swarm optimization algorithms in the 
statistical and machine learning community. The main concept of the 
ACO is based on the stigmergy in nature (Mirjalili, 2019). It uses envi
ronmental manipulation to communicate with each other. In their 
communication, environmental manipulation is communicating unique. 
Individuals should move close to this unique method of communication 
in order to have the best local connection (Dorigo et al., 2000). 

In ACO, individuals (i.e., ants) constantly search for food sources 
around their nests at random. When food is found, they mark their paths 
with a distinctive sign, namely pheromone (Dorigo and Stützle, 2019). 
However, the pheromone amount highly depends on the quantity and 
quality of the food source. If a route has a high concentration of pher
omones, it means that the path leads to an abundance of high-quality 
food (Nguyen et al., 2020). Based on the concentration of the phero
mone, other ants can find the path to the highest quality food source and 
bring them back to their nest. In another interesting study, ants are able 
to accurately count and remember their steps (Haferlach et al., 2007). 
Therefore, based on the concentration of pheromones, they can find the 
shortest/most optimal path. The pseudo-code of the ACO algorithm is 
shown in Fig. 1, and the paths of ants, as well as the amount of phero
mone and their flowchart, are illustrated in Fig. 2. In Fig. 2, the paths of 
ants and the amount of the corresponding pheromone are illustrated. 
Based on the amount of pheromone, ants can find out the optimal path, 
as shown in the flowchart (Fig. 2b). Accordingly, the number of 

Fig. 2. Paths and pheromone of ants and their flowchart. (a) Paths of ants and the amount of corresponding pheromone (Mirjalili, 2019); (b) Flowchart of the ants for 
optimization. 
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ants/populations are needed for starting. Subsequently, the ants 
implement a global search for the state. If the state found out is the final 
one, they deposit pheromone as a unique signal for other ants. Other
wise, they search for other states to continue. Once the final state is 
found, daemon activities are conducted aiming to create the dispersion 
of pheromone. The other ants can easily recognize the marked state 
based on the evaporation of pheromone. 

2.2. Artificial neural network (ANN) and deep neural network (DNN) 

ANN has previously been applied to predict and simulate many 
physics problems with high performance. In recent years, it was also 
considered for forecasting the economy, as well as policy and social is
sues (Alameer et al., 2019; Fan et al., 2016; Franco-Sepúlveda et al., 
2019; Guo et al., 2019; Wang et al., 2019). In theoretical, ANN uses 
neurons which are separated in many layers to process the problems in 
real-life. It mimics the operations of the human brain to analyze and 
respond to the received information, in which, the layers are divided 
into three groups: input, hidden, and output layers (Fig. 3). The neurons 
in the layers are linked together through weights and the deviations 

between weights (i.e., biases). The accuracy of the ANN model depends 
on the weights and biases (Aljarah et al., 2018; Whitley et al., 1990). 

In recent years, ANN has been growing strongly in many different 
forms, such as simple ANN (with only one hidden layer), complex ANN 
(with multiple hidden layers), convolutional neural network (CNN), and 
recurrent neural network (RNN), to name a few. Of those, ANN is the 
most common and widely used form in many areas (Armaghani et al., 
2019; Asteris et al., 2016; Nguyen et al., 2018a, 2018b; Shang et al., 
2019). Like other AI techniques, ANN can be trained through supervised 
or unsupervised learning methods. The performance of ANN models 
highly depends on the number of hidden layers and hidden neurons. The 
complex ANN models with multiple hidden layers are called deep neural 
network (DNN) (Deng et al., 2013). Theoretically, an ANN model with 
the low hidden layer(s) can improve the training time, and keep hidden 
layers as small as possible to avoid overfitting, too (Lawrence et al., 
1997). However, the predictive power of ANN increases as hidden layers 
increases. Indeed, a DNN with eight hidden layers was applied for phone 
recognition (Mohamed et al., 2009). Another DNN was also developed 
from the RNN method with multiple hidden layers for processing lan
guage problems (Mikolov et al., 2010). In this paper, both ANN and DNN 

Fig. 3. General architecture of ANN/DNN for predicting the CC of mining projects in this study.  

Fig. 4. Global search of the ant colony and optimization of DNN (ANN) by the ACO algorithm.  
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(with multiple hidden layers) were considered to predict the CC of 
mining projects. Fig. 3 illustrates the general architecture of ANN/DNN 
for predicting the CC of open-pit mining projects in this paper. 

Basically, the principle of ANN and DNN is the same; however, their 
structure, the numbers of hidden layers, as well as the training algo
rithm, are different. In this paper, the main difference between ANN and 
DNN is the numbers of hidden layers. Whereas the ANN model includes 
only one hidden layer, there are multiple hidden layers in the DNN. In 
Fig. 3, raw information (i.e., MineAP, SR, MillAP, RMG, LOM) is 
embedded in the input layer. Then, a given transformation is applied to 
input values. In the hidden layer, the activity of each hidden unit is 
determined. Herein, one hidden layer is illustrated in Fig. 3, and the 
lines represent weights. For the ANN model, determined weights are 
transmitted to the output neuron (output layer) to predict the CC of 
mining projects. Whereas, the pre-determined weights in the previously 
hidden layer(s) are used as the input values for the next hidden layer. 

3. Methodology 

As mentioned above, the accuracy of the ANN and DNN models de
pends highly on the weights. Therefore, an optimization algorithm (i.e., 
ACO) is applied to optimize the weights of ANN and DNN models herein, 
called ACO-ANN and ACO-DNN models. The back-propagation algo
rithm (BPA) is used to train ANN and DNN models for estimating the CC 
of mining projects in the study. 

Some previous research tend to “simplify” ANN models in term of 
engineering, as well as resources policy, with one or two hidden layers 
(Fan et al., 2016; Nguyen et al., 2018a, 2019b; Wang et al., 2019). 
However, some recent studies showed that ANN models with more than 
two hidden layers are able to provide better results than simple ANN 
models (Bouwmans et al., 2019; Dwivedi et al., 2018; Lacey et al., 2018; 
Lee et al., 2019; Li et al., 2018), and they are called DNN. Thus, this 
study investigated the feasibility of simple ANN models (one and two 
hidden layers), contrasted with DNN models in estimating the CC of 
mining projects. Furthermore, the ACO algorithm is applied to optimize 
the ANN and DNN models, abbreviated as ACO-ANN and ACO-DNN 
models. Accordingly, weights and biases of the ANN and DNN models 
are adjusted by the global search of the ant colony to reach the optimal 
performance. During the global search of the ant colony, 
root-mean-square error (RMSE) is used as the objective function to 
evaluate the fit of each position that the ants found. The lowest RMSE is 
the optimal goal of the models, and it was selected as the stopping cri
terion. The searching, as well as the optimization processes by the ACO 
algorithm for the DNN model (or ANN model) in estimating the CC of 
mining projects, are illustrated in Fig. 4. 

4. Performance indices for evaluating 

To form the model evaluation, this study used five statistical indexes, 
including mean absolute error (MAE), mean absolute percentage error 
(MAPE), RMSE, variance accounted for (VAF), and coefficient of 
determination (R2). They are computed as follow: 
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where yCapital cost;i is the ith of the experimental CC of the mining projects; 
byCapital cost;i is the ith of the estimated CC of the mining projects; yCapital cost 

is the mean of measured values of the CC of the mining projects; n in
dicates the number of observations in the training or testing datasets. 

5. Material 

In mining investment, there are many factors which have impacts on 
the capital cost of a project, such as geotechnical variability, existing 
infrastructure availability, site location (remoteness), brownfield or 
greenfield expansion, project completion timeline (i.e., initial invest
ment decision to first production), regulatory environment, ore body 
knowledge confidence (change in plan risk), financing costs (cost of 
capital), processing technology, workforce productivities and foreign 
exchange costs (Bridge, 2004; Ferguson et al., 2011; O’Hara, 1987; 
S�anchez et al., 2015; Shafiee and Topal, 2012). Geotechnical localized 
uncertainty impacts measurement error, inherent variability, and 
transformation uncertainty (Phoon and Kulhawy, 1999). Therefore, it 
might lead to inaccuracy in estimating mining production, as well as the 
CC of mining projects. The existing infrastructure does not seem to be 
designed for multiple purposes, and it may be related to the dispute 
between policymakers and mining firms, as well as its policy objectives 
(Collier and Ireland, 2018). Furthermore, it is difficult to estimate the 
value of the existing infrastructure for a mining project. Thus, it is 
complicated to define the availability of the existing infrastructures, and 
its effect on the mining capital costs as well. In addition, the other fac
tors, such as site location, project completion timeline, regulatory 
environment, processing technology, and workforce productivity, to 
name a few, are taken into account as the indirect factors that have 
affected the mining capital costs (Bluszcz and Kijewska, 2016; Mular, 
1982; O’Regan and Moles, 2006). 

A review of mining CC estimation works shows that production ca
pacity is one of the most critical factors determining the CC of mining 
projects, as well as the risk factors for mining in short/long-term (Cairns 
and Shinkuma, 2003; Godoy and Dimitrakopoulos, 2004; Mohutsiwa 
and Musingwini, 2015). Accordingly, mine production and mill pro
duction were evaluated as the critical parameter that can effect on the 
CC of mining projects (Dagdelen, 2001; Hustrulid et al., 2013). Stripping 
ratio and the railroad distance were also used to predict the CC in the 
study of Long (2011). Nevertheless, the mining capacity for ore and 
waste is still widely used for estimating the CC of mining projects 
(Camm, 1992; Duckworth and John, 2016; Wellmer et al., 2007). As 
mentioned above, the mining capital cost usually focuses primarily on 
infrastructure, equipment, mine-site development, and exploration, and 
keeping the mine running. Moreover, Guo et al. (2019); Nourali and 
Osanloo (2018a) indicated that the reserve mean grade, stripping ratio, 
annual mine production, annual production of the mill, and life of mines 
are influencing factors on the mining capital cost. They claimed that 
these parameters should be used to predict the mining capital cost. 
Consequently, this study uses five input variables; reserve mean grade, 
stripping ratio, annual mine production, annual mill production, and life 
of mine, to estimate the CC of the mining projects. 

Herein, 74 open-pit mining projects were collected based on the 
critical parameters as recommended by the previous researchers 
(Nourali and Osanloo, 2018a, b). Accordingly, 52 copper mines prop
erties were extracted from the Copper Mine Project Profiles, which was 
investigated in Nourali and Osanloo (2018a). In addition, 22 other 
copper mines properties in China, India, Iran, Malaysia, and Vietnam 
were also investigated with similar features. Finally, a total of 74 copper 
mines properties were investigated in this study. A summary of the input 
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and output variables is contained in Table 1, which includes only the 
range of the dataset used herein. It is also worth noting that Table 1 does 
not show the relationship between the inputs and output variables. To 
evaluate the relationship between input variables, a correlation matrix 
of the input variables is showed in Fig. 5. It can be seen that the corre
lation of the input variables is not high [-0.5, 0.75]. In other words, it is 
interesting to take into account the relationship between the CC of 
mining and the input variables, as well as estimating the CC of mining 
projects based on these input parameters. 

The size of the dataset used in this study is not large. Theoretically, a 
large dataset can give better training in machine learning (Berthold and 
Hand, 2003; Pedrycz and Chen, 2014); however, many studies have 
been successfully applied with a small dataset depending on the 
complexity of the solved problems (Bui et al., 2019; Nguyen et al., 2020; 
Pasini, 2015; Zhang and Ling, 2018). Also, data preprocessing tech
niques (i.e., transformation, k-fold cross-validation) can be applied to 
improve the accuracy of AI models for small and moderate datasets 
(Karsznia and Weibel, 2018; Maronidis et al., 2011; Stratigopoulos et al., 

2009). And they were applied during development of the models in this 
study. On the other hand, a review of the previous studies indicates that 
Nourali and Osanloo (2018a, 2018b) successfully developed two 
benchmark AI models (i.e., SVR and CART) for estimating the CC using 
only used 52, even 28 observations. These primary rationales show that 
the size of the database used herein (i.e., 74 observations) is sufficient to 
investigate, develop, and evaluate the feasibility of advanced artificial 
intelligence models for estimating the CC of open-pit mining projects. 
Therefore, the dataset with 74 observations was considered to develop 
AI models in this study. The performance of the artificial intelligence 
models for estimating the CC of open-pit mining projects is presented in 
the next sections. 

6. Developing the AI models for estimating the CC of mining 
projects 

In this section, the ACO-ANN and ACO-DNN models are developed to 
predict the CC of mining projects. All the models are programmed and 
designed on the R environment (version 3.6.0). Before developing the 
models, the dataset is divided into two parts for training and testing 
processes. Of those, 62 cooper mines properties (~80%) were selected 
randomly for the training process; then, 12 remaining copper mines 

Table 1 
Summary of the CC database used in this work.  

Features MineAP 
(million 
tons) 

SR MillAP 
(thousand 
tons) 

RMG 
(% Cu) 

LOM 
(year) 

CC 
(million 
USD) 

Min. 4.00 0.200 185.0 0.2000 10.00 406 
1st Qu. 23.00 1.230 373.0 0.4250 21.00 1273 
Median 36.00 2.120 540.5 0.7000 27.00 2176 
Mean 34.11 1.976 574.7 0.7619 26.93 2464 
3rd Qu. 45.75 2.598 781.5 0.9675 32.00 3436 
Max. 64.00 5.050 1215.0 2.8400 48.00 6373 

MineAP (annual mine production); SR (stripping ratio); MillAP (annual pro
duction of the mill); RMG (reserve mean grade); LOM (life of mine); CC (capital 
costs). 

Fig. 5. Correlogram of the input variables in the used dataset.  

Table 2 
Summary of the training dataset.  

Features MineAP SR MillAP RMG LOM CC 

Min. 4.00 0.200 185.00 0.20 11.00 406 
1st Qu. 23.00 1.147 362.80 0.41 22.00 1273 
Median 35.50 1.955 526.00 0.66 28.00 2176 
Mean 33.98 1.857 566.10 0.72 27.40 2462 
3rd Qu. 45.75 2.465 781.50 0.96 32.00 3454 
Max. 64.00 4.230 1215.00 2.00 48.00 6373  
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properties (~20%) were used for testing the models’ performance. The 
training and testing datasets are summarized in Tables 2 and 3. 

Primarily, the process of developing ACO-ANN and ACO-DNN 
models is divided into two main steps, as illustrated in Fig. 4. Accord
ingly, the initial ANN and DNN models are needed to create first, as the 
first step. Subsequently, their parameters, such as weights and bias, are 
optimized by the ACO algorithm to improve the accuracy of the models. 
In the first step, the trial and error method were applied for the deter
mination of the hidden layers and the hidden neurons. Previous litera
ture has noted the potential to overfitting or underfitting an ANN/DNN 

model (Nguyen et al., 2019a, 2019c; Shang et al., 2019); therefore, the 
min-max scale technique was applied for the dataset used with the range 
of [-1, 1] to avoid overfitting/underfitting. Also, 5-fold cross-validation 
technique was applied to improve the performance of the ANN/DNN 
models in this study. Finally, two ANN models with only one hidden 
layer and eight DNN models with two, three, four, five, and six hidden 
layers were developed. The ACO algorithm can now perform optimiza
tion of weights and biases for the developed ANN and DNN models. 

To optimize the initial ANN and DNN models, the parameters of the 
ACO algorithm need to be well-established. The target size of the ant 
colony was set equal to 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 
respectively, to test the effect of the initial ants. Subsequently, the per
centage of pheromone was set equal to 5%. The process of finding the 
optimal food source for the ants was conducted based on the concen
tration of pheromones and the number of ants in the established col
onies. RMSE is used as a criterion to evaluate the search results of ant 
colonies. Accordingly, the lowest RMSE was defined as the convergence 
criterion of the optimization process. To ensure that the ants’ search 
process reaches the optimal value (the lowest RMSE), the search is 
repeated 1000 times/iterations until RMSE reaches the lowest and 

Table 3 
Summary of the testing dataset.  

Features MineAP SR MillAP RMG LOM CC 

Min. 11.00 0.30 346.0 0.28 10.00 602 
1st Qu. 23.00 2.305 458.50 0.635 20.00 1540 
Median 36.50 2.530 620.00 0.910 25.00 2330 
Mean 34.75 2.590 619.0 0.978 24.50 2474 
3rd Qu. 44.25 3.060 747.2 1.028 31.25 2973 
Max. 60.00 5.050 1003.0 2.840 36.00 5631  

Fig. 6. ACO-ANN 5-9-1 performance on the training process.  

Fig. 7. ACO-ANN 5-12-1 performance on the training process.  
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Fig. 8. ACO-DNN 5-15-8-1 performance on the training process.  

Fig. 9. ACO-DNN 5-20-12-1 performance on the training process.  

Fig. 10. ACO-DNN 5-15-12-13-1 performance on the training process.  
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Fig. 11. ACO-DNN 5-20-15-10-1 performance on the training process.  

Fig. 12. ACO-DNN 5-25-20-18-15-1 performance on the training process.  

Fig. 13. ACO-DNN 5-30-25-20-18-1 performance on the training process.  
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constant value. The performance of optimizing the ANN and DNN 
models are shown in Figs. 6–15. 

7. Analysis and discussion 

From the obtained results in Figs. 6–15, the optimal parameters of 
the developed models on the training dataset were listed in Table 4. 
Additionally, the correlation between hidden layers, performance, and 
optimal parameters of ACO is analyzed in Fig. 16. 

Accordingly, we can see that the accuracy of the models (i.e., RMSE) 
does not depend on the number of ants. The optimal number of itera
tions for each model is also different in Table 4. However, the number of 
iterations seem to have a positive correlation with RMSE. In contrast, the 
number of hidden layers seems to have a negative relationship with 
RMSE on the training dataset. Remarkably, the number of iterations of 
the ants have a high negative correlation with the number of hidden 
layers of ANN/DNN. In other words, the global search of the ants is 
random, and they must implement more iterations to find out the 
optimal parameters for the ANN and DNN models with fewer hidden 
layers. 

Once the ANN and DNN models have been optimized by the ACO 

Fig. 14. ACO-DNN 5-30-25-20-15-10-1 performance on the training process.  

Fig. 15. ACO-DNN 5-32-25-23-18-12-8-1 performance on the training process.  

Table 4 
Optimal parameters of the developed models on the training dataset.  

Model Optimal parameters and performance 

Hidden 
layers 

Number of 
ants 

Number of 
iterations 

RMSE 

ACO-ANN 5-9-1 1 200 478 189.280 
ACO-ANN 5-12-1 1 300 404 184.140 
ACO-DNN 5-15-8-1 2 250 468 160.700 
ACO-DNN 5-20-12-1 2 350 473 171.715 
ACO-DNN 5-15-12- 

13-1 
3 200 513 166.883 

ACO-DNN 5-20-15- 
10-1 

3 200 391 158.587 

ACO-DNN 5-25-20- 
18-15-1 

4 300 330 156.013 

ACO-DNN 5-30-25- 
20-18-1 

4 250 342 153.246 

ACO-DNN 5-30-25- 
20-15-10-1 

5 150 260 166.440 

ACO-DNN 5-32-25- 
23-18-12-8-1 

6 300 266 169.358  
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algorithm (i.e., ACO-ANN and ACO-DNN), their performance is aggre
gated and compared to find out the most optimal model for forecasting 
the CC of mining projects. RMSE, R2, MAE, MAPE, and VAF were used as 

the criteria to evaluate the quality of the developed models. Besides, the 
color intensity rating (CIR) method was also applied to rate and assess 
the results of the developed models (Koopialipoor et al., 2019). The 
forecast results, as well as the accuracy of the models, are shown in 
Tables 5 and 6. 

As shown in Table 5, performance metrics, especially RMSE, MAE, 
and MAPE revealed that all the ten models overcame the underfitting/ 
overfitting issues. It is an important issue to assess the strength of the 
proposed model within the constraints of the used dataset. The results 
demonstrated that the pre-processing technique (i.e., scaled dataset in 
[-1, 1]) and pre-train method using 5-fold cross-validation helped the 
models overcome the disadvantage of the sample size issues. However, it 
is complicated to define which model is the best or the worst. Therefore, 
the ranking method was applied for the performance metrics (i.e., 
RMSE, R2, MAE, MAPE, and VAF), as calculated in Table 6. Accordingly, 
the developed models (10 models) were sort ordered from 1 to 10. In 
which, the value of 1 denotes the lowest performance, and 10 means the 
highest performance. Each performance metric was ranked separately; 
then, they were merged as a total ranking for model evaluation. Using 
the CIR method, it is easy to observe which model is the best and which 
model is the worst in this study. Table 5 shows that the ACO-ANN 5-9-1 
model provided the worst performance in estimating the CC of mining 
projects herein with an accuracy of 95.840% and the total ranking of 13, 
corresponding to the CIR of the white color. In contrast, the ACO-ANN 5- 
25-20-18-15-1 model provided the best performance with the accuracy 
is up to 99.052% and the total ranking of 92, corresponding to the CIR of 
the darkest red color. 

The examination of the depth of learning of different neural net
works in this study showed that deep learning neural networks (i.e., 

Fig. 16. Correlation between hidden layers, performance and optimal param
eters of ACO. 

Table 5 
Developed AI models for estimating MCC and their performance.  

Model Training process Testing process 

RMSE R2 MAE MAPE VAF RMSE R2 MAE MAPE VAF 

ACO-ANN 5-9-1 189.280 0.982 144.034 0.077 98.192 282.953 0.962 238.344 0.121 95.840 
ACO-ANN 5-12-1 181.141 0.983 137.487 0.071 98.344 233.217 0.974 209.567 0.127 97.020 
ACO-DNN 5-15-8-1 160.700 0.989 118.869 0.073 98.854 196.258 0.980 160.985 0.106 97.957 
ACO-DNN 5-20-12-1 171.715 0.985 137.911 0.077 98.511 239.197 0.975 187.404 0.118 96.887 
ACO-DNN 5-15-12-13-1 166.883 0.986 124.482 0.073 98.594 164.982 0.987 149.196 0.092 98.497 
ACO-DNN 5-20-15-10-1 158.587 0.987 123.354 0.072 98.731 183.391 0.981 161.312 0.079 98.142 
ACO-DNN 5-25-20-18-15-1 156.003 0.988 119.710 0.065 98.772 130.988 0.991 115.274 0.072 99.052 
ACO-DNN 5-30-25-20-18-1 153.246 0.988 115.848 0.065 98.815 155.399 0.987 139.753 0.080 98.703 
ACO-DNN 5-30-25-20-15-10-1 166.440 0.986 123.503 0.068 98.602 220.622 0.976 179.861 0.134 97.428 
ACO-DNN 5-32-25-23-18-12-8-1 168.979 0.986 122.367 0.066 98.559 199.735 0.980 173.135 0.122 97.807  

Table 6 
Ranking of the developed models.  

Model Training process Testing process Total 
rank 

Rank for 
RMSE 

Rank for 
R2 

Rank for 
MAE 

Rank for 
MAPE 

Rank for 
VAF 

Rank for 
RMSE 

Rank for 
R2 

Rank for 
MAE 

Rank for 
MAPE 

Rank for 
VAF 

ACO-ANN 5-9-1 1 1 1 1 1 1 1 1 4 1 13 
ACO-ANN 5-12-1 2 2 3 6 2 3 2 2 2 3 27 
ACO-DNN 5-15-8-1 7 10 9 3 10 6 5 7 6 6 69 
ACO-DNN 5-20-12-1 3 3 2 1 3 2 3 3 5 2 27 
ACO-DNN 5-15-12- 

13-1 
5 4 4 3 5 8 8 8 7 8 60 

ACO-DNN 5-20-15- 
10-1 

8 7 6 5 7 7 7 6 9 7 69 

ACO-DNN 5-25-20- 
18-15-1 

9 8 8 9 8 10 10 10 10 10 92 

ACO-DNN 5-30-25- 
20-18-1 

10 8 10 9 9 9 8 9 8 9 89 

ACO-DNN 5-30-25- 
20-15-10-1 

6 4 5 7 6 4 4 4 1 4 45 

ACO-DNN 5-32-25- 
23-18-12-8-1 

4 4 7 8 4 5 5 5 3 5 50 

Note: the values of 1 is the worst and 10 is the best. 
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Fig. 17. Training performance of the ACO-ANN and ACO-DNN models.  
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Fig. 18. Testing performance of the ACO-ANN and ACO-DNN models.  
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DNN) have an improved accuracy than those of ANN models in pre
dicting the CC of mining projects. The DNN models with four hidden 
layers have significantly improved efficiency compared to the ANN and 
DNN networks with fewer hidden layers. However, considering the DNN 
models with five and six hidden layers show that their performance is 
lower than those of the DNN models with four hidden layers, although 
the number of hidden layers is higher. This finding indicates that DNN 
models with four hidden layers are the most suitable for the mining 
capital cost database used herein. Also, the complexity of DNN models 
with five or six hidden layers seems to reduce the performance of the 
computing models. Besides, the number of neurons in each hidden layer 
also significantly affects the accuracy of the CC forecasting model. 
Considering the two best DNN models shows that the performance of the 
ACO-DNN 5-30-25-20-18-1 model was lower than those of the ACO- 
DNN 5-25-20-18-15-1 model; meanwhile, the number of hidden neu
rons of the ACO-DNN 5-30-25-20-18-1 model is higher than the ACO- 
DNN 5-25-20-18-15-1 model (as shown in Tables 5 and 6). We can 
also see similar results for the ACO-DNN 5-15-8-1 and ACO-DNN 5-20- 
12-1 models. Whereas the accuracy of the ACO-DNN 5-15-8-1 model 
obtained approximately 98%, the ACO-DNN 5-20-12-1 model only got 
the accuracy of about 97%. 

In general, the ANN and DNN models-optimized by the ACO algo
rithm are robust models for forecasting the CC of mining projects. The 
mean absolute percentage error of the developed models lies in the 
range of 7.2% to 12.1%. Compared to previous studies with non-AI 
methods, the accuracy of the developed models in this study is 
outstanding, especially the ACO-DNN 5-25-20-18-15- 1 model with a 

mean absolute percentage error of 7.2%. Whereas, it was 35% in a 
survey of Castle (1985); 27% in a study of Bennet (1996); 17% in a study 
of Thomas (2001) and 22% in a survey of Gypton (2002). In comparison 
with the previous studies which were developed by Nourali and Osanloo 
(2018b, 2019) using SVR and CART models, the optimal ACO-DNN 
model in this study is better with the mean absolute percentage error 
of 7.2%, whereas the studies of Osanloo (2018, 2019) was �8%. Also, 
compared to the study of Guo et al. (2019) using the ANN model, this 
study provided a lower mean absolute percentage error (i.e., MAPE ¼
7.2%), whereas, the study of Guo et al. (2019) provided a MAPE of 7.8%. 
Figs. 17 and 18 show the accuracy of the ACO-ANN and ACO-DNN 
models in estimating the CC of open-pit mining projects on the train
ing/testing datasets. 

Additionally, to assess the strength of the models, the ANOVA test 
(Cuevas et al., 2004) on the variation between the developed models 
was analyzed to prove that the results are statistically significant and 
vital, as shown in Table 7. Accordingly, all ten developed models are 
statistically significant with P-value less than 0.05. However, it is hard to 
conclude which model is the best if only based on the ANOVA test results 
in Table 7 due to the P-value is very small (<2e-16) upon most of the 
models. Therefore, an overall combination of Tables 5–7 is the best way 
for evaluating the performance of the models, as well as their statisti
cally significant in this study. In other words, these analyses demon
strated that the developed ACO-ANN and ACO-DNN models are robust 
statistical models with high accuracy for predicting CC of open-pit 
mining projects, especially the ACO-DNN 5-25-20-18-15-1 model. 

8. Sensitivity analysis 

From the abovementioned results, the ACO-DNN 5-25-20-18-15-1 
model was selected as the optimal model for estimating the CC of 
open-pit mining projects. It is a deep neural network optimized by the 
ACO algorithm with four hidden layers; therefore, the Olden’s sensi
tivity method (Olden and Jackson, 2002; Olden et al., 2004) was 
selected to take into account the effects of input variables on the CC 
predictions. The results show that MineAP, MillAP, SR, and LOM are the 
most significant parameters that affect the accuracy of the CC predictive 
model (i.e., the proposed ACO-DNN 5-25-20-18-15-1 model). In 
contrast, RMG does not seem to profoundly affect the accuracy of the 
selected model, as shown in Fig. 19. It is worth noting that MineAP, 
MillAP, SR, and LOM are considered as the influential parameters for the 
CC of mining projects when using the proposed ACO-DNN 
5-25-20-18-15-1 model. Of those, the MineAP parameter is evaluated 

Table 7 
ANOVA test results of the models for predicting the CC of open-pit mining 
projects.  

Model Training phase Testing phase 

F value Pr (>F) F value Pr (>F) 

ACO-ANN 5-9-1 177.3 <2e-16 30.34 7.01e-16 
ACO-ANN 5-12-1 176 <2e-16 31.11 4.00e-16 
ACO-DNN 5-15-8-1 174.4 <2e-16 33.92 <2e-16 
ACO-DNN 5-20-12-1 175.9 <2e-16 29.96 9.31e-16 
ACO-DNN 5-15-12-13-1 175.9 <2e-16 38.19 <2e-16 
ACO-DNN 5-20-15-10-1 176.1 <2e-16 35.59 <2e-16 
ACO-DNN 5-25-20-18-15-1 175.5 <2e-16 35.82 <2e-16 
ACO-DNN 5-30-25-20-18-1 174 <2e-16 36.42 <2e-16 
ACO-DNN 5-30-25-20-15-10-1 174.2 <2e-16 39.75 <2e-16 
ACO-DNN 5-32-25-23-18-12-8-1 176 <2e-16 39.15 <2e-16  

Fig. 19. Input variables and their effect on the CC prediction of the selected model.  
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as the most crucial parameter for the CC prediction in open-pit mining 
projects. Comparing with the conclusion in the study of Guo et al. 
(2019), it can be seen that the proposed ACO-DNN 5-25-20-18-15-1 
model appreciated four out of five input parameters when forecasting 
the CC of a mining project (i.e., MineAP, MillAP, SR, and LOM). 
Whereas, Guo et al. (2019) only appreciated two out of five input var
iables (i.e., MineAP and MillAP). Indeed, annual production of mines 
and mills, and the stripping ratio typically vary over the life of every 
operation. Generally, these are key variables in a cutoff grade optimi
zation process to maximize project value. Thus, this finding indicates 
that DNN’s deep learning considered and assessed the importance of 
multiple variables in predicting the CC of mining projects which is 
matching with the cutoff grade optimization process. Reviewing and 
evaluating the significance of many input variables combined with the 
optimization process of the ACO algorithm improved the accuracy of 
this study, as compared in Table 8. 

9. Conclusion 

Accurate forecasting of the CC for open-pit mining projects is the 
goal of investors, as well as mining businesses. It helps investors and 
mining businesses have specific strategies for business development. 
Besides, the accurate forecast of the CC for open-pit mining projects also 
allows investors and mining enterprises to assess the necessity for 
particular policies to change and improve the efficiency of mining in
vestment. This study proposed a deep neural network for predicting the 
CC for open-pit mining projects with high accuracy (i.e., mean per
centage error of 7.2%) based on the optimization of the ACO algorithm, 
namely ACO-DNN 5-25-20-18-15-1 model. The findings indicated that 
the DNN models could predict the CC of mining projects more accurate 
than those of the simple ANN models. In addition, the combination of 
DNN and optimization algorithms (e.g., ACO) was considered a perfect 
approach for improving the accuracy of the DNN models in estimating 
the CC for open-pit mining projects. Remarkable, the MineAP, MillAP, 
SR, and LOM are the parameters that need special attention in fore
casting and evaluating the CC for open-pit mining projects. 
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