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Abstract

In this paper, a constructive geometric design of switching laws is proposed for the finite-time stability
of singular nonlinear switched systems subjected to delay and disturbance. The state-dependent switching
law is constructed based on the construction of a partition of the stability state regions in convex cones
such that each system mode is activated in one particular conic zone. Using the state-space singular
value decomposition approach, new delay-dependent sufficient conditions for the finite-time stability of
the system are presented in terms of linear matrix inequalities (LMIs). The obtained results are applied
to uncertain linear singular switched systems with delay. Numerical examples are given to illustrate the
effectiveness of the proposed method.
© 2017 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Switched systems belong to an important class of hybrid systems arise in many practical
processes that cannot be described by exclusively continuous or exclusively discrete models,
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such as manufacturing, communication networks, automotive engineering control, chemical
processes [1,2]. Many effective methods have been proposed to studying stability and control
of switched systems, such as the Lyapunov function approach, the LMI approach, and average
dwell-time scheme [3-5]. On the other hand, stability and control problems of singular systems
have been extensively studied due to the fact that the singular system better describes physical
systems than state-space systems [6—9]. Recently stability and stabilization of singular fuzzy
systems [10] have been addressed in [10] by using non-quadratic Lyapunov functions and S-
procedure. For switched singular systems without delay, the stability analysis was discussed in
[11] by using piecewise Lyapunov function method and switching law satisfying an average
dwell-time constraint. For the systems with delay, because of the combination between the
switching and the time-delay and due to the algebraic constraints in singular models, the
stability analysis of such systems is much more complicated than that of singular systems
without delays. Based on the average dwell-time approach, the authors of Xing and Min
[12] and Krishnasamy and Balasubramaniam [13] proposed some sufficient conditions for
robust exponential admissibility of singular linear switched systems and the authors of Zamani
et al. [14] extended the existing results on exponential stability of singular nonlinear switched
systems with time-varying delay. It should be noticed that most of the mentioned papers are
focused on the asymptotic stability. In many practical applications, the main concern is the
behavior of the system over a fixed finite time interval. In these cases, finite-time stability
could be used, which focuses its attention on the transient behavior over a finite time interval
rather than on the asymptotic behavior of a system response [15,16]. This different concept of
finite-time stability requires convergence of the system trajectories to an equilibrium state in
finite-time, which does not require the specification of any bounding region. The finite-time
stability not only deals with systems whose operation is limited to a fixed finite interval of
time, but also requires prescribed bounds on system variables. In the analysis of finite-time
stability, the assumption of system asymptotic stability is unnecessary, i.e. the unstable system
can be finite-time stable.

To the best of our knowledge, up to the present days there have been few results on
finite-time stability for singular nonlinear switched systems with delay reported in the liter-
ature. Existing attempts for finite-time stability analysis of singular linear switched systems
are mere extensions of the Lyapunov methods for individual linear singular singular systems.
The papers [17-19] have studied the finite-time stability problem for switched linear systems,
but singularity case is not considered. In [20,21], the authors have investigated the finite-time
stabilization problem for switched linear singular systems, but the time delay is not consid-
ered. Finite-time stability for singular linear time-delay systems with time-varying exogenous
disturbance was studied in [22], but the switching case is not considered. Moreover, the ma-
jority of the previous works treated the stability for switched linear systems under arbitrary
switching laws or switching signals specified by the average dwell-time.

In this paper, we consider finite-time stability for a class of nonlinear singular switched
time-delay systems. More precisely, a constructive geometric design of state-dependent switch-
ing laws is proposed for finite-time stability of the system based on the state-space singular
value decomposition approach. The main contributions of this paper can be highlighted in
three points: (i) a constructive geometric design of the switching laws is proposed using the
construction of a partition of the state space in convex cones such that each system mode is
active in one particular conic zone and each subregion is defined to make particular quadratic
form negative; (ii) a set of novel delay-dependent finite-time stability conditions is established
in terms of LMIs, which can be determined by utilizing MATLABs LMI Control Toolbox;
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(iii) an application to finite-time stability is given for a class of uncertain linear singular
switched time-delay systems.

The paper is organized in the following way. Section 2 presents some notations, definitions
and preliminary propositions which will be used in next sections. In Section 3, we address the
switching design problem, namely some sufficient conditions for constructing state-dependent
switching law guaranteeing the finite-time stability of the system in term of LMIs. An appli-
cation to uncertain singular linear switched time-delay systems and illustrative examples are
given in this section. Some conclusions are drawn in Section 4.

2. Problem description and preliminaries

The following notations will be used throughout this paper. R™ denotes the set of all real
positive numbers; R" denotes the n— dimensional space with its norm ||x|| = VxTx ; RxT
denotes the space of all (n x r)-matrices; the notation i = 1, p means i =1,2,...,p; A"
denotes the transpose of A; I, and 0, denote the identity matrix and zero matrix in R * 7,
respectively; A(A) denotes the set of all eigenvalues of A; [a;;]; ;_7 denotes the (k x k)-
matrix with entries a;;; Aper(A) = max{ReA : A € A(A)}; Apin(A) = min{Reld : X € A(A)};
A = Amax (ATA); the matrix norm ||A|] = VAmaxr (ATA); C([a, b], R") denotes the set of all
R"-valued continuous functions on [a, b]; matrix A is semi-positive definite (A > 0) if xTAx
> 0, for all x € R"; A is positive definite (A > 0) if x"Ax > 0 for all x # 0; A > B means
A — B > 0; the segment of the trajectory x(¢) is denoted by x, = {x(¢ +s) : s € [—h, 0]} with
its norm ||x;|| = supge;_y op [IX (¢ + 9)II.

Consider a singular nonlinear switched system with delay and disturbance of the form:

{E)&(t) = Asx(t) + Dyx(t —h) + Bow(t) + fo (t,x(),x(t — h), w(t)), t >0,

x@0)= @), 6 €[-h,0], (D

where the function o : R" — {1, ..., p} is a switching rule depending on the system state
at each time and takes its values in the finite set of modes {1, ..., p}; the system matrices
(A,, D,, B,) take values in the finite set of (4;, D;, B;),l € rp, where A;, D, € R* * ", B,
€ R" > 1 are given constant matrices; the matrix £ € R" * " is singular and rank £ =r < n;
the initial condition ¢ € C([—h, 0], R") and the exogenous disturbance w(f) is continuous
satisfying the condition:

3d>0: ol wt)<d, V=0 )
the nonlinear function f(-) satisfies the condition:
Jag, by, mp >0 | fi(t, x, xp, @) | < arllx|l + byllxgll + my o]l (3)

for all (¢, x, x;, w) € Rt x R" x R" x RY.
Corresponding to the switching law o (x(¢)), we assume that the system is activated by the
lth switching mode, which means that o (x(¢)) = [.

Definition 1. For the switching law o(.), the system (1) is said to be (i) regular if the
polynomial det (sE — A;) is not identically zero for each o (x(¢)) = [; (ii) impulse-free if the
deg(det(sE — A;)) = rank E for each o (x(¢)) = [.

Definition 2. For given positive numbers 7, c¢|, ¢, and a symmetric positive definite matrix
Q € R"* ", the system (1) is finite-time stable w.r.t. (cy, ¢, T, Q) under switching law o (-)
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if it is regular, impulse-free and every solution x, (¢, ¢) of the system satisfies the condition:

sup {9(5)"Qp()} <c1 = X, (t,9) Qx(t,9) <2, V1 €[0,T],
s€[—h,0]

for all disturbances w(-) satisfying Eq. (2).

The problem to be addressed in this paper is to identify a class of switching laws o (.) such
that the system is finite-time stable under the switching o (.). We will construct the switching
laws for the system (1) based on the construction of a partition of the state space in convex
cones such that each system mode is activated in one particular conic zone and each subregion
is defined to make particular quadratic form negative.

Definition 3. The system of matrices {L,-}f=1 is strictly complete if for every x € R*"\{0} there
isie{l,2,...,p} such that x"Lix < 0.

It is easy to see that system {L;} is strictly complete if and only if

P
UQ,- =R"\ {0}, where Q;,={xeR": x"Lx <0}, i=1,p.
i=1

Proposition 1. /23] System {L;}/_, is strictly complete if there exist numbers & >0, i=
Lp, YU & >0, such that Y7 &L; <O0.

Proposition 2 (Schur Complement Lemma [24]). Given constant matrices X, Y, Z, where
Y=Y >0, we have

.
X+ZTYIZ<O<=>[}Z( ZY }<0.

3. Main results

The purpose of this section is to study finite-time stability of singular linear switched
system (1). We first establish delay-dependent conditions to check the regularity and impulse-
free of the systems based on singular value decomposition method. Then, we prove the
finite-time stability based on the Lyapunov-like function method. Consider the system (1),
where rank £ = r < n. Then there are two nonsingular matrices M, G such that

wee=[6 0]

0 0
Let us set
Ay AL Dy, Dy
MAIG‘[A’ZI Ay | MPG=1pl bl |
B! e
MB, =V |, Mfi()=|’} .
=[a) | o =[O

Under the state transformation y(¢) = G’lx(z‘),y(t)-r = (yl(t)T, yz(t)T), yi(t) eR", y(t) €
R"™", o(.) =1, the system (1) takes the following form
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yi1 (@) =AYy (@) + ALy (t) + Dyt — h) + Dlyys(t — h) + Blo(t) +f1( ),
0=A121YI(I)+A22y2(t)+D21y1(t h)+D zyz(t h)+B w(t)‘l‘fz() 4@
y(t) =G lo(t), t € [—h,0].

Before introducing the main result, the following notations of several matrix variables are
defined for simplicity.

M= |:O 0 i|M, G'PEG = [Pl 0 ], a = maxa;, b= maxb;, m = maxm;,
0 I, 0 0 I=1,p I=1,p I=1,p

yo = 1 = allGll max {411 y1 = max (1A% ]~ BV + ml[A%)~" V).
=Lp

I=1,p

72 = max (1AL] 43 |+ alIGIL AL T ). s = max (1AL Dy 1+6GILIALT)
=Lp

(£
_ ayer + 24 2m)dT U
ye = max (1451 Dhall + GG 1AL] ), J/5=\/ - vs= al,
1
i=0

p= max ] (el Jaser), s = Anax(GTQG), a1 = Apin(P1),
h

Amax(PE)  Amax(U)

az = :
)‘min(Q) )‘min(Q)
A G "1T[G™! + o3C
s = max([G™ 1 [ ])’ w =V VsVO3CL | 72Vs FVSY5 ospr ws =1t
)\min(Q) Yo Yo Yo
Y1+ V34/a3C) V2Ys + V3Vs V2Ys + V3Vs
as = (y7+ ¥ + %6 PN g = ysyd + vsve (—> )
Y0 Yo
V2Vs +v3ys\ (V1 + V3«/0l301 Y1+ v3/a3c1\2
a7 = 2)’8( y )( Yo + J/m) ag = V8<V7 + 7/6]/—> :
0 0

H!| = 0.5PA; + 0.5A4] PT + O.SSZMAI +0.5A M 'S], H., = PD, + $,MD,.
HYy = —U +2b/1,,
H, = —1,, Hy = SMB,, H,, = —1, Hl, = Jaj + b +m SM, Hly = —I,, H|; = PB,,

Hgo = —I, Hig=+a;+b +m P, H; =H i, j=16,

L = 0.5PA; + 0.5AT PT + 0.55,MA; + 0.5A] M ' S| + U + 2ay,
-1

Q={reR': x'Lx<0} I=Tp Q= U0}, U=\ J%% [=2.3.....p
k=1

Theorem 1. For given positive numbers T, c1, ¢, and a symmetric positive definite matrix Q €
R" %", the system (1) is finite-time stable w.r.t. (cy, ¢z, T, Q) if there exist a symmetric positive
definite matrix U € R* * ", a nonsingular matrix P € R" * ", any matrices S; € R™", 1 € 1, p,
scalars & >0, 1 =1, p, Zle & > 0, and a number B > 0 such that the following conditions
hold:

PE=E'PT >0, 3)
[H), ;o16 < 0. I=1,p, (6)
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p
Z&Ll <0, @)
=1
1 —al|G]| ;n?lll[Aéz]’lll > 0, (8)
=Lp
OMeO.SﬁT + ag — ¢ eO.SﬂT
O-BT 1 | <o ©
(o7

The switching rule is chosen as o (x(t)) = | whenever x(t) € Q.

Proof. The proof is divided into two steps. The first step is to prove the regularity and the
impulse-free of the singular system (1). The second step will focus on getting conditions
for design the state-dependent switching laws for finite-time stability by using Lyapunov-like
function method and LMI technique.

Step 1. The regularity and impulse-free of the system.

Let us set
G Gn2 st Tpas—1 P Pp
G' = CS=dt R GTePMT = .
|:G21 G ] ! [Sél St Py Py

From the condition of Eq. (5), PE = ETPT > 0, it is easily seen that

T ATl Tt O PO
GTPEG = GTPM~'MEG = G PM [0 o 1=1m o |20

G'E'PTG= [%T P ] > 0,

0
and hence
Py =0, P,=P' >0, G'"PEG = [f; 8 } (10
Since matrix P is nonsingular, it follows the non-singularity of GTPM~!' = [1;‘ Qf] such

that from Eq. (10) it follows that det(P) # 0, and hence P; > 0. Next, note that the LMI
(6) implies the following inequality

H!, = 0.5PA, + 0.5A] PT +0.55,MA, + 0.5 M 'S <0,
consequently,
GT[PA; + AT P + SMA, + A M ' ST1G < 0. (11)

On the other hand, we rewrite the expression G'S;MA,;G and G"PA,G as follows
T _ ATyl [P P |[A] AL
G PAIG=G PM MA,G = |:O Py Al21 Alzz

_ PAL + PpAL, PAL + PRAL,
P22A121 P22A[22 ’
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— KYPRY 0 0
G'S\MA,G = GT|: L M }MA,G
S Sh 10 Ly

_ Gu Gn Sél Siz 0 0 A]ll AZ]Z

T 1Gu G |[Sh S, |0 L, |[AY, AL,

_ [GuSpAs + GiaShAy,  GiiSipAd, + GiSyAb, ‘
GZISizAlzl + G22S§2A121 GZISizAlzz + G225£2A122

Therefore, taking Eq. (11) into account we have
T
I:G2]Si2 + GzzSéz + P22:|A122 + [AZZQ]TI:GZISZQ + G22Sé2 + Pzz] < O,

which gives det(A},) # 0 and then the system is regular and impulse-free (see [8]).
Step 2. Finite-time stability.
Consider the following non-negative quadratic function:

Vt,x) =l xt)TPEx(t) +e5’/ x(s) "Ux(s)ds.
t—h

Assuming that the system is activated by the /th switching mode, which means that o (x(t)) =
I, we take the derivative of V(t, x;) in ¢ along the solution of the system:

V(t,x) =BV (t,x)+eP'xt)"Ux(t) — eP'x(t —h)"Ux(t — h)
+ eﬁt2x(t)TP[A1x(t) 4+ Dix((t — h) + Biw(t) + fi(t, x(¢), x(t — h), w(t))].

To estimate the derivative of V(¢, x;), we need the following inequalities. Firstly, multiplying
the both side of the following identity by 2¢#x(t)S;M from the left hand side

—Ex(t) +Aix(t) + Dix(t —h) + Biw(t) + fi(-) =0,

12)

and noting that ME = 0, we have
0 =2ePx(t) "SIM[Ax(t) + Dix(t — h) + Bijo(t) + fi()]. (13)
Using Cauchy matrix inequality for the following estimations:
2x(t) T S;MBioo(t) <x(t) S, MBB M ST x(t) + ()],
2x(t) "SIM £ () <2||x(@®) T SMIN1fi ()]
<2||x(®) " S;M||[a||x ()] + billx(t — B)I| + myllw ()]
<(ar + bi + m)|[x(0) "SMI|I* + aillx(O1* + billx(t — W)||> + my|lw@)] [,
2x(t) " PBjw(t) <x(t) ' PBB/ P x(t) + llo(®)|*,
2x(®)"P£ () <2[1x@) TPIIA )]
<2[|x(0) "Pl|[as|[x ()| + billx(t — )| + my||(®)]]]
<(ar + by + m)|x(®) "PI> + a) x> + byl lx(t — WI* + my||o@)],
we obtain from Egs. (12) and (13) that
V() =BV () < Q4 2m)|o@)| + e E@) CEW) + ' x(0) T Lix (), (14)

where £(t)7 = [x(t)T, x(t —h)7], and C; =[S ),
C?.l CZZ
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C!, = 0.5PA; + 0.5A] PT + 0.58,MA, + 0.5A) M 'S} + S,;MB,BM' S|
+(ar+ by +m)SM M'S] + PBB] PT + (a; + b, +m)PPT,
Cl, = PD, + S;MD,, C5, = —U + 2b,1,,
Ly = 0.5PA; + 0.5AT P + U + 0.55,MA; + 0.5A] M ' S + 2a,,.

Since the system of matrices {L; : [ =1, p} is strictly complete due to Eq. (7) and
Proposition 1, we get

C-

€ =R"\ {0},

-
Il

1

and hence by constructing the sets €;, we have
p —_— —_— —_—
@ =Rr" and Q,nQ, =0, forall I #b.

Therefore, for x(f) € R", there exists a unique / € {1,2, ..., p} such that x(¢) € Q,; and
x()"Lix(t) < 0. (15)

Choosing the switching rule as o (x(¢)) = [ whenever x(¢) € §£ sing the Schur complement
lemma, Proposition 2, the condition (6) leads to C; < 0, [ =1, p, and from the inequalities
(14) and (15), it follows that

Vt,x)—BV(t,x) <P Q+2mwd) wit), Vi =>D0. (16)
Multiplying the both sides of Eq. (16) by e~#" and noting that

%(e_ﬂ’V(t,xt)) =e PV(t,x) — Be PV (t,x),

we have

%(e_ﬂtV(t,xf)) < Q2+2m)o) o), Yt >0.

Integrating the above inequality from O to #, we obtain
t
e PV (t,x) —V(0,x) < / 2+ 2m)w(s) "w(s)ds
0

< / Q+2m)w(s) w(s)ds < (24 2m)dT,
0

and hence
V(t,x) < [V(0,x) + 2+ 2m)dT1eT, vt € [0, T]. (17)

Taking the condition (10) and the condition P; > 0 into account combining with the expression
of V(t, x;), we obtain that

V(t,x) > xt) PEx(t) = y(t) 'G"PEGy(t) = y; (1) Py (t)

18
> honin (P)Y1 () Ty1()) = aryi (1) Ty1 (2). (%)
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On the other hand, since

0
V (0, x9) = x(0)TPEx(0) + / x(s)TUx(s)ds

—h
Jomas (PE) s (U) . "
= (@ O QO ATy Jup )0 ) 1

<oy sup ¢(s) Qp(s) < arcy.
se[—h,0]

we obtain from Eqs. (17)—(19) that

1
y1 ()] < \/ —[V(0,x0) + (2 + 2m)dT1efT < yse®FT, vt € [0, T]. (20)
o]

Next, we estimate the second state ||y,(¢] as follows. Consider the second equation of (4)
y2(t) = —[Ah 1™ [AL¥1 (1) + Dhyyi(r = 1)+ Dhoya(t — ) + Bho(®) + £() |
Using the inequality (20), we have
ly2 ()1 <N[AYT™ Aby Hly1 (1) + HAS] Dby llly: (¢ = Wl
+ 1AL T Dy llly2 (¢t — W)+ 1AYT By lllw@I + ITALT 1A O
<[1TAL 1 A5, 1y (1) + A1 Dy, iy @ = W)
+ 1AL T Dhsllllyac — W)l + 1451 Byl o)
+ LAY T @Gy O] + 12O + BlIGH Ty (¢ — B
+ lly2(t — W1+ mvd)
<al|Gll max A%T 2011 + (A% AL I+ allGIllA% ] 1) yse®*#T

—1 —1
+ (I1EA%1 " Dby |+ BIIGHIIEALT 1) (75”37 + Vaser)
-1 -1 -1 -1
1A% BY IV + mllAb ] I+ (1A% Dhll+BIGH AL )y = W
—1
<al Gl max [[[Ap] " [[1y2(0)]] + ey + etspollya ¢ = W] @)
=Lp

because of the estimations of ||f2’(-)|| and ||y;(t — h)|| on [0, T] as

1A OI < IAON < albe@I] + bilbe@ = W+ myllo@)]]
< a||GyD)I] + bil|Gy(t = W] + myl|(@)]|

= allGI[ Iy 11+ Iy @11 + BIGI 11 ¢ = W+ llya ¢ = WIT| +m/d,
(i) If r € [0, K] then
i@ =mI” <yt = WI* = ¢ = WG TG et = h)
(GG

- )‘-min(Q)
- Anax([G™T[G™])
- )\min (Q)

ot —h)"Qe(t —h)

C1 = a3Cy,
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(i1) if t € [h, T)] then
Iyt =)l < yse

hence

Iyit — )| < yse®PT + Jozer, t€0,T].

Therefore, we derive from the conditions (8) and (21) that

0.58T

y2 I < aa + as|ly2(t — h)]I.

For t € [0, h], we have

y2() < o + as/asc1,

because of

2t = W)11? <lly@ = W)* = 9@ = )TIGTTTIG ot — h) < azer.

By induction, for ¢ € [ih, i+ )R] N[0, T], ih<T, i=0,1,..., we have

l
k i+1
2Ol < 0s Y ek + ot Jaser,

k=0
and hence for all 7 € [0, T:

T

h

](a4 > b+l Jazer) < auye+ vy = V. (22)
k=0

[y20)ll = max
i=0,1,2,...,[

Finally, combining Eqs. (20) and (22), for all # € [0, T] we obtain that
x()0x(t) = y(t) 'GTQGY(t) < Anax (GT QG [ly(®) |
= 3 (GTOO) I3 O + 1320)IP] < s (126" + o).

On the other hand, the LMI condition (9) is, by Proposition 2, equivalent to the following
inequality

a76"PT + g + ageP’ — ¢y < 0.

By simple computation we can verify that
Vs()/feﬂ T+ as) = 07”7 1 a5 + el
and we finally get

x()TOx(t) < ¢y, VYt €[0,T].

This completes the proof of Theorem 1. [J

Remark 1. The condition (8) in Theorem 1 involves the inverse of matrix Alzz, but it can be
seen from the proof of regularity and impulse-free of the system that this condition is derived
from LMI conditions (5) and (6).

Remark 2. It is worth noting that strict LMI conditions are more desirable than non-strict
ones such that the condition (5) cannot be solved by MATLABs LMI Toolbox. For tackling
this, the matrix inequality (5) combined with Eqs. (6) and (7) can be reduced to strict LMIs.
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Let P be a symmetric positive definite matrix, S € R”*"~" be any full-column rank matrix
such that ETS = 0 and V be any matrix of appropriate dimension, denote P = (PE 4+ SV )T
then PE = E'P" = ETPE > 0. Thus, by changing P to P = (PE + SV)" in Egs. (6) and
(7), they are strict LMIs and can be solved by MATLAB LMI Toolbox.

Remark 3. We note that the condition (7) in Theorem 1 is a bilinear matrix inequality
(BMI) with respect to &, lzrp and P, U, S, lzﬁ. To find & > 0, the matrices
PU,S, | = rp satisfying BMI (7) and LMIs (6), we can use the branch and bound methods
proposed in [25] or the homotopy-based algorithm in [26]. Moreover, the condition (9) is an

LMI w.r.t. e*#7 and since B is not included in LMIs (5)—(7), we can easily determine S
from LMI (9) w.r.t. ¢*°fT using LMI Toolbox in Matlab [27].

Remark 4. In [17,19-21], finite-time stability for switched systems was investigated, but un-
der arbitrary switching laws or switching laws specified by the average dwell-time. In this
paper, we give constructive design of the switching laws via LMIs and constructing a spe-
cific Lyapunov function with less decision matrix variables, which reduces the computational
complexity to some extent.

Example 1. Consider system (1), where

E= [(2) O(')S ] M = [(1) _11 } G= [_0(')?;;;7 _1(.)ii§597 }
e[ )l b esfn )
R o O P
ag=b=m=001, I=12, h=1, d=0.1.

By using LMI Toolbox in Matlab, LMI (6) is feasible with

p_ 3.4355 —2.1132 U= 11.8143 3.3383
~10.8589 0.4717 |© ~ ~ | 3.3383 29799 |’

g — [ 0.000 —6.0127 ] o T 0.000 —5.8699

1= -6.0127 1.2294 | 227 [-58699  —4.8430 |

In this case, it can be computed that

Lo [-20723 473317 [-64058  —6.1607

'= | 4.7331 1.2905 |© ™2~ |-6.1607  —2.6982 |
—8.4782  —1.4276

LitL= [—1.4276 —1.4076 ] 0

Thus, the system of matrices {L;, L,} is strictly complete. The sets €; are given as (see
Fig. 1)

Q = {x = () (4 0.1325x) (x) — 4.7005x,) > 0},

Q= {x = () (4 0.1325x) (x) — 4.7005x,) < 0}.
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Fig. 1. The sets Q; and 5.

Moreover, we see that

PE _ ETPT _ [6.8711 1.7178 } S0,

1.7178  0.4294
1 — a||G||. max |[[A5]7'] = 1 — 0.01 x 1.2612 x 1 = 0.9874 > 0,
I=1,p

and the condition (9) holds with

/3:0.01,61:0.1,02:21.5,T=5,Q:[(l) (1) :|

Fig. 2 shows the state response of the switching function o(#). By Theorem 1, the system
(1) with the switching rule o (x(¢)) = I whenever x(¢) € ;, is finite-time stable w.r.t. (0.1,
21.5, 5, Q). Fig. 3 shows the state response of the solution with the initial condition ¢(t) =
(0.2857, 0.0572)7sin(rt), t € [—1, 0].

We conclude this section with an application to robust finite-time stability of uncertain
linear switched singular systems with delay considered in [12,28,29]. Consider the following
uncertain linear switched time-delay system:

{E)é(t) = [As + AA;1x(t) + [Ds + ADg Ix(t — h) + [Bs + ABslo(t), (23)

x(@) = (p(e)r 9 S [_h’ 0]1

where the time-varying uncertainties AA;, AD;, AB; are given by

[AA;, AD;, AB;] =KH;(t)[Ls,, Lp,, Lgl, | =1,p,
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Fig. 2. The state response of o (f).

x(t) TQx()
‘‘‘‘‘ ¢,=0.1,c,=21.5

2

Time(sec)

3

Fig. 3. The state response of x(#)Qx(z).
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K;, La,, Lp,, Lp, are known real constant matrices of appropriate dimensions and H,(¢) are
unknown uncertain matrices satisfying

H @) H(t)<I, t>0.

To apply Theorem 1, let us denote f;(¢,x, x;, w) = AA;x + ADx;, + ABjw. It is easy to
verify that

i, x, xn, )| < [IK 1] La |-+ K Lp, a4 (KL, - el ]
By the same notations used in Theorem | and applying Theorem 1 with
ap = ||K|11La, [l by = IKil ]| Lp, I, my = [|K;|].]|L, I,

we have the following corollary, which gives sufficient conditions for designing the switching
law for robust finite-time stability of the system (23).

Corollary 2. For given positive numbers T, cy, ¢, and a symmetric positive definite matrix
Q € R"* ", the system (22) is finite-time stable w.r.t. (c1, ¢, T, Q) if there exist a symmetric
positive definite matrix U € R"*", a non-singular matrix P € R"*", any matrices S; €
R™" | e l_p scalars & >0, [ = l_p le=1 & >0, and a number > 0 such that the
conditions (5)—(9) of Theorem I hold. The switching rule is chosen as o (x(t)) =l whenever
x(t) € .

Example 2. Consider system (22), where

E= [0%5 8}’ M= [-(1).5 (1)] o= [—11 (1)]

Ar= [—_(;5 —01}’ A2 = [1_; i] b= [o().é35 8:?]’

D2 = [oo.gs (5).235}’31 = [09&15 8:5}’ By = [8:3 o().éls]’
k=% oo =% o]

L = [8:? 8:5}’ Lo, = [061 0(.)1}’ Le, = [061 0(.)1}’

L = [8:2 8:5}’ Lo, = [061 0(.)1] L, = [061 o(.)l}’

a1 =0.0985, ay=0.1, by=m =001, =12, h=1, d=0.1.

By using LMI Toolbox in Matlab, LMI (6) is feasible with

p_ 1.6129  2.0843 U= 6.9190 2.3270
| =0.5000 1.0000|" T T |2.3270 2.2723|

S, — 0.000 —-1.0727 S, — 0.000 —7.2408
P71 —-1.0727 29808 | 7?7 [-7.2408 —2.6133|
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0.1

¢,=0.1 x®Tax)
coOf .. c,=0.1,c,=41

0.08} ]
0.07¢ x(t Tax(t)
0.06} -
0.05} ]
0.04} ;
0.03} ]

0.02 i

0.01 b

Time(sec)

Fig. 4. The state response of x(¢)Qx(t).

In this case, we can find

[ [44639 202127 [-58491 —1.6645
= 12.0212 —1.5086|" ™> ~ | —1.6645 0.8589 |’

Li+L = [—1.3852 0.3567 ] Y

0.3567 —0.6496

such that the system of matrices {L;, Ly} is strictly complete. The sets ; are given as

Q= {x — o) (o = 0.2691x) () + 1.2558x) < 0},

Q= {x = (o) (o — 0.2691x) () + 1.2558x,) > 0}.

Moreover, we see that

T ,T 26551 0
PE=E'P _[ 0 ol =0
1 — a||G||. max |[[A5]7"] = 1 — 0.1 x 1.6180 x 1 = 0.8382 > 0,
I=1,p

and the condition (9) holds with

B=0.001,c;=0.1,¢,=41,T =5 0= |:(1) ?i|

By Corollary 2, the system (23) with the switching rule o (x(¢)) = [ whenever x(¢) € Q, is
finite-time stable w.r.t. (0.1, 41, 5, Q). Fig. 4 shows the state response of the solution with
the initial function ¢(¢) = (0.2, 0.2)7sin(wt),t € [-1,0].
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4. Conclusions

In this paper, we have studied the finite-time stability of singular nonlinear switched sys-
tems with delays and disturbances. By using state-space singular value decomposition ap-
proach combining with Lyapunov-like function method, the proposed finite-time stability cri-
teria have been established in the terms of LMIs. The proposed approach allowed us to apply
the obtained results to finite-time stability for uncertain singular linear switched time-delay
systems. The extension of the proposed method to the time-varying delay systems is to be
considered in the future.
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