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Abstract: This study provides a novel analytical approach to studying the solutions and stability of fractional differential delay
equations without using Lyapunov function method. By applying the properties of Caputo fractional derivatives, the Laplace
transform and the Mittag–Leffler function, the authors first provide an explicit formula and solution bounds for the solutions of
linear fractional differential delay equations. Then, they prove new sufficient conditions for exponential boundedness, asymptotic
stability and finite-time stability of such equations. The results are illustrated by numerical examples.

1 Introduction
During the past decades, stability theory of fractional differential
equations (FDEs) has attracted much attention from
mathematicians and engineers in various sciences such as electrical
engineering, bioengineering, control theory, acoustics, optics,
chemical physics [1–6] etc. In fact, many real-world physical
systems are well characterised by FDEs, i.e. equations involving
non-integer-order derivatives. These new fractional order models
are more accurate than integer-order models and provide an
excellent instrument for the description of memory and hereditary
processes. Since the fractional derivative has the non-local property
and weakly singular kernels, the analysis of stability of FDEs is
more complicated than that of integer-order differential systems.
Also, we cannot directly use algebraic tools for fractional order
systems since for such a system we do not have a characteristic
polynomial, but rather a pseudo-polynomial with a rational power-
multivalued function. On the other hand, time delay has an
important effect on the stability and performance of dynamic
systems. The existence of a time delay may cause undesirable
system transient response, or generally, even an instability. The
unification of differential delay equations and functional
differential equations (DE) is provided by fractional differential
delay equations, involving both the delay and non-integer
derivative terms and disposing great complexity. The
corresponding stability polynomials have infinitely many isolated
zeros and analysis of their location is often a complicated matter.
On the other hand, stability analysis of the linear fractional
differential delay equations (LFDDEs) Dαx(t) = Ax(t) + Bx(t − h)
is more complicated because asymptotic stability of such systems
is equivalent to asymptotic stability of the corresponding infinite-
dimensional systems of natural order with delays, and due to the
presence of the exponential function e−sh, this equation has an
infinite number of roots, which makes the analytical stability
analysis of a time-delay system extremely difficult.

Over the past years, the solutions and stability analysis of
LFDDEs have attracted attention of many mathematicians and
engineers [7–15]. There are two main approaches in studying the
solutions and stability of FDDEs. One of them is the Hale
analytical approach based on Lyapunov function method for
functional DEs [16]. The other is based on the fractional derivative
calculus (Caputo fractional derivatives, the Laplace transform and
the Mittag–Lefller function [17]). Ye et al. [7] and Lazarevi and
Spasi [8] studied asymptotic stability of LFDDEs by using a
Gronwall inequality approach. In [9], Deng et al. studied

asymptotic stability of LFDDEs by using the final-value theorem
of the Laplace transform. Johnson [10] considered stability and
instability of Korteweg and de Vries equation by using non-local
Floquet-like theory and spectral perturbation theory. On the basis
of Lambert function approach, an analytical stability bound was
derived in [11] for a class of LFDDEs. In [12], robust stability of
LFDDEs by means of fixed point theory was considered. A survey
on the stability of LFDDEs was presented in [13]. On the basis of
the algebraic approach and numerical methods, Cermak et al. [14]
and Kaslik and Sivasundaram [15] proposed some criteria for
asymptotic stability of singular LFDDEs. For the fractional
systems without delays, using the analytical approach Li et al. [18]
constructed Lyapunov functional to study asymptotic stability of
linear FDEs without delays. Then, the authors of [19–24] extended
the method of [18] to LFDDEs and proposed Lyapunov–Krasovskii
and Razumikhin stability theorems. Designing a positive Lyapunov
function is a key problem of these methods. However, it is usually
very difficult to construct a positive function according to the
provided fractional systems, especially for fractional time-delay
systems. Furthermore, in many cases, the use of the trace of
matrices inside the Lyapunov functions can be useful in proving
the stability of ordinary DEs (ODEs), but there is no well
established result for LFDDEs, even there does not exist such
Lyapunov functions. Other disadvantage of the Lyapunov function
method is the computational difficulty in solving linear matrix
inequality (LMI) conditions. To the best of the authors' knowledge,
up to now, how to analyse the stability LFDDEs is still an open and
challenging problem. Moreover, as noted by many authors (see,
e.g. [6, 9, 11]), the existing stability conditions for LFDDEs do not
provide effective algebraic criteria or algorithms for testing the
stability of LFDDEs and they are difficult to use in practise. In
addition, a strong motivation for investigating the stability analysis
of LFDDEs is an explicit expression of their solutions. Some
analytical properties of the solutions of LFDDEs were proposed
using the Laplace transform via eigenvalues of the system matrix
and their location in a specific area of the complex plane can be
found in [25–28]. In [25, 28], the authors proposed an explicit
formula of the solutions to a special linear FDE (A = 0) and based
on this formula some sufficient conditions for the asymptotic
stability, finite-time stability (FTS) were derived under some
restricted assumptions. However, to the best of our knowledge, no
explicit formulas of solutions of LFDDEs exist in the literature.

Motivated by the above discussion, this paper is devoted to
study the solutions and stability analysis of LFDDEs by a newly
proposed method which is a combination of the analytical Hale's
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approach and the fractional derivative calculus. The main
contribution of this paper has two points. First, based on the
proposed approach we provide an explicit form of the solutions of
linear LFDDEs. Using this solution formula, we estimate more
precisely exponential bounds of the solution via the roots of the
characteristic equations. Second, we derive new sufficient
conditions for the asymptotic stability and FTS of such equations
neither using the Lyapunov method nor LMI technique. This paper
is organised as follows. In Section 2, we present some basic
definitions and some well-known technical propositions, which are
needed for the proof of the main results. Main results on explicit
formula of solutions, exponential bounds of the solutions and
applications of the results to asymptotic stability, FTS of LFDDEs
are presented in Section 3 with numerical examples. Finally,
Section 4 concludes this paper.

2 Problem formulation and preliminaries
The following notations will be used throughout this paper. ℕ+

denotes the set of all positive integer numbers; ℂ denotes the
complex space; R+ denotes the set of all real positive numbers; Rn

denotes the n- dimensional space; Rn × r denotes the space of all
(n × r)- matrices; the notation i = 1, p means i = 1, 2, …, p; λ(A)
denotes the set of all eigenvalues of A;
λmax(A) = max{Re(λ): λ ∈ λ(A)}; λmin(A) = min{Re(λ): λ ∈ λ(A)};
C([ − h, 0], Rn) denotes the set of all Rn-valued continuously
functions on [ − h, 0] with the norm
∥ φ ∥ = supθ ∈ [ − h, 0] ∥ φ(θ) ∥ ;  0(s) denotes the infinitesimal
function of higher order with respect to (w.r.t.) s; the spectrum set
of A,B w.r.t. α > 0 is denoted by
σA, B

α, h := {s ∈ ℂ: det(sαI − A − e−shB) = 0}. Dα denotes the Caputo
fractional derivative of order α for the function f (n)(t) ∈ L1[0, T]
defined as

Dα f (t) = dα f (t)
dtα = 1

Γ(n − α)∫0

t f (n)(τ)
(t − τ)α − n + 1 dτ

where 0 ≤ n − 1 ≤ α < n, n ∈ ℕ+ and Γ(z) is the Gamma function
defined by Γ(z) = ∫ 0

∞e−ttz − 1 dt, z ∈ ℂ .
 
Proposition 1 [1, 3]: The Gamma function satisfies condition

tp

Γ(p + 1) = 1
2πi lim

T → ∞ ∫
d − iT

d + iT
est 1

sp + 1 ds, p > − 1

where the integration is done along the vertical line Re(s) = d > 0.
The Mittag–Leffler function is defined by

Eα(z) = ∑0
+∞ zk

Γ(αk + 1) , α > 0.
 
Proposition 2 [17]: For 0 < α < 2, |arg(z) | < 0.5απ, the

Mittag–Leffler function Eα(z) satisfies the condition

Eα(z) = 1
αexp {z1/α} + 0(z−1), for z → ∞

The Laplace transform of Caputo fractional derivative
Dα f (t), 0 < α < 1, is given by

ℒ[Dα f (t)](s) = sαℒ[ f (t)] − sα − 1 f (0)

where ℒ[ f (t)](s) is the Laplace transform of function f (t) defined
as

ℒ[ f (t)](s) = ∫
0

+∞
e−st f (t) dt, s ∈ ℂ

 
Proposition 3 [16]: If the function x(t) is exponentially

bounded, i.e. ∃a, b ∈ R: | | x(t) | | ≤ aebt, ∀t ≥ 0, then the Laplace

transformation of x(t) is well-defined and analytic on
{s:Re(s) > b} .

Consider the following LFDDE

Dαx(t) = Ax(t) + Bx(t − h), t ≥ 0,
x(θ) = φ(θ), θ ∈ [ − h, 0] (1)

where the state x(t) ∈ Rn; h > 0; 0 < α < 1; A ∈ Rn × n, B ∈ Rn × n

are given constant matrices; φ(t) ∈ C([ − h, 0], Rn) is the given
initial function.

 
Definition 1: A continuous function x(t): [0, ∞) → Rn satisfying

the equation

x(t) = x(0) + 1
Γ(α)∫0

t
(t − τ)α − 1[Ax(τ) + Bx(τ − h)] dτ, t ≥ 0,

x(θ) = φ(θ), θ ∈ [ − h, 0]
(2)

is called a mild solution of (1).
 
Proposition 4 [29, 30]: Assume that the initial function

φ(t) ∈ C([ − h, 0], Rn), then the LFDDE (1) has a unique mild
solution.

 
Definition 2 (Lyapunov stability): The system (1) is said to be

(i) stable if for every ϵ > 0 there exists δ > 0 such that
∥ x(t, φ) ∥ < ϵ provided ∥ φ ∥ < δ; (ii) asymptotically stable if it
is stable and limt → ∞ ∥ x(t, φ) ∥ = 0.

 
Definition 3 (FTS): Given positive numbers c1, c2, T, where

c1 < c2 . The system (1) is said to be finite-time stable w.r.t.
(c1, c2, T), if ∥ φ ∥ ≤ c1 implies ∥ x(t, φ) ∥ ≤ c2, for all t ∈ [0, T] .

 
Remark 1: Different from Lyapunov stability, FTS deals with

systems whose operation is limited to a fixed finite interval of time.
From practical considerations, FTS seems to be more appropriate
for systems whose variables must lie within specific bounds. The
problem of FTS of fractional-order systems with time delay was
considered in [8, 28, 31–33].

 
Proposition 5: Assume that matrices {Cm}, C ∈ ℂn × n are

invertible and limm → ∞ | |Cm − C | | = 0. We have

lim
m → ∞

| |Cm
−1 | | = | |C−1 | | ,

lim
m → ∞

| |Cm | | = | |C | | ,

lim
m → ∞

| |Cm
−1 − C−1 | | = 0

 
Proof: Using the identity

Cm
−1 − C−1 = C−1(C − Cm)Cm

−1 (3)

gives

| |Cm
−1 | | − | |C−1 | | ≤ | |Cm

−1 − C−1 | | ≤ | |C
− Cm | | | |Cm

−1 | | | |C−1 | |

Since Cm, C are invertible, we have | |Cm
−1 | | | |C−1 | | ≠ 0, which

gives

1/ | |Cm
−1 | | − 1/ | |C−1 | | ≤ | |C − Cm | | → 0 as  m → ∞

and hence, limm → ∞ | |Cm
−1 | | = | |C−1 | | . Therefore, there exists a

number M > 0 such that
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max sup
m

| |Cm
−1 | | , | |C−1 | | < M < + ∞

Then

| |Cm
−1 − C−1 | | = | |C−1 | | | | (C − Cm) | | | |Cm

−1 | |
≤ M2 | | (C − Cm) | | → 0

as m → ∞. Therefore, limm → ∞ | |Cm
−1 − C−1 | | = 0. Finally, the

inequality | |Cm | | − | |C | | ≤ | |Cm − C | | leads to
limm → ∞ | |Cm | | = | |C | |. This completes the proof .   □

 
Proposition 6: For given α ∈ (0, 1), the following conditions

hold:

i. For given σ ∈ R, there exists T0 > 0 such that
det(sα − A − e−shB) ≠ 0, ∀s = σ + iT, |T | ≥ T0 and

(a) | | (sαI − A − e−shB)−1 | |

≤ 1
|s |α I − | | A | | − e−σh | |B | |

.

(b) (sαI − A − e−shB)−1 = 1
sα + 0(s) 1

s2α ,

| | 0(s) | | ≤ | | A | | + e−σh | |B | |
|T |α − | | A | | − e−σh | |B | |

ii. If det(sαI − A − e−shB) ≠ 0 at s0 ∉ ( − ∞, 0], then
(sαI − A − e−shB)−1 is analytic at s0 .

 
Proof:

i. We choose T0 > 0 such that T0
α > | | A | | + e−σh | |B | |. Hence,

for |T | ≥ T0, we have

|s |α = (σ2 + T2)α/2 ≥ T0
α > | | A | | + e−σh | |B | |

= | | A + e−shB | |

Note that if | |C | | < 1, then (I − C)−1 = ∑k = 0
∞ Cn, which shows

the existence of (sαI − A − e−shB)−1 defined as

(sαI − A − e−shB)−1 = ∑
k = 0

∞ (A + e−shB)k

sα(k + 1)

Then, we have

| | (sαI − A − e−shB)−1 | | ≤ ∑
k = 0

∞ ( | | A | | + e−ch | |B | | )k

|s|α(k + 1)

= 1
|s |α − | | A | | − e−ch | |B | |

and

| | (sαI − A − e−shB)−1 | | ≤ 1
|T |α − | | A | | − e−ch | |B | |

The condition (b) is similarly proved.
ii. This condition is easily derived by using Proposition 5 and the

identity (3).

This completes the proof .

   □
 

Proposition 7 (Generalised Gronwall inequality [7]): Suppose
that α > 0, a(t) is a non-negative function locally integrable on
[0, T), g(t) is a non-negative, non-decreasing continuous function
defined on [0, T), u(t) is a non-negative locally integrable function
on [0, T) satisfying the inequality

u(t) ≤ a(t) + g(t)∫
0

t
(t − τ)α − 1u(τ) dτ, 0 ≤ t < T

then

u(t) ≤ a(t) + ∫
0

t
∑
n = 1

∞ (g(t)Γ(α))n

Γ(nα) (t − τ)nα − 1a(τ) dτ,

0 ≤ t < T

Moreover, if a(t) is a non-decreasing function on [0, T), then

u(t) ≤ a(t)Eα(g(t)Γ(α)tα), t ≥ 0

3 Main results
In this section, we first prove the exponential boundedness of
solutions and then we give an explicit formula of the solution,
exponential estimates of the solution of system (1). On the basis of
this estimation, we will derive new conditions for the Lyapunov
stability and FTS of the system.
 
Theorem 1: The mild solution x(t) of (1) is exponentially bounded.
 
Proof: In view of the expression of the solution (2), we have

| | x(t) | | ≤ | | x(0) | |

+ 1
Γ(α)∫0

t
(t − τ)α − 1[ | | A | | | | x(τ) | | + | |B | | | | x(τ − h) | | ] dτ

which implies

∥ x(t) ∥ ≤ | |φ | | + 1
Γ(α)∫0

t
(t − τ)α − 1[ | | A | | + | |B | | ] | | xτ | | dτ

where sups ∈ [ − h, t] ∥ x(s) ∥ := ∥ xt ∥. After some calculations, we
have

∥ xt ∥ ≤ | |φ | | + | | A | | + | |B | |
Γ(α) ∫

0

t
(t − τ)α − 1 | | xτ | | dτ, t ≥ 0

Using the generalised Gronwall inequality, Proposition 7, gives

| | xt | | ≤ | |φ | |Eα([( | | A | | + | |B | | ]tα), t ≥ 0 (4)

Note that if x ∈ R+, then arg (x) = 0, we can apply Proposition 2
for the case 0 < α < 1, to get

Eα(x) = 1
αexp {x1/α} + 0(x−1) for x → ∞

Thus, there is a number η > 0 such that

Eα(x) ≤ η
αexp {x1/α}, x ≥ 0 (5)

Therefore, we have

| | x(t) | | ≤ ∥ xt ∥ ≤ η
α | |φ | | exp {( | | A | | + | |B | | )1/αt}

which gives

| | x(t) | | ≤ aebt, t ≥ 0
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where a = (η/α) | |φ | | , b = ( | | A | | + | |B | | )1/α . This completes the
proof of Theorem 1.   □

Our next theorem gives an explicit formula of the solution x(t)
of system (1), the proof of which is based on the idea of [[16],
Theorem 5.2]. Let us denote

RA, B
α = sup Re(s): s ∈ σA, B

α, h ,
Δs, h(A, B) = (sαI − A − e−shB)−1

g2(s) = Δs, h(A, B) g1(s) + x(0)sα − 1 ,

g1(s) = ∫
0

h
e−sτBφ(τ − h) dτ

K(d, t) = ∫
−∞

∞
eiσtg2(d + iσ)i dσ

 
Theorem 2: Assume that RA, B

α < d0.

i. If d0 ≤ 0, then for all d ∈ [d0, 0] the mild solution of (1) is
given by

x(t) = 1
2πi∫d

0

[eσe−iπt − iπg2(σe−iπ) − eσeiπt + iπg2(σeiπ)] dσ

+ 1
2πiedtK(d, t)

(6)

ii. If d0 > 0, then for all d ≥ d0 the mild solution of (1) is given by

x(t) = 1
2πiedtK(d, t), t ≥ 0 (7)

 
Proof: Since the solution x(t) is, by Theorem 1, exponentially

bounded, the Laplace transformation X(s) of the solution x(t) exists
and is analytic on {s: Re(s) > b} by Proposition 3. The Laplace
transformation applied to each term in equation (2) gives

(sαI − A − e−shB)X(s) = ∫
0

h
e−stBφ(t − h) dt + x(0)sα − 1

such that for some fixed c > max {0, b, d}, Re(s) > c, the mild
solution of (1) is given by

x(t) = lim
T → + ∞

1
2πi∫c − iT

c + iT
estg2(s) ds = lim

T → + ∞
1

2πi∫γ7

estg2

(s) ds
(8)

where γ7 = {s = c + iσ: − T ≤ σ ≤ T}.

i. Let d0 ≤ 0 and we consider the integration of the function
estg2(s) around the closed boundary of the domain

𝒟 = ⋃i = 0
7 γi (see Fig. 1) in the complex plane in the direction

indicated

γ0 = {s = σ + iT : d ≤ σ ≤ c}, γ6 = {s = σ − iT : d ≤ σ ≤ c},

γ1 = {s = d + iσ: r ≤ σ ≤ T}, γ5 = {s = d − iσ: r ≤ σ ≤ T},

γ2 = {s = σ + ir: d ≤ σ ≤ 0}, γ4 = {s = σ − ir: d ≤ σ ≤ 0},

γ3 = s = reiv: − π
2 ≤ v ≤ π

2

Since estg2(s) is analytic in the domain 𝒟 and has no zeros in
this domain, it follows that the integral around its boundary is
zero

∮
𝒟

estg2(s) ds = 0 (9)

Step 1: Estimation of ∫ estg2(s) ds over γ0 and γ6 as T → ∞:
Using Proposition 2, for given c there is a number T0 > 0 such
that for s = c + iT, |T | > T0 the condition (i) in Proposition 6
holds, and hence we have for all σ ∈ [d, c]

∫
γ0

estg2(s) ds ≤ ∫
γ0

|e(σ + iT)t | | |Δs, h(A, B

) | | | |g1(s) | | + | | x(0) | | |s |α − 1 | ds|

= he−dh | |B | | | |φ | | + | | x(0) | |Tα − 1

Tα − | | A | | − e−dh | |B | |
|c − d |ect

because of | |g1(s) | | ≤ ∫ 0
h |e−(σ + iT)t | | |B | | | |φ(t − h) | |dt

≤ he−dh | |B | | | |φ | | .
Therefore, we have

lim
T → ∞ ∫

γ0

estg2(s) ds = 0 (10)

Similarly, we can get

lim
T → ∞ ∫

γ6

estg2(s) ds = 0 (11)

Step 2: Estimation of ∫ estg2(s) ds over γ3 as r ↓ 0: We first note
that

lim
r ↓ 0, − (π /2) ≤ v ≤ (π /2) sα = 0,  where  s = reiv, sα

= rαeivα

From Proposition 2 it follows that

lim
r ↓ 0, − (π /2) ≤ v ≤ (π /2) (sαI − A − e−shB)−1 = ( − A

− B)−1

On the other hand, we see that

∫
γ3

estg2(s) ds ≤ ∫
−π /2

π /2
ert | |Δs, h(A, B) | | h | |B | |

. | |φ | | r + | | x(0) | |rα dv

which gives limr ↓ 0 ∫ γ3
estg2(s) ds = 0, because of

| |g1(s) | | ≤ h | |B | | | |φ | | .
Step 3: Estimation of ∫ estg2(s) ds over γ2 and γ4 as r ↓ 0: Since

Fig. 1  Boundary 𝒟
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∫
γ2

estg2(s) ds

≤ ∫
γ2

eσt | |Δs, h(A, B) | | | |g1(s) | | dσ

+∫
γ2

eσt | |Δs, h(A, B) | | | | x(0) | | |s |α − 1 dσ

if we let r ↓ 0, and use the following inequalities (see equation
below) we get (see (12)) Similarly, we can get the estimation
of the integral of estg2(s) over γ4 as

lim
r ↓ 0 ∫

γ4

estg2(s) ds ≤ β2 | |B | | . | |φ | |e−hRA, B
α

|d |

+ β2 | | x(0) | |
α |d|α

(13)

where β2 := supσ ∈ [d0, 0] | | ( |σ |α e−iπαI − A − e−σhB)−1 | |. Next,
we prove that

lim
r ↓ 0 ∫γ2

estg2(s) ds = ∫
d

0

eσeiπtg2(σeiπ)d(σeiπ)

= ∫
d

0

eσeiπt + iπg2(σeiπ) dσ
(14)

In fact, for each ε > 0, we separate ∫ γ2
estg2(s) ds as follows:

∫
γ2

estg2(s) ds = ∫
s ∈ γ2, 0 ≥ σ ≥ b1

estg2(s) ds + ∫
s ∈ γ2, d ≤ σ ≤ b1

estg2(s) ds

where the number b1 ∈ (d, 0) is chosen such that

β1 | |B | | | |φ | |e−hRA, B
α

|b1 | + β1 | | x(0) | |
α |b1 |α ≤ ε/2. By the same

argument of the proof of (12), we have

lim
r ↓ 0 ∫

s ∈ γ2, 0 ≥ σ ≥ b1

estg2(s) ds ≤ ε/2,

∫
b1

0

eσeiπtg2(σeiπ)d(σeiπ) ≤ ε/2

Moreover, from Proposition 6 it follows that
limr ↓ 0 ∫ s ∈ γ2, d ≤ σ ≤ b1

estg2(s) ds = ∫ d
b1eσeiπtg2(σeiπ)d(σeiπ) .

Therefore,
∥ limr ↓ 0 ∫ γ2

estg2(s) ds − ∫ d
0 eσeiπtg2(σeiπ)d(σeiπ) ∥ ≤ ε, which

gives (14). Similarly, we can show (14) for the integral of
estg2(s) over γ4 as

lim
r ↓ 0 ∫γ4

estg2(s) ds = − ∫
d

0

eσe−iπt − iπg2(σe−iπ) dσ (15)

Step 4: Estimation of ∫ estg2(s) ds over γ1 and γ5 as
r ↓ 0, T → + ∞: From (8)–(11), (14) and (15), it follows the
existence of the integral limr ↓ 0, T → + ∞ (∫ γ1

+ ∫ γ5
)estg2(s) ds,

and hence the existence of the function K(d, t) as (see (16)) 
Finally, using steps 1– 4 and the derived conditions (8)–(16),
we can give an explicit form of the solution x(t) as follows.
From (9) it follows that

lim
r ↓ 0, T → + ∞

1
2πi ∑

k = 0

7 ∫
γk

estg2(s) ds

= lim
r ↓ 0, T → + ∞ ∮

𝒟
estg2(s) ds = 0

hence, using formula (8) we have (see equation below)
Assume that d0 ≥ 0. We consider the closed contour
𝒟∗ = γ0 ∪ γ6 ∪ γ7 ∪ γ8 (see Fig. 2) where

γ0 = {s = σ + iT : d ≤ σ ≤ c}, γ6 = {s = σ − iT : d ≤ σ ≤ c},

γ7 = {s = c + iσ: − T ≤ σ ≤ T}, γ8 = {s = d + iσ: − T ≤ σ
≤ T}

Since estg2(s) is analytic in 𝒟∗, we have ∮ 𝒟∗estg2(s) ds = 0.
Combining the equality, (8), (10) and (11) gives

x(t) = lim
T → + ∞

1
2πi∫γ7

estg2(s) ds

= − lim
T → + ∞

1
2πi∫γ8

estg2(s) ds = 1
2πiedtK(d, t)

This completes the proof of theorem.

   □
 
Remark 2: Note that the solution (6) can be rewritten in the

following explicit form (see equation below) where (see equation
below)

 
Remark 3: For the case of non-delayed linear FDEs, i.e. B = 0,

we can verify that the formula (7) implies the standard solution of
linear FDEs

| |g1(s) | | ≤ | |B | | | |φ | |e−dh ≤ | |B | | . | |φ | |e−hRA, B
α

lim
r ↓ 0 sup

s ∈ γ2
| |Δs, h(A, B) | | ≤ sup

σ ∈ [d0, 0]
| | ( |σ |α eiπαI − A − e−σhB)−1 | | := β1

lim
r ↓ 0 ∫

γ2

estg2(s) ds ≤ β1 | |B | | | |φ | |e−hRA, B
α

|d | + ∫
d

0

|σ |α − 1 dσβ1 | | x(0) | |

= β1 | |B | | | |φ | |e−hRA, B
α

|d | + β1 | | x(0) | |
α |d|α

(12)

lim
r ↓ 0, T → + ∞ ∫

γ1

+ ∫
γ5

estg2(s) ds = −edt lim
r ↓ 0, T → ∞ ∫

r

T
+ ∫

−T

−r
eiσtg2(d + iσ)i dσ

= −edt∫
−∞

∞
eiσtg2(d + iσ)i dσ = − edtK(d, t)

(16)
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Dαx(t) = Ax(t), x(0) = x0 as x(t) = Eα(Atα)x0

In fact, using Propositions 1 and (7), we have

x(t) = 1
2πiedtK(d, t)

= 1
2πi∫d − i∞

d + i∞
est[sα − A]−1sα − 1 ds x0

= 1
2πi∫d − i∞

d + i∞
est ∑

k = 0

∞ Ak

sα(k + 1) s
α − 1 ds x0

= ∑
k = 0

∞ 1
2πi∫d − i∞

d + i∞
est 1

sαk + 1 dsAk x0

= ∑
k = 0

∞ tαk

Γ(αk + 1) Ak x0 = Eα(Atα)x0

The proof of Theorem 2 does not only provide an explicit
formula of the solution x(t), but also a method to estimate the
solution via the roots of the characteristic equations σA, B

α, h . Next
theorem gives an exponential bound for the solution of system (1).
Before proving next theorem, we define some notations for
simplicity

β1 = sup
σ ∈ [d0, 0]

| | ( |σ |α eiπαI − A − e−σhB)−1 | | ,

β2 = sup
σ ∈ [d0, 0]

| | ( |σ |α e−iπαI − A − e−σhB)−1 | | ,

k2 = β1 + β2

2πα | | , k1 = β1 + β2

2π e−hRA, B
α

| |B | | ,

β3(d) = sup
−T0 ≤ σ ≤ T0

∥ Δd + iσ, h(A, B) ∥ ,

T0 = 2| | A | | + 2e−RA, B
α h | |B | | 1/α + |RA, B

α | ,

k3(d) = T0β3(d)h
π e−RA, B

α h ∥ B ∥

+ 2 ∥ B ∥ [e−RA, B
α h + 1 + he−RA, B

α h] + 1
παT0

α + β3(d)T0
α

πα

+ 1
2π π − 2tan−1 T0

|d| + 4

 
Theorem 3: Assume that RA, B

α < d0 < 0. Then for all d ∈ [d0, 0]
the solution of system (1) satisfies the following condition:

| | x(t) | | ≤ (k1 |d | + k2 |d |α + k3(d)edt) ∥ φ ∥ , t ≥ 0 (17)
 
Proof: From the solution form (6) and using the derived

estimations (12), (13) and (16), we can obtain the following
estimation:

| | x(t) | | ≤ k1 |d | ∥ φ ∥ + k2 |d |α ∥ φ ∥ + 1
2π | |K(d, t) | |edt

Thus, to obtain (17), we will estimate the value ∥ K(d, t) ∥ .
Denoting s = d + iσ, we decompose the integral K(d, t) as

K(d, t) = ∫
−∞

+∞
eiσtΔs, h(A, B)g1(s)i dσ + ∫

−∞

∞
eiσtΔs, h(A, B

)sα − 1i dσx(0)

We will estimate the first integral: J = ∫ −∞
+∞eiσtΔs, h(A, B)g1(s)i dσ.

Integrating of g1(s) by part gives (see equation below) hence for all
s = d + iσ, d ∈ [RA, B

α , 0] (see (18)) We now decompose the integral
J as

x(t) = lim
T → + ∞

1
2πi∫γ7

estg2(s) ds = − lim
r ↓ 0, T → + ∞

1
2πi ∑

k = 0

6 ∫
γk

estg2(s) ds

= 1
2πi∫d

0

[eσe−iπt − iπg2(σe−iπ) − eσeiπt + iπg2(σeiπ)] dσ + 1
2πiedtK(d, t)

Fig. 2  Boundary 𝒟∗

 

x(t) = X1(t)ϕ(0) + ∫
d

0∫
0

h
X2(t, τ, σ)Bϕ(τ − h) dτ dσ

+∫
−∞

∞∫
0

h
X3(t, τ, σ)Bϕ(τ − h) dτ dσ

X1(t) = 1
2πi∫0

d
[eσe−iπt − iπΔ

σe−iπ, h
(A, B)(σe−iπ)α − 1 − eσe−iπt + iπΔ

σeiπ, h
(A, B)(σeiπ)α − 1] dσ

+ 1
2πi∫−∞

∞
e(d + iσ)tΔd + iσ, h(A, B)(d + iσ)α − 1i dσ

X2(t, τ, σ) = 1
2πi eσe−iπ(t − τ) − iπΔ

σe−iπ, h
(A, B) − eσeiπ(t − τ) + iπΔ

σeiπ, h
(A, B)

X3(t, τ, σ) = 1
2πie(d + iσ)(t − τ)Δd + iσ, h(A, B)
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J = ∫
−T0

T0
+ ∫

T0

+∞
+ ∫

−∞

−T0
= J1 + J2 + J3

From (18) and the continuity of Δs, h(A, B) w.r.t. σ on
[ − T0, 0] and [0, T0], it follows that

∥ J1 ∥ ≤ ∫
−T0

T0
∥ Δs, h(A, B) ∥ ∥ g1(d + iσ) ∥ dσ ≤ 2T0β3(d

) ∥ B ∥ ∥ φ ∥ he−RA, B
α h

Using the condition (18) and Proposition 2 gives

∥ J2 ∥ ≤ ∥ B ∥ ∥ φ ∥ [e−RA, B
α h + 1 + he−RA, B

α h]∫
T0

∞ 2
|σ|α

1
|σ|

dσ = 2 ∥ B ∥ [e−RA, B
α h + 1 + he−RA, B

α h]
αT0

α ∥ φ ∥

because of |σ |α ≥ T0
α > 2| | A | | + 2e−RA, B

α h | |B | |. Similarly, we have

∥ J3 ∥ ≤ 2 ∥ B ∥ [e−RA, B
α h + 1 + he−RA, B

α h]
αT0

α ∥ φ ∥

Therefore (see (19)) We now are in position to estimate the second
integral

𝕁 = ∫
−∞

∞
eiσtΔs, h(A, B)sα − 1i dσx(0)

Similar to the estimation of integral J, we decompose the integral 𝕁
into 𝕁1, 𝕁2 and 𝕁3 over the intervals [ − T0, T0], [T0, + ∞) and
( − ∞, − T0], respectively. Setting s = d + iσ, we have

∥ 𝕁1 ∥ ≤ β3(d) ∥ x(0) ∥ ∫
−T0

T0
|σ |α − 1 dσ = 2β3(d) ∥ x(0)

∥ T0
α

α

(20)

Applying Proposition 6 gives

𝕁2 = ∫
T0

∞ eiσt

s i dσx(0) + ∫
T0

∞
eiσt0(s) 1

sα + 1 x(0)i dσ (21)

𝕁3 = ∫
−∞

−T0 eiσt

s i dσx(0) + ∫
−∞

−T0
eiσt0(s) 1

sα + 1 x(0)i dσ (22)

Using Proposition 6 again, the following inequalities hold:

∥ ∫
T0

∞ eiσt0(s)
sα + 1 x(0)i dσ ∥ ≤ ∫

T0

∞ ∥ x(0) ∥ ∥ 0(s) ∥
σα + 1 dσ

≤ ( | | A | | + e−dh | |B | | ) ∥ x(0) ∥
(T0

α − | | A | | − e−dh | |B | | )αT0
α

≤ T0
α/2

T0
α − T0

α/2
∥ ∥ x(0) ∥

αT0
α = ∥ x(0) ∥

αT0
α

(23)

∥ ∫
−∞

−T0 eiσt0(s)
sα + 1 x(0)i dσ ∥ ≤ ∫

−∞

−T0
∥ 0(s) ∥ ∥ x(0) ∥

|σ|α + 1 dσ

≤ ( | | A | | + e−dh | |B | | ) ∥ x(0) ∥
(T0

α − | | A | | − e−dh | |B | | )αT0
α

≤ T0
α/2

T0
α − T0

α/2
∥ x(0) ∥

αT0
α = ∥ x(0) ∥

αT0
α

(24)

because the function u/(T0
α − u) is increasing w.r.t u, 0 ≤ u ≤ T0

α/2
and 0 ≤ | | A | | + e−dh | |B | | ≤ T0

α/2. We now will estimate the

integral ∫ T0
∞ (eiσt/s)i dσ + ∫ −∞

−T0(eiσt/s)i dσ. We first note that

∫
T0

∞ eiσt

s i dσ + ∫
−∞

−T0 eiσt

s i dσ = i∫
T0

∞ cos(σt)2d
d2 + σ2 dσ

+ ∫
T0

∞ sin(σt)2σ
d2 + σ2 dσ

(25)

Then, we have

i∫
T0

∞ cos(σt)2d
d2 + σ2 dσ

≤ ∫
T0

∞ |cos(σt) |2 |d|
d2 + σ2 dσ

≤ ∫
T0

∞ 2 |d|
d2 + σ2 dσ = π − 2tan−1 T0

|d|

(26)

∫
T0

∞ sin(σt)2σ
d2 + σ2 dσ

= ∑
k = k0 + 1

∞
( − 1)k∫

kπ

(k + 1)π sin(u)2u
(td)2 + u2 du

+∫
tT0

(k0 + 1)π sin(u)2u
(td)2 + u2 du

(27)

where k0 satisfies k0π ≤ tT0 < (k0 + 1)π. By some simple
calculations of Dirichlet complex integral and T0 ≥ |RA, B

α | > |d|,
we can estimate the integral (27) as follows: (see equation below)
which gives

g1(s) = ∫
0

h
e−sτBφ(τ − h) dτ = e−sτ

−s Bφ(τ − h) τ = 0
τ = h + ∫

0

h e−sτ

s Bφ̇(τ − h) dτ

∥ sg1(s) ∥ ≤ ∥ B ∥ ∥ φ ∥ [e−RA, B
α h + 1 + he−RA, B

α h], ∥ g1(s) ∥ ≤ ∥ B ∥ ∥ φ ∥ he−RA, B
α h (18)

∥ J ∥ ≤ 2T0β3(d) ∥ B ∥ ∥ φ ∥ he−RA, B
α h + 4 ∥ B ∥ [e−RA, B

α h + 1 + he−RA, B
α h]

αT0
α ∥ φ ∥ (19)
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∫
T0

∞ sin(σt)2σ
d2 + σ2 dσ ≤ ∑

k = k0 + 1

∞ 2
k(k + 1) + 2 ≤ 4 (28)

Hence, from the conditions (20)–(28), it follows that (see (29)) 
Owing to the derive conditions (19) and (29), we obtain
| |K(d, t) | | ≤ ∥ J ∥ + ∥ 𝕁 ∥ ≤ 2πk3(d) ∥ φ ∥ , which finally gives

| | x(t) | | ≤ (k1 |d | + k2 |d |α + k3(d)edt) ∥ φ ∥

The proof of the theorem is completed.   □
 
Remark 4: If α = 1, we can use the similar argument of the

proof of Theorem 2 for the case 𝒟∗ to obtain
x(t) = (1/2πi)edtK(d, t) ∥ φ ∥ . Then, according to [34], we have

| | x(t) | | ≤ Nedt ∥ φ ∥ , t ≥ 0

which implies that the linear DE is exponentially stable in the
Lyapunov sense due to d < 0.

In the sequel, we apply the obtained result to derive Lyapunov
stability condition of linear FDDEs (1).

 
Theorem 4: If RA, B

α < 0, then the system (1) is asymptotically
stable.

 
Proof: Since RA, B

α < 0, there is d0 such that RA, B
α < d0 < 0, we

can apply Theorem 3 to get the exponential estimate (17), which
immediately shows the Lyapunov stability of the system. It suffices
to prove that limt → ∞ x(t) = 0. Indeed, by Theorem 3 the following
estimation holds for all d ∈ [d0, 0):

| | x(t) | | ≤ (k1 |d | + k2 |d |α + k3(d)edt) ∥ φ ∥ , t ≥ 0

Note that the numbers k1, k2 do not depend on d, for every ε > 0,
we can choose d1 ∈ (d0, 0) such that

k1 |d1 | ∥ φ ∥ + k2 |d1 |α ∥ φ ∥ ≤ ε
2

On the other hand, since d1 < 0, there exists T > 0 such that

k3(d1)e
d1t ∥ φ ∥ ≤ ε

2, ∀t > T

Therefore, for all t > T we obtain ∥ x(t) ∥ ≤ ε, which implies that
limt → ∞ x(t) = 0. This completes the proof of the theorem.   
□

 
Remark 5: For the case A = 0, similar stability conditions were

given in [12–14] by using singular value decomposition of the
characteristic equations. Moreover, it is worth noting that the
asymptotic stability of the LFDDEs (1) can be verified by the
Lyapunov stability theorem (Theorem 4.1 in [19] or Theorem 4 in
[22]) using Lyapunov function method. However, the solution
leads to solving LMIs depending either on the trace of the system
matrices or on the positive definite matrix solution, which is not

easy to solve and to verify the Lyapunov stability conditions (see,
e.g. Example 1).

Next theorem gives a sufficient condition on the FTS of system
(1), which is less restrictive than the condition obtained in [28, 31–
33].

 
Theorem 5: The system (1) is finite-time stable w.r.t (c1, c2, T) if

Eα([ | | A | | + | |B | | ]Tα) ≤ c2

c1
(30)

 
Proof: As in the proof of Theorem 1, we have derived the

condition (4) as

| | x(t) | | ≤ ∥ xt ∥ ≤ | |φ | |Eα([ | | A | | + | |B | | ]Tα)

Therefore, if ∥ φ ∥ ≤ c1 and due to the assumption (30) we then
have

∥ x(t) ∥ ≤ c2, ∀t ∈ [0, T]

This completes the proof of the theorem.   □
 
Remark 6: We note that by using the estimation (5) on the

function Eα(t), the sufficient condition (30) can be relaxed by the
following condition:

∃η > 0: Eα(t) ≤ η
αexp {t1/α}, ∀t ≥ 0,

η
αexp {( ∥ A ∥ + ∥ B ∥ )1/αT} ≤ c2

c1

(31)

 
Remark 7: In Theorem 5 by considering a special case of

LFDDEs (1) (i.e. A = 0) and under the strict assumption on the
initial delay function φ(t) ∈ C1([ − h, 0], Rn), Li and Wang [28]
proposed a similar FTS condition. The different method used in
[28] is an extension of the Mittag–Leffler function, which allows a
result on FTS to be derived via the delayed Mittag–Leffler type
matrix function.

The following examples are given to illustrate the validity and
effectiveness of the proposed stability results.

 
Example 1 (asymptotic stability): Consider system (1), where

A = 0 −2
2 0 , B = 0.1 0.1

0.1 0.1 ,

α = 1
2, φ(t) = [1 1]⊤, t ∈ [ − 2, 0]

We show that RA, B
1/2 < 0. Indeed, we have for all s ∈ C, Re(s) ≥ 0

det(s1/2I − A) = det s1/2 2
−2 s1/2 = s + 4 ≠ 0

which shows that the matrix (s1/2I − A) is invertible and

∑
k = k0 + 1

∞
( − 1)k∫

kπ

(k + 1)π sin(u)2u
(td)2 + u2 du ≤ ∑

k = k0 + 1

∞ 2
k(k + 1)

∫
tT0

(k0 + 1)π sin(u)2u
(td)2 + u2 du ≤ ∫

k0π

(k0 + 1)π sin(u)2u
(td)2 + u2 du ≤ 2∫

0

π sin(u1)
u1

du1 ≤ 2

∥ 𝕁 ∥ ≤ 2β3(d)T0
α

α ∥ x(0) ∥ + 2 1
αT0

α ∥ x(0) ∥ + π − 2tan−1 T0

|d| + 4 ∥ x(0) ∥ (29)
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(s1/2I − A)−1 = 1
s + 4

s1/2 2
−2 s1/2

[(s1/2I − A)−1]T(s1/2I − A)−1 = 1
|s + 4|2

|s | + 4 2(s1/2 − s1/2)
−2(s1/2 − s1/2) |s | + 4

The eigenvalues of [(s1/2I − A)−1]T(s1/2I − A)−1 are defined as

λ = |s | + 4
|s + 4|2 ± 2i s1/2 − s1/2

|s + 4|2 ≤ |s | + 4
|s + 4|2 + 4 |s|

|s + 4|2 ≤ 2 + 4 = 6

Therefore, we have

∥ (s1/2I − A)−1 ∥ ≤ 6, ∀s ∈ C, Re(s) ≥ 0

Moreover, the matrix I + (s1/2I − A)−1Be−2s is invertible for
Re(s) ≥ 0 because of

| | (s1/2I − A)−1Be−2s | | ≤ | | (s1/2I − A)−1 | | | |B | | ≤ 6 × 0.2 < 1

On the other hand, since the matrix

s1/2I − A − Be−2s = (s1/2I − A) I + (s1/2I − A)−1Be−2s

is invertible, we have RA, B
1/2 < 0. The system, by Theorem 4, is

asymptotically stable. Fig. 3 shows the trajectories of x1(t) and x2(t)
of the system with the initial condition φ(t) = (1, 1), t ∈ [ − 2, 0] . It
is worth noting that the asymptotic stability of the system cannot be
verified by using the Lyapunov function method, i.e. there is no
Lyapunov functional applied to the system. In fact, if any
Lyapunov functional is applied to the system (e.g. by Theorem 4.1
in [19] or by Theorem 4 in [22]), then the stability condition leads
to an LMI of the form

AP + PAT + qP BP
PBT −I

< 0

where q > 1, P is a symmetric positive definite matrix. By the
Schur complement lemma, this LMI implies ATP + PA < 0, and
hence by the Lyapunov equation stability theorem, matrix A is
Hurwitz. However, it is obvious that the matrix A in the example is
not Hurwitz because of the real part of its eigenvalues
(λ(A) = + i 2) is zero. 

 
Example 2 (FTS): Consider system (1), where

A =
0.5 − 1

6

0.25 1
3

, B = 0.25 0
0 0.25 ,

α = 1
2, φ(t) = [0.5 0.5]⊤, t ∈ [ − 2, 0]

We have ∥ A ∥ = 0.25 5, ∥ B ∥ = 0.25, and it is easy to verify
the validity of the condition (30) or (31) for
c1 = 1, c2 = 1400, T = 10. For example, the condition (30) holds by
calculating the value of Eα(t) by using the following formula:

E1/2(z) = 2
π

ez2∫
−z

∞
e−u2du, z ∈ R

which gives E1/2([0.25 5 + 0.25] 10) = 1391.4.
Therefore, the system, by Theorem 5, is finite-time stable w.r.t.

(1, 1400, 10). Moreover, we can show that this system cannot be
finite-time stable by using the conditions obtained in [31–33].
Indeed, for example, by [31] the system is FTS w.r.t
c1 = 1, c2 = 1400, T = 10, if

1 + [λmax(A) + λmax(B)]Tα

Γ(α + 1) exp [λmax(A) + λmax(B)]Tα

Γ(α + 1) ≤ c2

c1

For α = 1/2, we have

Γ(α + 1) = πΓ(2 + 1)
22nΓ(1 + 1)

= π(2)!
221! = 0.886

Therefore, we have

1 + 12.921 10
0.886 exp 12.921 10

0.886 > 1400
1

which implies that the system is not finite-time stable w.r.t.
c1 = 1, c2 = 1400 and T = 10. Fig. 4 shows the trajectories of
∥ x(t) ∥ of the system with the initial condition
φ(t) = (0.5, 0.5), t ∈ [ − 2, 0] . 

4 Conclusion
In this paper, we have studied the stability of LFDDEs. The
proposed analytical tools used in the proof are based on the
Laplace transform method, Mittag–Leffler function and the
generalised Gronwall inequality. This approach has a wider usage
and can be applied to derive an explicit formula of solutions of

Fig. 3  State response of the system in Example 1
 

Fig. 4  State response of the system in Example 2
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LFDDEs, precise exponential estimates for the solutions, sufficient
conditions for asymptotic stability and FTS. Finally, illustrative
examples for the proposed results have been presented.
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