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SUMMARY

This paper proposes a new design method of Hoo filtering for nonlinear large-scale systems with inter-
connected time-varying delays. The interaction terms with interval time-varying delays are bounded by
nonlinear bounding functions including all states of the subsystems. A stable linear filter is designed to
ensure that the filtering error system is exponentially stable with a prescribed convergence rate. By construct-
ing a set of improved Lyapunov functions and using generalized Jensen inequality, new delay-dependent
conditions for designing H filter are obtained in terms of linear matrix inequalities. Finally, an example is
provided to illustrate the effectiveness of the proposed result. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Hs filtering problem has been extensively studied over the past decades because of its appli-
cations in a variety of areas such as signal processing, communications, power systems, pattern
recognition, transportation networks, and telecommunication networks [1-3]. The H,, filtering
problem consists of the design of a filter such that the filtering error system is asymptotically sta-
ble, and the induced H —norm from the perturbation signals to the filtering error remains bounded
by a prescribed value. There has been substantial interest in the study of H, filters for time-
delay systems in the past decades because for many practical filtering applications, time-delays
cannot be neglected in the procedure of filter design, and their existence usually results in a poor
performance [4-7]. In the context of delayed large-scale systems [8, 9], the problem of H, fil-
tering has received lesser attention in the literature. When the problem of H, filter design of
large-scale delayed systems is considered, the conventional centralized H, design approaches are
neither robust nor scalable to interconnected subsystems, with their measurements distributed on
a large geographical region. It is difficult to design an H filter for nonlinear interconnected sys-
tems when there are time-varying delay interactions among the subsystems. The reason is that the
time-varying delay interconnected systems are of high dimension, and thus require extensive com-
putations to implement the centralized procedure. It is worth pointing out that all the existing results
on the H, filtering problem in the continuous context were for point-wise, single, or constant time-
delay systems. Recently, the study of large-scale time-delay interconnected systems has received
much attention and many results have been achieved [10-12]. However, most of the existing results
are based on the fact that the system states are available and/or the interconnected systems are
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linear or have linear nominal subsystems either with constant delays or differentiable time-varying
delays. For nonlinear large-scale systems with unknown time-varying delayed interactions, how-
ever, the Hy, filtering problem has not been fully investigated in the literature. In [13, 14], the
fuzzy and stochastic He, filter design method was proposed for nonlinear interconnected systems
with constant time delays via the Takagi-Sugeno fuzzy model. Recently, the H, control of large-
scale interconnected systems with time-varying delays was discussed in [15—-17] based on Lyapunov
functional method.

In this paper, we will study the H filtering for nonlinear large-scale systems with intercon-
nected time-varying delays. Compared with the existing methods, the main features of our method
can be described as: (a) the nonlinear time-varying delayed interaction terms are bounded by non-
linear bounding functions including all state variables of subsystems. The time delays are assumed
to be any continuous functions belonging to a given interval involved in both the state and observa-
tion output; (b) there has not been an effective method to design a decentralized filter for large-scale
high-order nonlinear systems to ensure that the filtering error system is exponentially stable with a
prescribed convergence rate. We propose a new design tool to solve the aforementioned decentral-
ized Ho filtering problem for nonlinear large-scale systems with unknown time-varying delayed
interconnections. We construct a set of improved Lyapunov—Krasovskii functionals based on the
information of the lower and upper delay bounds and apply generalized Jensen inequality for lower
bounding cross terms, which eliminates the need for overbounding and provides larger values of
the delay bound. The filtering design solution is facilitated by introducing some additional instru-
mental matrix variables. These additional matrix variables decouple the Lyapunov and the system
matrices, which make the filtering design feasible. In terms of linear matrix inequalities (LMIs),
sufficient conditions for the solvability of this problem are obtained, and the desired Hyo filter can
be constructed by solving certain LMIs, which can be implemented by using standard numerical
algorithms [18].

2. PROBLEM FORMULATION AND PRELIMINARIES

Throughout this paper, A(A) denotes all the eigenvalues of A; Ayqx(A) = max{Rel : A € A(A)};
Amin(A) = min{Rel : A € A(A)}; Aga = Amax(AT A); and C([a. b], R") denotes the set of all
R"-valued continuous functions on [a, b]; L,([0, o], R") stands for the set of all square-integrable
R”— valued functions on [0, oc]. The notation i = 1, N meansi = 1, ..., N; the symmetric terms
in a matrix are denoted by *. Matrix A4 is semi-positive definite (4 = 0) if (Ax,x) = 0, for all
x € R"™; Ais positive definite (A > 0) if (Ax,x) > Oforall x #0; A > Bmeans A — B = 0. In
this section, we first give the problem formulation, and then present some preliminaries, which will
be used in the sequel.

Nonlinear large-scale systems with interconnected delays can be found in such diverse areas as
electrical power systems, space structures, manufacturing processes, transportation, and communi-
cation. In this context, we consider the following nonlinear large-scale interconnected system with
state delays composed of N subsystems as follows:

Xi(t) = Aixi(t) + % A,-jxj(t —hij(l)) + Djw;(t)
=1
+gi(t, x; (1), {x; (¢ —hij(l))}ﬁ-vﬂa w; (1)),
N
zi(t) = Cix;(t) + '21 Gijxj(t —hij(1)), (2.1
j=

N
yi(t) = Eix;(t) + Y Eijxj(t —hij(t)), VYt =0,
j=1

xi(0) = @i(0), VO e€[-h.0], i=1LN,

where x;(¢) € R™ is the state vector, z;(t) € RY is the signal to be estimated, and
w; € L5([0,00], R™) is the exogenous disturbance signal. The system matrices 4;, C;, D;, Ej,
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A;j, Gij, E;j are of appropriate dimensions, the continuous time delays /;; (.) satisfy the following
conditions:

O<hi <hj(t)y<hy,, t=0,Vi,j=1N,
the initial function ¢; (t) € C'([—~h2,0], R"), with the norm as follows:

lgille, = sup NI+ sup fl@i(@)].

—hy<t<0 —hy<t<0

The nonlinear functions g; (.) satisfy the following growth conditions:

N
Jai,di,ai; >0 g Ol < aillxi @) + dillwi (D) + Zaij”xj (t =hij@)- (2.2)
=1

We consider a decentralized filter of the form as follows:

(2.3)

4 = AT 5(0) + DY yi (1), %(0) =0,
40 =C¢ 5@ + Gy, i=TN,

where Aif s Dif , Cif , Gif are the filter parameters to be designed.
Defining Z;(¢) 2 zi(t) — 2;(t) and &(t) = [x;(t) %;(t)]T from (2.1) and (2.3), we have the

filtering error system as follows:
) _ N _ )
Ei(1) = Ai&i (1) + X Aijj(t — hij (1)) + Diwi(t) + &i (),
Jj=1

- N _ - 24
50 = Ga0 + T Gyl —hy@). i =T o4

j=
&) = @i(1) = [@i(1) 0", V1 € [h2,0],

- Ai 0 - A,’j 0 - Di _ gi(')
i [D;’Ei A,.f] i [DifEijo i 0| &0 0 |

C; = [Ci ~ G/ E; —Cif],(_;ij = [Gij - G/ Ey 0]'

where

H, filtering problem: given a scalar y > 0, design a full order filter of the form (2.3) such that
the filtering error system (2.4) has a prescribed H, performance y, that is as follows:

(i) the error system (2.4) with w; (t) = 0, i = 1, N, is exponentially stable; and
(i)
e ~
IO
sup —— 0 =1 — <y, (2.5)
co 2 lleillg, + [ X llwi ()] dt
i=1 0 i=1

N

where the supremum is taken over all ¢; € C'([—h5,0], R™) and the non-zero uncertainty
w; (t) € L2([0, 0], R"7).

To end this section, we introduce the following lemmas needed for H, performance analysis of
the error system.

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
DOI: 10.1002/oca



V. N. PHAT, N. T. THANH AND H. M. TRINH

Lemma 1 (Schur complement lemma [19])
Given matrices X, Y, Z, where Y = YT >0.Then X + ZTY1Z < 0if and only if

x zT
7 _y < 0.

Lemma 2 (Generalized Jensen inequality [20])
For given symmtric matrix R > 0 and differentiable function ¢ : [a,b] — R”", then the following

inequality holds:
/'b T . 1 T 12 T
¢ (DRP()dt = m(cb(b) —¢(a))" R(¢(b) — p(a)) + mﬁ RQ,
where Q = w - ﬁfabqﬁ(t)dt.

3. MAIN RESULT

In this section, we give a design of H filter for large-scale system (2.1), such that the error system
(2.4) is exponentially stable. Before introducing the main result, the following notations of several
matrix variables are defined for simplicity as follows:

xO) =[x v EOT =80T, L v,
o) =", ... on()T].

N N
4d? - [Py O
112 L — . i .. R i1
> llgillg, e = ai + y + 2 P’_[O Piz]

i=1 j=1

o] = min Amin(pi)’ 0y = ax {Amax(Pi) + h%)tmax(éi) + hglmax(léi)}’
i=1,N i=1,N

lelle, =

. 1 _ _

Hi = _N_He—zﬂthi +Q242a;)I, j=1,N,
- —2hafp. i TN

M =y pe R j = LN,

. S _ - N44 L, -

Hininwen = Pidi + AT P; +2BP; —4e 2Bl R, — N——i—le 2Bha R 4 2a;1
= P“A"_{—AiTP“ EiTZiT p. _ A,—2Bh1 _._N+4 —2B8h> 5. _
_|: 7. Yi+Y,-T + 2B P; —de R; N+1e R; +2a;1,
) _ ) 2 _
—2Bh —28h
Hinynyovin = =261 Ri, Miy iy = = +1° PR,
T T T

' T p Aj P E; Z; ' 6 _opn

Hiyinwa = 4i i = [ o YT | Hivenass = g€ PR,
14

i 6 —2Bh2 ' —2Bh
H(IN+1)(N+6) = me 2R;, H(1N+2),(N+2) = —4e 'R

j —28h)
Hin o) (vts) = e PR,
H! = — 4 e 2R HI ——6 e 2P R,

N+3).(N+3) T TN 1] i TN+, +6) T (N iy i

i 24 12\ R 5. 77 e 2bh
Hiy gy veay = (11 +h3) Ri =2Pi, Hiy 5y (v 45) = _lzh—fRi’

i e_z.BhZ ;
H — 12—  _R.H . g

N+6),(N+6 i N6+ N+6+. ,

( )s( ) (N + l)h% j J
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. T
jNtetr; = VN +1 [G.ii - Gl Ej; 0]

H! =1, H: _ pA, = |Findi O i =1
IN+6+j2N+6+) = T HIN+12N+6+) T TG T 7 (| T3NF6+3N e+ T T
; _ Pi1A;i 0 ; , -
i DA, — i14ij i _ 1 _ D.
Hyaonte+; = Pidij = |:ZiEij 0 Hyni7an47 = 1 Hy 1 an47 = Vei b

4

. . - T
Hinisan+s = =1 Hypranss = VN 167 = VN +1 [Ci - G,-fEi —Cf] ;

. _ o ,
Hiniounvo = —1. Hy g anio = VeiPio Hyy 110),an+10) = s
] D 1N P]D P )/

Hin 1), @an+10) = PiDi = |: 10 l] Hin i, anen = 4
1 - P]D

Hiy 4 @ns1ny = PiDi = [ ’0 ‘].

The following is the main result of the paper, which gives sufficient conditions for the Ho
filtering design for system (2.1). Essentially, the idea of this proof is based on the construc-
tion of improved Lyapunov—Krasovskii functionals satisfying Lyapunov stability theorem for the
time-delay system [21].

Theorem 1
For given y > 0, 8 > 0, the filtering error system (2.4) has a prescribed H, performance y if there
exist symmetric positive definite matrices 15,- = 61 P :| ,Ri and matrices Y;, Z;, Cif R Gif =
i2
1, N, such that the following LMIs hold:
Hiy Hiy ... Higyi
1 1
* Hpoooo Hyanian <0, i=T1,N. 3.1)
* ok Hin e+

Moreover, the filters are defined by the following:

Al = p3'v,, b/ = P3'zi. ¢/, G/, i=TN,

i =

and the solution of the filtering error system (2.4) satisfies the following:
Olz —ﬂt
DIl < [ —=llellc,e™". Vi =0.
o1
Proof

The proof is rather long and technical, so for clarity, we divide it into two steps. The first step is to
prove the exponential stability of the error system (2.4) by using Lyapunov fucntional method and
LMI technique. The second step will focus on getting the H, performance level condition (2.5).

Step 1. Exponential stability of system (2.4): consider the following Lyapunov—Krasovskii func-
N
tional for the system (2.4): V(t,x;) = Y. [Vi1(t, x;) + Via(t, x:) + Viz(t, x;)] , where

i=1

t
/ 2PCET (1) R;é; (v)d vds,
+s

t

0
Virlt.x) = &7 P& (1), Vialt. ) = hy f
—hy

0 ¢
2B8(t—1) & . &
Via(t,x;) = h / / ePPEDET (1) R;E; (v)d vds.
—h2 t+s
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Firstly, we estimate the Vi1 (¢, x;) as follows. From the condition (2.2), we obtain the following:

260" Pigi() < 21E&OT P12 Ol = 201& @7 Pill]1gi O]
N
<2l&@7 Pl |:ai 16 O + dilloi O] + ) aijll&; ¢ — hij(f))||:|
j=1
i N
<e&ll&@T Pl + aill& (0117 + 0.25y||wi (O + Y aijll§; ¢ — hiy ()]

Jj=1

Using the Cauchy matrix inequality gives the following:

=4

N
26 (1)"P {Z hij(l))} > & (z)+Zsj(t hij (0)7&;(t = hij (1)),

i=1 i=1

2%-1(1‘) PlDlwl(t) ;E (I)TPID D P,E,(t)—{-OZSya),(t)Ta),(t)

Therefore, we have as follows:

j=1

N
Vir(, x;) = 26 ()" P; |:1‘Ii§i(f) + ) A€t — hij (@) + Diwi (1) + gi(~)i|
<&@ [PA; + AT P] &) + Zsl(z)TPA Al Pigi (1)
j=1

+ Zéj(t—hu(l)) §j(t —hij (1)) + Ez(l) P;D; D Pi&i(t) + 0.25ywi (1) wi (1)

j=1

N
+ell&OT PP + aill& @117 + 025y llwi (1 + Y aiz 1 = hij ()]

j=1
(3.2)
Siminarly,
. - . - N - -
0==2&0)" P | &(0) — Ai&i(1) = Y Aij&;(t — hij (1)) — Dioi (1) — & ()
j=1
. - . -_ N .
<2607 P [0 — As0] + Y EOT Pidy AL P&
J=1 (3.3)
+ Z £t —hiy()TE;(t — hij (1) + s, OW7 PiE; (1) + 0.25ywi (1) i (1)
j=1
. ) N
+ e |& (OT P + ail|& (O + 025y [loy O] + Y aij 1€ = hij ()]
j=1
because of the following inequalities:
Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)

DOI: 10.1002/oca



H o FILTERING FOR NONLINEAR LARGE-SCALE SYSTEMS

N N
260" P |:Z Aij&i @ _hij([))i| <Y EW@T P A, AT PiE (1)
ji=1 Jj=1

N
+ > E (= hip(0)TE(t — hij (1)),

j=1
Zéi(l)TPiDia)i([) < ;éi(t)TPiD_iD_iTPiéj(t) + 0.25yw,-(t)Ta),-(t),

2807 Pigi() < 2007 PiLE Ol = 211& @7 Pill.lIgi ()]
< eill& O P12 + aill& O + 0.25y[|w; (1)
N
+ Zaij”Sj(l —hij())>.
i=1

Secondly, we estimate V;»(t, x;) as follows. Applying the Lemma 2, we have the following:

— Iy / E()T RiEi(s)ds < —[&:(t) — & (t — h))T Ril&i () — & (t — hy)]
t—hy
T

EO+EC—h) 1 a0+ EC—h) 1
: - / E(s)ds | R : - / £ (s)ds

t—hy t—hy

—12

Therefore, we obtain the following:

t

Via(t, x0) < W38 ()T Ri&i (1) — 2BVia(t, x¢) — hye 2P / £ ()T R (s)ds

t—hy
<& T Ri&i (1) = 2BVia(t. x) — e PP [E (1) — & (t — h)]T Ril&i (1) — & (t — hy)]
T
Ry éi(r)+szi(z—h1)_% / £ (5)ds
t—h
« B, 5"(’”‘2("}“)—% [ £ (s)ds

t—h
) 3.4
Thirdly, we evaluate V;3(t, x;) as follows. To do that, we need some the following inequalities:

t
— Iy / E ()T Ri&i(s)ds < —[&:(1) — & (t — h)]T Ril&i (1) — & (t — h2)]
—h>

t

T
t t
i (1 i(t—h 1 _ i ( i(t—h 1
S| EORECk) L | g | B0 L),
2 ]’lz 2 h2
t—h> t—h>
and
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—hy / ()T Ri&i (s)ds < —hji (1) / £(s)T Rii(s)ds
t—hy t—h ;i)

—[E(@0) = Ei(t — hji )] Ril&i (1) — &t — hji (1))]

because of applying Lemma 2 and the condition 0 < h;(t) < hp for j =1, N.
Consequently,

p N
—h> [ éi(s)TRiéi(s)dss—Z N+1[W (0 —hyi )" Rilgi(0) =&t = hjs ()]
t— h2 i=
- N—H[s, (1) = & (e = ho))" Rilki () — i (¢ — hz)]
ER GRS TR s | EOTEC—R) 1
T /g,(s)d R; 3 T / €i(s)ds
t ho t—hy

Hence, we obtain the following:

t

Vis(t, xe) < h3& (0T Ri&i(t) — 2BVia(t, x¢) — hpe2P12 / £ ()T Ri&i (s)ds
t—hy

< hzgt(t) R %_l(l)_zﬂvz?;(t Xy)

- Z N—He—””’z[& (0) =&t = hji )N Rilgi (1) = &2 = hyi (1))
j=1

- WO — & — T Rilei ()~ 5 o) (3.5)
T
12 opp, | &)+ & —h2) 1 ' _
TN+ ’ 2 T / Ei(s)ds | Rix
t—ho

EO+EGC—hy) 1 [
> T f & (s)ds

Noting that the following:

N[N
ZZs](r—hu(r)) sj(t—h,]a)):Z Zs,-(r—h,-l-(r)fs,-(r—h,-,-(r))},

i=1j=1 j=1

N
Il
_

I
Mz

N N
Zzazji:](t _hl] (l)) Ej ([ _hl](t))

i=1j =1 i=1

N
D ajii(t —hji@) & — hji (t))} ,
=1

because of the following identity:

Therefore, combining the earlier identities and the inequalities (3.2)—(3.3)—(3.4)—(3.5), we obtain
that the following:
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N
Vit x0) + 2BVt x) < ) [6@T [Pidi + AT P &(1) + 286 ()T Piti(1)
i=1
N
+ ) EOT P A AT PE () + Z&U —hji ()& (1 = hji(0))
=1 j=1

+ 3& ()T B: Di BT Biti (1) + 025y (1) s (1)
_ N
+&ill& (O Pil” + ail | O + 025y [l DI + D ajill& @ —hji (@)

Jj=1

+ h3E ()T Ri&i(t) — e PP g (1) — &t — h)]T RilEi (1) — & (t — hy)]

T
g |EOHEG—R) 1
12¢ [ 5 i /Ez(s)dS]

t—h
Naorae—n 1
xRi[ : - f si(s)ds]
t—hy
+ h3E ()T Riki (1) Z v +1 2B (1) — & (e — hyi ()]T Ryl (1) — & (¢ — hji (1))]
- 0 0~ R0 0 )
12 —28h> Sl(t) + El (t hZ)
—N—He 2 { / ?;:l(S)dS:|
t ho
Ez (t) + éS:z (t h2) / ";: (s)ds
t ho
. —_ . _ N .
—25 (0" P; [fi(f) - Aifi(f)] + Zéi(l)TPlA AL Pigi (1)
) -
+ Y EC—hj ) E@—hji(0) + Ez(t)T PiEi (1) + 0.25yw; (1) wi (1)
=1
J . _ N
+eill& 0T PP + ail | (O + 025y ||lwr O + Y ajill& (= hyi ()]
j=1

Hence,

N N
Vt,x) + 28V x) <y ) Nl + ) Ei()" M Ei(r)

i=1 i=1

(3.6)
~(N+1D) {IIC @7+ Z 1G ikt — h,l(mnz}
i=1
where v;; = & (¢ —hji(t))T, j=1,N,and
Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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T
t t
B0 = v oo v GO &= G- m)T O [ &@Tds [ G|
t—h t—h>
Mi M{z - M{(N%)
Mio| ¥ M, . Ml . i=T10N.
* * ... M(1N+6)(N+6)
. 1 _ _ _
Mj; = —N—_He_zﬁthi +(2+42a;))I + (N +1)G[;Gji. j =1.N,
' L o —
Miwin =y 7¢ PR, j =TN.
. S N +4 _
T —2Bh —2Bh
My w1y = Pidi + Aj Pi +2BP; —4e Ahi R N1 Bha R,
N4 . o
+ > PiAj AL P+ —PiD; DI P; + 24,1 + & P? + (N + NC[ C;.
j=1 v
. _ . 2 _
—2Bh —2Bh
Miy snyvea = —26PM R Miy iy = = +1° PR
. o ) 6 _ . _
— T p. _ —2Bh . _ —28h )
My syw+a = Ai Pi- My nyves) = Ee PR, My +vyw+e) = me PhaR;,
) _ . 6 _
—2Bh —28h
Miy oy v42) = —4¢ PP R Miy ) (vis) = i ;.

' 4 2B ' 6 —2Bh
M(IN+3),(N+3) = N + le g 2Ri’M(lN+3),(N+6) = me p 2R;,

. N 4 _
My sayviay = (03 + W3R —2P; + ) P Aj; AL Pi + ; :D; DI P; + ¢; P2,

j=1

i e_zﬂhl _ ; e—2ﬂh2
M =—12—R;, M =—12——R;.

(N+5),(N+5) h% i (N +6),(N +6) (N + 1)h§ i

Therefore, applying the Schur complement lemma, Lemma 1 and the condition (3.1) leads to M? <
0,Vi = 1, N, and hence, from the inequality (3.6), it follows that:

N N N
V(t,x0)+ 2BV, x) < Y_ylloi@IP=(N + D) Y C&EOP+ Y NGkt —hji @) |-

3.7
Letting w; (¢) = 0, Vi = 1, N, and because the following:
N . N
~(V A+ DY ICEOIP + Y NGkt —hj @) | <0,
i=1 j=1
we finally obtain from the inequality (3.7) that the following:
V(t,x:)+2BV(t,x;) <0, =0,
which implies
V(t,x;) < V(0,x0)e 2P, 1>0.
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Besides, it is easy to verify that the following:

N N N
a1 Y NEOIP SV x)., V(O0.x0) ez Y N@illg, =2 ) lleillE,- (3.8)
i=1

i=1 i=1
Hence, we have as follows:

N N
ar Y &I <V, x) < V(©0.x0)e P <2 Y |lgillg, e,
i=1

i=1

consequently,

[ -
IE@I < a—lllwllcle btz

Step 2. Hy performance level y: consider the following relation:

s N Ry N R '
[ Sl i@l ar= [ (Z[||z,~<r)||2—y||wi(z)||2]+wr,x,)) ar=[ V.xar.
o =1 0 0

i=1

Because V(t,x;) = 0, t = 0, we have as follows:

N

—/V(z,x,)dt = V(0,x0) — V(s,xs5) < V(0, x0),
0

and hence,
SN S (N

/ [||Zi(t)||2—y||a)i(t)||2]dt§f (
0

NZiOIP = yllwi )I17] + V(t,xz)) dt + V(0, xo).

o i=1 i=1
(3.9
Combining (3.7) and the inequality V (¢, x;) = % £ (t)T P;&;(¢), we obtain the following:
i=1
N N
V(t.x) < ylloi 0] =28 Y &0 Pii(1)
i=1 i=1 (3.10)

N N
—(N+ DY IGEOI+ D NGt — hji ()]

i=1 Jj=1
Observe that the value of ||Z;(¢)[|? is estimated due to (2.4) as follows:
2P =G D Gigy =hipDIP <N+ |[1GEDOIP+ 311Gk, (¢ — hij ()]
j=1 j=1

Then, from the expressions as follows:

N N N N

DO NG @ —hiy )P =D NG ikt — hji @),

i=1j=1 i=1j=1

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
DOI: 10.1002/oca



V. N. PHAT, N. T. THANH AND H. M. TRINH

we have

N N N
DNZOIP <Y N+ [ IGEOI+ D NG —hu@)I* . G
i=1 i=1

j=1

Submitting the estimation of V(¢,x;) and ||Z;(¢)||*> defined by (3.10) and (3.11) into (3.9),
respectively, we obtain the following:

SN p N
| SlzOR - ylwoPlas [ {—2/3 ZamTﬁisi(r)} dt + V(0,x0), Y5 > 0. (.12)
0 i=1 0 i=1
Hence, from (3.8) and (3.12) it follows that

S N N

[Z[Hzi(zw—y||wi(z>||2] dt < V(0,x0) < Y allgillg,, Vs = 0.

o i=1 i=1

Letting s — 400, and setting cp = "‘72 > 0, we obtain the following:

%N ®N N
/ 12: ()] Pdt < V/ZHw,-(r)nzdz+a22||<oi||2cl,
o i=1 0 i=1 i=1
implies
oo N B
[ X NzZi@lPadt
0 i=1
N ) oo N SV
co - leille, + [ 2 llwi(0)][2dt
i=1 0 i=1
This completes the proof of the theorem. O
Remark 3.1

Theorem 1 provides sufficient conditions for designing the decentralized H, filter of the nonlinear
large-scale system (2.1) in terms of the solutions of LMIs, which guarantee the filter error system
to be exponentially stable with a prescribed decay rate . Moreover, note that the time-varying
delays are non-differentiable, therefore, the methods proposed in [5, 10, 13—15] are not applicable
to system (2.1). The LMI conditions (3.1) depend on parameters of the system under consideration
as well as the delay bounds. The feasibility of the LMIs can be tested by the reliable and efficient
MATLAB LMI CONTROL TOOLBOX [18].

Remark 3.2

It is worth noting that the considered system (2.1) contains a single delay in interactions, that is, the
differential equation describing x; can only accept x; with one delay. By using the same approach of
Theorem 3.1, we can extend the result of this paper to the general case where the large-scale system
contains multiple delays in the interactions, that is, the differential equation describing x; can accept
x; with different delays. However, the derived stability condition will contain more complicated
LMI conditions with additional free-weighting matrices and thus, it will increase the computational
complexity. For example, for the system where the differential equation describing x; accepts x;
with different two delays as follows:

N N
%i() = Aixi(0) + Y Aijx;(t —hij () + Diwi (1) + Y Afjx;(t — b (1) + g(),
j=1 J=1.j#i
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the number of interacted delays is increased to N(N — 1), the variable §; (¢ — h};(¢)) makes the size

of matrices M, under the (3.6), increase to (2N + 5) x (2N + 5), and hence, the size of matrices
in LMI (3.1) is increased to (8N + 8) x (8N + 8).

Example 3.1
Consider a large-scale system of the form as follows:

X1(1) = Arx1 (1) + Anxr(t — h11(2)) + Araxa(t — hi2(2)) + Diw1(2)
+g1(t, x1(1), x1(t — h11(2)), x2(t — h12(2)), w1(2)),

21(t) = C1x1(t) + Grix1(t — h11(2)) + Grax2(t — h12(2)),

y1(t) = E1x1(t) + E1ix1(t — h11(t)) + E1ax2(t — h12(2)), Vit =0,

x1(0) = 1(0), VO € [—h2,0],

Xo(t) = Azxa(t) + Asaxa(t — hoa(t)) + A21x1(t — ha1(2)) + Dawa(2)
+82(1, x2(2), x2(t — h22(1)), x1(t — h21 (1)), w2(7)),

22(t) = Caxa(t) + Gooxa(t — haa (1)) + Ga1x1(t — h21(2)),

y2(t) = Exxa(t) + Exxa(t — hoa(t)) + Exixi(t — ha1(2)), Vi =0,

x2(0) = @2(0), VO € [—hy,0],

where the absolute rotor angle and angular velocity of the machine in each subsystem are denoted by
x1 = [x11, x12]7, X2 = [x21, x22]7, respectively; the i th system coefficient A;, A;;; the uncertain
coefficients D;; the ith system perturbations g;(.), and the modulus of the transfer admittance
A12, Aaq; output observations z; = [z;1. Zi2]” ; the initial input ¢;; the time-varying delays A; (1)
between the two machine in the subsystem as follows:

14+ 02sin(t), teH, 1.1 +0.1sin(t), te H,
hll(t)z{l I¢H() hl2([):{11 t¢(1'1)
1.3+ 0.1sin(t), te€ H, 1.2+ 0.2sin(t), te€ H,

H = Ugey Qkr, 2k + 1)),

[—1 0.1 0.01 0.01 0.001 0.002
Av=11 04 =001 001 | 412=0.003 0.004]"

s = -2 1 A, — [0-0010003] 1001001
2= 0.1 -1 217 10.003 0.001 |* “?2 = |0.01 0.01|"

D, — [0:0040.003] o 0.0040003] . _[001002] . _[0.040.03
17 10.002 0.001 | 7 7 [0.003 0.004 ]~ T 0.030.04|° 7> [0.02 0.01]"

G.. — [o0r001] . _T0010017 . _[0.02003] . _ [0.030.02
001 0.01] 7227 [0.010.01 " Y27 0.03 0.02] 72T [0.020.03

12 11 42 43 53 11
E, = 34:|,E11=|:1 1:|,E12=[24:|,Ez=|:2 1:|,E21=|:35:|,E22=|:1 1:|,

Va2 + xi1(t — hi1)? + x21 (¢ _h12(t))2]
Vx12(0)2 + x12(1 — h11)? + x22(1 — h12(2))2 ]’

g1(.) = 0.0001 [
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22(.) = 0.0001 |:\/X21(l)2 + x21(f — h22)? 4+ x11(t — hzl(f))2i|

\/xzz(f)z + x22(t — h22)? + x12(t — h21(1))?

a; =dy =dz1 =dady1p =4di1i =a22=0.0001, dl =d2=0.01

We see that the time delay functions £;; () are bounded but non-differentiable, and that the out-
puts are nonlinear observation outputs. Therefore, most existing design methods of [5, 10, 13—15]
are not applicable to this system. For 8 = 0.1, y = 2, h; = 1, andh, = 1.4, the LMIs (3.1) are
feasible with the following:

235.4865 —22.1780 0 0 57.1627 3.5050 0.5222 —1.0482
_ | —22.1780 158.0102 0 0 _ 3.5050 32.7948 0.0310 —0.6471
Pr= 0 0 2173651 —0.1307 | ®1={ 05222 0.0310 59.6926 —0.0181
0 0 —0.1307 217.6605 —1.0482 —0.6471 —0.0181 59.7441
136.8554 —17.6992 0 0
—137.7520  0.4251 _ —17.6992 199.7307 0 0
Y= { 0.4222 —138.6972} P2 = 0 0  203.1388 —0.0258 |’
0 0 —0.0258 203.1053
28.3050 3.2713 —0.1654 0.0676
[ 0.0001 0.0273 | _ 3.2713 48.8079 —0.2188 0.1246
Z1 = _0.0024 —0.0818] R2 =1 1654 —0.2188 52.7605 —0.0018 |
B 0.0676 0.1246 —0.0018 52.7573
[—127.1231  0.0710 —0.0174 0.0022
2=1" 0069 —127.0316]’ 2= [0.0095 —0.0015]

The filter can be obtained as follows:

o8- \ == xhat11 |4

0.6 - — —xhat12 4

0.4}

0.2

 E——

0 5 10 15 20
Time(sec)

Figure 1. The state x| and the estimated state X .
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— — —xhat22

10 20

Time(sec)

Figure 2. the state x» and the estimated state X».

P - — —zhat12|]

-5} I

5 10 20

Time(sec)

Figure 3. the signal z; and the estimated signal Z .

[68.8760 0.2125 pf — 0.0001 0.0137 c/
| 0.2111 —69.3486|" ! ~ | —0.0012 —0.0409 | ™1

3.7945 0.0789
0.0789 3.5889 |’

[ 1.2089 —0.6973 4 = —10.5936 0.0059
| —0.6973 0.8509 |2 | 0.0058 —10.5860 |’

[—0.0014 0.0002

] sz _ [3.9165 0.0116i| ’G{ _ [

0.2600 —0.1763
0.0116 3.9327 )

| 0.0008 —0.0001 —0.1763 0.2107

Moreover, the filtering error solution & (¢) of the system satisfies the following:

Copyright © 2015 John Wiley & Sons, Ltd.

IE@I < 1.8799. ¢~ llgllc,, ¥z =0.
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z21
I T Bl zhat21
Y IR z22
1 — — —zhat22
!
0.5 !
!
'
!
(-
A
1
!
_05 =4 L L I
0 5 10 15 20

Time(sec)

Figure 4. the signal z» and the estimated signal Z5.

Figures 1-4 show the trajectories of the states, signals, and their estimations of the system with
the initial conditions ¢; = [I, —1]T, ¢» = [2, —2]7, and the exogenous disturbance signals
w=0,i=1,2.

4. CONCLUSION

The problem of H filtering for nonlinear large-scale systems with interval time-varying delays
with time-varying delayed interactions has been investigated. We have posed a systematic way to
study the H, filtering problem for such a system, which combines the Lyapunov functional method
and the pertubation approach. Moreover, it is important that the interaction terms with time-varying
delays are bounded by nonlinear bounding functions including all states of subsystems. By introduc-
ing a set of augmented Lyapunov—Krasovskii functionals and using generalized Jensen inequality,
sufficient conditions for designing decentralized H filter have been established in terms of LMIs.
A system simulation example is presented to verify the effectiveness of the proposed result.
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