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This article is concerned with the problem of state observer for complex large-scale systems with unknown time-
varying delayed interactions. The class of large-scale interconnected systems under consideration is subjected to
interval time-varying delays and nonlinear perturbations. By introducing a set of argumented Lyapunov-Krasovskii
functionals and using a new bounding estimation technique, novel delay-dependent conditions for existence of state
observers with guaranteed exponential stability are derived in terms of linear matrix inequalities (LMIs). In our
design approach, the set of full-order Luenberger-type state observers are systematically derived via the use of an
efficient LMI-based algorithm. Numerical examples are given to illustrate the effectiveness of the result. © 2014
Wiley Periodicals, Inc. Complexity 21: 123-133, 2015
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1. INTRODUCTION systems still faces many challenges; particularly, when the
tability analysis of large-scale interconnected systems measurement of all the states is not available and the
has been the subject of considerable research atten- inevitable presences of time-varying delays and nonlinear
tion in the literature (see, for example [1-3]). How- perturbations in the systems. When the knowledge of the

ever, the problem of designing decentralized state states is not available, a state observer is designed to pro-

observers for nonlinear large-scale interconnected delay vide vital information of the system and an observer-

based feedback control scheme can be realized [4-8].
Nevertheless, for large-scale interconnected systems which
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(i.e., interchange of information among the subsystems is
not allowed) and also subjected to time-varying delays and
nonlinear perturbations, the problem of designing decentral-
ized state observers still has not been adequately addressed.
Conversely, when there are time-varying delays presented in
the systems, they can be modeled in the states, outputs and
the interconnections. However, very often, an exact real-time
knowledge of the time-varying delay is not known or avail-
able. Furthermore, it is more realistic and practical to model
the delay varies within an interval, with specified lower and
upper bounds, in which the lower bound is not restricted to
be zero and the time derivatives of the delay be allowed to
be undefined or unknown. However, most existing work on
the state observer of time-delay interconnected systems
either assumes that the time-delay is a known constant or
differentiable with boundedness of its time derivatives.
There have been some papers addressing the problem of
stability and state observer of complex large-scale systems
with time-varying delays [9-14]. Nevertheless, the practical
and theoretical issues stem from the unavailability of time
delays and nonlinear perturbations have not yet been
addressed in the literature. It is worthwhile to note that
these issues are in fact quite complicated to solve, and
therefore, there is a strong need for more research in the
design of full-order state observer for nonlinear intercon-
nected systems with interval time-varying delays.

This article considers a general class of complex large-
scale systems where time-varying delays and nonlinear
purturbations are presented in both the state and the
observation output. Under the practical constraint of
decentralized information coupled with the facts that the
measurement of all the states and the real-time knowledge
of the interval time-varying delays are not available, our
objective is to design a set of state observers to exponen-
tially stabilize the error system with a decay rate of con-
vergence. Here, due to the constraint that interchange of
information among the subsystems is not possible and the
real-time knowledge of the interval time-varying delays is
not available, we, therefore, have to use a set of com-
pletely memoryless decentralized full-order Luenberger-
type state observers. The perturbations presented in the
states and observation outputs are described by nonlinear
functions satisfying the Lipschitzian condition. To solve
the problem posed in this article, we introduce a set of
augmented Lyapunov-Krasovskii functionals associated
with the lower and upper bounds of the time delays. With
this new set of Lyapunov-Krasovskii functionals and the
new bounding estimation technique we derive new delay-
dependent LMI stabilizability conditions for exponential
stability of the error system.

The article is organized as follows. Section 2 presents
the problem statement together with definitions and some
well-known technical propositions needed for the proof of
the main result. State observer design for exponential sta-

bility with numerical examples showing the effectiveness
of the proposed method is presented in Section 3.

2. PRELIMINARIES

The following notations will be used throughout this arti-
cle. R™ denotes the set of all real positive numbers; R"
denotes the n—dimensional space; R"*" denotes the space of
all (n X r)-matrices. The notation i=1, N means i=1,2,...,
N; AT denotes the transpose of A; a matrix A is symmetric if
A=AT; I denotes the identity matrix; 4(A) denotes the set of
all eigenvalues of A; /max(A)=max{Rel: 1 € 2(A)}; Amin(A)=
min{Re/ : 1 € 2(A)}; 2a=/max(ATA); C([a,b],R") denotes
the set of all R"-valued differentiable functions on |a, b];
L,(]0,¢],R") stands for the set of all square-integrable
R"—valued functions on [0,c0). The symmetric terms in a
matrix are denoted by *. Matrix A is semi-positive definite (A
> 0) if (Ax,x) > 0, for all x € R"; A is positive definite (A > 0)
if (Ax,x) >0 for all x#0;A>B means A—B>0. The
segment of the trajectory x(#) is denoted by x,={x(t+s) :
s € [—7,0]} with its norm [|x;[| = sup s g [|X(£+5)]|-

Consider a class of large-scale nonlinear systems which
can be usually characterized by a large number of varia-
bles representing the system, a strong interaction between
subsystem variables, and a complex interaction between
subsystems [1,2] described by the following equation:

N
Ti(O)=Ai(0)+ > Agxi(t=hy(0)+fi(8, xi(0), {x5(0=hyg ()1, 120),
i1

Z,'(l’):Cixi(t)‘ng(l’, xi(t)), >0,
2.1

with the initial conditions
xi(t0+9)=(roi(6)7 veeztoﬁhs (tO,QDi) ER+XC([_‘L—70]7Rni)7

where ¢; : 7, , — R"™ is a continuous norm-bounded initial
condition (see also [13]) and Z, ,={t € R: t=n—h(y) < to,

n > fo}; T=sup WER™ 1T ) (fo—1);
hi(t) : R* — R" is a continuous function satisfying

Oghléhi]‘(t)ghz, [ZO,VZ.,].:LN,

where h, and h; is given real non-negative numbers and
hy # hy. We see in this case that hy=1;x"(t)=[x;(¢)",...,
xn(8)7), x;(t) € R is the state vector, z;(¢) € R is the out-
put vector. The systems matrices A;, C;, A;; are of appropri-
ate dimensions; the nonlinear functions fi(-) and gi(:)
satisfy the following conditions

Ja, a;; > 0: Hﬁ(tvxi(t)>{xj(t_hij(t))}j]\ilJ%i)‘l < ail|x;(1)]|
N
+ Z agjl|x;(t=hy ()]
i

g > 0: |lgi(t, 1) —&i(t,y2)l| < gilly—y2ll, v,y € R, t € R*.
(2.2)
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We assume ¢;(.) € C'([~h,0],R") and ||ollc,=
SUP 1c( 1,01 [[0i(D)l1+ SUP 11, o l9:(1)]| stands for the norm
of a function ¢;(.) € C*([—hz,0],R%). Once the above
assumption on ¢;(.),fi(.),gi(.) are given, the solution of
system (2.1) is well defined (see, e.g., [15]).

Due to the fact that not all of the state variables are
available for state observer purpose and that the real-time
knowledge of the delay, h;(f), is not available, we, there-
fore, consider the following decentralized full-order Luen-
berger state observer for the system (2.1):

Xi(1)=Aiki(t) + Lilzi(t) = Ciki(1) = &i(t, Xi(1))], £>0,
%(0)=0, i=1,N,

in which X;(¢) is the observer state vector of the i—th sub-
system, L; € R"*% is the observer gain matrices to be
designed.

Define an error vector e;(t)=x;(t)—x;(t),i=1,N, which
denotes the difference between the real state and the esti-
mated state vector of the i—th subsystem. Then, we have
the following error system

N
ei(t)=Aiei(1) = Lilzi() — Ciki(t)—gi(t, Xi()]+ > Ayag(t—hy(t))
7
+i(t xi(0), {2 (=R () 1L, j20)-
(2.4)

It is clear from (2.4) that the error system is rather
complex and certainly the task of stabilizing (2.4) is not an
easy and trivial task. In this article, the problem to be
addressed is to systematically derive the observer gain
matrix L;,i=1,N, so that the error system (2.4) is expo-
nentially stable with a prescribed f-convergence rate. Let
us now recall the following definitions (see, e.g., [4]) and
propositions that will be used to derive the main results of
the article.

Definition 2.1.

Given [ > 0. The error system (2.4) is (-stable if there is
positive number Ny > 0 such that every solution of the sys-
tem satisfies:

lle(t, )|l < Nollolle™", vt >0,

N
2
where ||¢|1,= | > lloill7, -
i=1

Proposition 2.1 (Schur complement lemma [16])
Given matrices X, Y, Z, where Y=Y > 0,X=X". Then, X
+Z'Y"1Z < 0 if and only if

A
zZ —-Y

Proposition 2.2. (Jensen-type integral inequality [17])

For any constant matrix Z=Z" >0 and scalar h,h,0
<h<h such that the following integrations are well
defined, then

(I o)

—Jl x(s)" Zx(s)ds < —
t~h

XZ (J;h x(s)ds) .

—J:hJ;Sx(r)TZx(r)drds < - hzihz <J:J:+sx(r)drds>T

S =

=

Proposition 2.3. (Lower bounds lemma [18])

Let fi,f2,...,.fn : R™ — R have positive values in an
open subset D of R™. Then, the reciprocally convex combi-
nation of f; over D satisfies

min Z%ﬁ(I)ZZﬁ(U“‘ max Zgi-j(t)

{(rifri>0.y " ri=1} 5 8i(t) i

subject to

i(f ij(f
{gw‘ :R™ — R, g.(1)=8i (1), {f( ) 8l )} > 0}.

8ij(1)  fi(t)

Proposition 2.4. (Cauchy matrix inequality [16])
For any x,y € R" and positive definite matrix M € R"™",
we have

2xTy <y"™My+x"TM'x.

3. DESIGN OF FULL-ORDER LUENBERGER-TYPE OBSERVER

In this section, we give a design of the full-order state
observer for nonlinear system (2.1) such that the error of
system (2.4) is exponentially stable. Before introducing the
main result, the following notations of several matrix vari-
ables are defined for simplicity.
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=a;+ Z aj,

JFLj=1

FO=HEx(0), (=m0,

2974/jh2 (hz —]’ll)

H!,=P;Ai+A] Pi+2pP;+2Q;—e M Ri—e 2P R, — Ai+3ail,

L ]’lz +I’l1

i —2ph i —2ph i T 2e 4
Hiy. =e g 'Ri, Hj . ,=e P 2Ri7Hil,N+3=Ai P, Hle+4 T thy

; 2e 2P gm2bh P —
I_I}J=(3aji+3)1_ﬁ TN (Si+Si), j#i,j=LN,

o—2bh o—2bh ) o—2bh e W
Pra— . 1 = . —_ i 7 '=

I—I](N+1) N*l Ul N—1 S“I—Ij,(NJrZ) N—-1 Ul N—-1 Si y ) 7é L] ]-7N7
Hiy yy =—e mQi—e ?mRi—e 22Uy, HY,\ y,,=e 28],
Hy o yip=—€ Q= 2 Ri—e 2 Uy,

H N+3,N+3 (h%+h%)Ri+(h

2674/%2
HN+4N+4 _hz_hz
Hy, N+5+/,N+5+j IH1N+5+] PiAy, j#ij=LN,
HN+5+1N+5+1 -1, HzN+5+z VEiPi,
H2N+5+]2N+5+} -1 HN+32N+5+] PiA

Hi

ON+5+i2N+5+i -1 HN+32N+5+1 Vfiph

-1, HN+5,3N+5+j='=’iAif7
i _ .
—I Hy 55n154+i=V CiEi,

4] *mlln {}mm (-—z)}
i

H3N+5+] SN+5+j

H3N+5+I3N+5+l

o =max {;max(Ei)+;v
i=1,N

The following is the main result of the article, which
gives sufficient conditions for the design of decentralized
full-order Luenberger-type state observer for system (2.1).
Essentially, the proof is based on the construction of a set
of Lyapunov—Krasovskii functions satisfying Lyapunov sta-
bility theorem for time-delay systems [15].

Theorem 3.1

If there exist symmetric positive definite matrices E;, P;,
Qi,R;, Ui, A;,i=1,N, and matrix S;,i=1,N, such that the
following LMIs hold:

Hi, Hj, . . .  Hiy.s 0 0
* Héz S H2i(4N+5) 0 0
* Koo H(i4N+5)(4N+5) 0 0
* * L L. * -U; =S
* S, * * -U;
<0, i=1,N, 3.1)

then the error system (2.4) is f—stable with the observer gain L;
==;1C!". Moreover; the solution of this systems satisfies

2— ) Ui+ (hy—hy )ho A — 2P,

i _= Te T = 2
taHjl\]+5_N+5_:'iAi+Ai ':'i_Ci Ci+2ﬁ.:i+gi I,

ij7 ]#i7]:17N7

J#Lj=1,

max (Pi)+ B Jmax (Qi) + (B +13) im

ax(Ri)+(h2 h))vrnax( l) (h27h1)h (Ai)}~

oy _
le(®)]| < \/a—ﬁle Mgl V> 0.

Proof
Consider the following Lyapunov-Krasovskii functional:

7

N
txt ZZV,]l’xt

i=1 j=1

where

Vin (8, x¢) =xi(t ) Pixi(t )+e,(t) Eiei(1),

ViZ(LXr):r e 0xi(s)" Qixi(s)ds

t—hy

Vis(ﬁxz):f M0 xi(s)" Qixi(s)ds

t—hy

0 r
m(nxr):mj ) [ 0k, ()" Riki (1) deds,

0 t
Vis(t, xz>=hzj j &0 i, (1)" Ry (<) e,
—hy s
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—hy ot
Vis(t, %)= (ha — )X [ [ 20T Ui (v)deds,
hy Jt+s

hy (0 pt
VW:J [ [ PHEHS0 & (YT A iy (2) dedsd.
—hy JOJt+s

Taking the derivative of V(¢,x;) in t along the solu-
tion of the system, we have

Vi ()=2x:(t)"Pisi(1) +2e; (1) Eieq (1)

=2x,(1)"

P; |Aixi(t Z Aljxj (t— hz] +ﬁ():|

JALj=1

+2¢;(t)" 5 {Aiei(t)_Li[ciei(t)"'gi(tv xi(1))—gi(t, X:(1))]

> Aty 0|

i
h)' Qixi(t—hy),
) Qixi(t—ha),

t

Via()=xi(1) Qixi(£)=2BVia () —e M i1~
Vis()=xi(t)" Quxi(t)—2Vis () —e 2ot~

Vi) < hfxi(t)TRixi(t)—2/3144(.)—111{2/%J %i(s)TRix;(s)ds,

t—h

V() < héxi(t)TR,-x,-u)—zﬁws(.)—hzefZﬁth't
t—hy

Vis(.) < (ha—h1)?xi() Uiki(£) —2BVis(.)
t—hy
—(hz—hl)e’zﬁhzj () Uik (s)ds,

t—hy

Vir(.) < (ha—hy)hoki(t)" Aiki() =2 Vin ()
—hy gt
_ p—4phy ()T
e ], B

We first estimate V; () as follows. Using Cauchy
matrix inequality (Proposition 2.4) gives

iXi(s)dsdo.

N
2x;(t LZ Ayix;(t—hy () ] < ) () PAGATPixi(t)
7

j#ij=1 #1j=1
N T
+ 37 xj(t=hy (1) x5(t—hy(0)),
JAij=1

N N
Zei(I)TEiLZ Al'jx]'(t—hij(l)):| < Z ei(t ) -—qujA Ziei(1)

j#ij=1 JAg=1
N T
+ 37 xj(t=hi (1) xi(t—hy (1)),
J#ij=1

Then from the condition (2.2), it follows

N

2x:(t) Pifi(c) < 2llxi(6) Pl |ail i) ||+ D agllag(e—hy(2))|

J#ij=1
T 2 2 N 2
< &il (o) Pil P+ aillxa(0) [P+ > gl (t—hy (1)),
J#ij=1
(3.2)
N
26:(0)"Zfi(-) < Eillei(0) Eil Praillx(0) [P+ > agllg(e—hy(0))]-
JAiLj=1
(3.3)

Taking L;=E;'C! and using Cauchy matrix inequality
(Proposition 2.4) and the condition (2.2) again leads to

—2e;(1) ZiLi(gi(t, xi(1))) —gi(t, Xi(1)))
=—2e;(1)" C(gi(t, xi(1)))~&i(t, X:(1)))

< €;(1)" CF Ciey(1)+|gi(t, xi(1))) ~&i(t, xi(0)|*
< €;(t) Cl Cie;(t) +gPei(t) ei(1).

From (3.2)-(3.4), we have

V() < xi(t) " [PiA+ATPxi(2)

N N
+ > () PiAARPixi(0)+ > x(t—hy (1)) (1= hy (1))
JA=1 =1
T 2 2 a 2
+ & () Pil P ail (0P + Y agllxi(—hy (1)
=1
+ei(t) [2iA+ATE;—2CT Cllei(t) + ()T CF Cies (1) + g2ei(t) "ei(t)
N N
+ Y elt) EAgAEe()+ Y xi(t—hy(0)) x(t—hy (1)
J#i=1 J#ij=1
T 2 2 N 2
+&illei(0) Eil P+ ail i (0)] [P+ agllx(t—hy(0)]]%.
J#Ej=1
(3.5)

To estimate V(.),Vis(.), we apply Proposition 2.2
and the Newton-Leibniz formula, for k=1,2, to obtain

‘hkﬁ,h fi(5) R (s)dls < — U:ih)x,-(s)ds] "R U;h x,-(s)ds}

= i) =xi(t—hye)| " Riloxi (1) —xi (1= Py )]
Therefore, we have

V() < R2ii(t) Ridi(£) =2 Via—e 2P [ () —xi(t— )"
Rilxi(t)—xi(t=hy)],
(3.6)

Vis(.) < B3xi(t)" Riiki(t) =2 Vis
Rilxi(t)—xi(t—hy)].

—e 22 [y (1) —x;(t—hy)]

(3.7)

We now estimate V(.) as follows. The integral

- Z’; %" (s)Ui%;(s)ds decomposed as
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t—h t—hyi (1)
J X (8) Uik (s), ds=J % T (8)Uiki (s)ds

t—hy

t—hy
t—h

+J () Uk (s)ds,
t—h,-,-(t)

and using Proposition 2.2 gives

i hji(1)

—(hz—hl)Jz% %1 (5) Uiy (5)ds

et )~ ()] Ui (1) o).
T () Uk ()
= hi(t)

()|

< () (o) Ui ()

Then, we have

t—hy
. % (8)Uixi (s)ds
t—hy

*(hrhl)[

< ot o (0) (o) U)o he)

) ()] Ut )~ (o)
(3.8)

Let

_ hg—hji(l’)

i _ hji(t)—hl
1 hz*hl )

= hthl )

and

Fi(@)=Pe(e=hyi() =xi(t=ho)]" Uilxa(t=hyi (1)) = xi(t = o)),
Fo(0)=Pe(r=h) =xi(t=hy())] Uilxs(t—ha) =i (e~ (1)),
81,2(0) =[xt Ry (£)) = xi(t= )] Sy (1= hu) = xi (1= by (1) ),
81 (1) =[xi(t—Pn) =i (£ = hyi(1))] " S} [xi (= hyi (1)) =i (2= hp)].

U, S
It follows from condition (3.1) that Y >0,
st U;

Moreover, note that g.(£)=g»1(¢) and r+r.=1,r >0,
r, > 0. Using Proposition 2.3 and the inequality (3.8)
gives

t—hy T . 1 1
~(he=hy)| U (5)ds < < A0 (o)
Ji—hy n 2

< —fi(0)—fa(t)—§12(1) — &2 (2)

= [xi(t=hyi(1)) =xi (1= ha)] " Uilxi (£ =hja(£)) = xi(t= )]

—[xi(t—hy) = xi(t—hyi(£))] Uil (=) —xi (£— Ry (1))

—[xi(t=hji(£) = Xi (1= ha)] " Silxi (=P ) = xi (6= i (1))

—[x,-(t—hl)—x,-(t—hﬁ(t))}TSiT[x,-(t—hj,-(t))—xi(t—hg)}.
3.9)

Taking j=1,2,..,N,j # i the inequality (3.9) implies

ct—hy
X T(s)Uiki (s)ds
t—hy

_(N_l)(hz—hl)J

N

Z xi(t—hji(t)

j=1J7#i

)=xi(t=h2)] Uilxi(t=hy(t)) = xi(t=ho)]

—.

i (¢ =ha) =it =i ()] Uiloci (= ) = xi (£ =y (1))]

i

—

.Mz

*

j=1y

N

Z x;(t—hji(t

T

)= xi(t=ha)] " Silxi(t—hn) = xi(t =y (1))]
N
Z Xi(t—hy)—x;(t—hy(t ))]TST[xl(t hji(£))—xi(t—hy)].
J=1j#i
Note that when h;;(t)=h, or h;(t)=h,, we have
[x,-(t—hl)—x,-(t—hj,-(t))]T=0 or [x,-(t—hj,-(t))—xi(t—hz)]=0,
respectively, so the relation (3.10) still holds. Thus, we

obtain the estimation of Vie(.) as

Vie(.) < (ha—h1)*x:()"Uiki(t) —2Vie

and hence ! e T
S D Bt h() (=) Uit b))~ o)
A a2 g
o2 N .
g2(t) H(D) TNTI D beit=ha) =xi(t=hyi(0)] " Uilxi(t—ha) =i (1= hyi(2))]
’ J=lj#i
[ it Ryi(1)) = xi(t = )] 0 o2 N .
= —NoT O it Ry(e) =xi(t—ha)] Sifei(t—hn) —xi(t =R (1))
_ 0 (=) == (1)) L
_U, S e—zﬁhz N T
o — N O Bt ) =i Ry (e)] S} bxi(t=hyi(8) = xi(t—ha)).
g
T U
ST U; (3.10)
_[xi(t—hji(t))—xi(t—hg)} 0
X >0. .
0 xi(t—hy) = xi(t—hji(1)))] To estimate V;(.), we apply Proposition 2.2 for the
estimation of the double integral
128 COMPLEXITY © 2014 Wiley Periodicals, Inc.
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—hy ot
—e-4ﬁhz{ J xi(8)T Ak (s)dsd0
—hy Jt+0

< it 2 Oh J[ xi(s)dsd())T/\i (Jh [t J'c;(s)dsd())
h%*h% —hy Jt+0 S P
2674[ih2 . T
<- h%—h% ((hz_hl)Xi([)_Jthz x,-(B)dQ)

t—hy

XA; <(h2—h1)xi(t)— [

Jt—hy

x,(@)d@) ,

and hence

Viz (1) < (ha—ha)hoiei(t) T Aiii(8) =2 Vi
2674/?111 t—hy T
hz 72 <(h2_hl)Xi(t)_jt7hz x,((i)d()) 3.11)

X A ((hzhl)xi(t) ‘H' xi(0)d9> .

Ji—h,

Finally, we derive the estimation from V(t,x;) by
(3.5)-(3.7), (3.10), (3.11) as

V(t,x,)+2BV (£, %) < x;(t) [PA;+AT Pi+2 P xi(t)

N
+ Z xi(0) PidgARPci()+ Y x(t—hy(t)) x;(t =Ry (1))
J#Fij=1 JFij=1
T 2 2 & 2
&) Pl P aullxa(6)| P+ Y ayl|x(e—hy (0)]
=1

+ei(t) [ZiA+ATE;—2CT Cilei(t) +ei(t) CT Ciei(t) +g2ei(t) e (t)

_ o 2 XN: [xi(t—hl)_xi(t_hﬁ(t))fslr
AL

[xi(t=hji(t)) —xi(t—h2)]

+(ha— ) hoita(6) Agici (1)

t—hy T
2e~40h:
TR (ho—h)xi(t)— | x:(6)do
2 Iy h
t—hy
A (he=mx(o)= [ xo)do
t=h; (3.12)

From the Eq. (2.1), we have

0=—2x;(£)" P, [x;(t)—Axi(t ZA,,x, (t=hi(1)=fi(")]

J#ij=1
< —2i;(t)"Pilici(t)—Aixi(2))
N
+& 50 PP ail ()| P+ agllxg(t—hy(0)]P
A=

N
+ > xi(t) PiAALP (1)
J#j=1

N
+ > (e hy(0) X (2= hy (1)),

=1
(3.13)

because of

N N
N N Tp. i (f—Pss v (TP A ATD. 4.
£ et mAATE )+ S xy(t—hy(0) (- hi(1) xi(t) P L%;Ayx](t hl](t))} gj#%;lxl(t) PiAjAPix;(t)
=1 =1
N
N + Xj(1=hij(0)) " xj (1= Ry (1)),
+&llei(r) il P ail k(0] 1P+ D agllx(e—hy(0)|? #%::1
A1
N
(1) Quui(t)—e Pt~y ) Qpet—y) 2(0)'PAC) < Gl P+ a0+ 3 aylbst—hy(0)IF
jAj=1
+ il'T iXi(t)— —2ph2 ,'t—h T iil’—h
xi(E) Quilt) e Hi(t=he) Qui(E=he) Adding the inequality (3.13) into the left side of
+ 125 () Ridei(£) — e~ 2P oy (£) — i (£ — 1 )" Ry (£) —xi (1= Ty ) (3.12) with the resulting equalities:
+ 133 (6) Rz i(£) — e~ 22 [y (£) — i (£ — ho) T Rl (£) — xi(t— hp)]
N N N N
+(hy—h)?5i(t) Uik (1) SO xit—hy(0) xi(t=hy(£)=> Z xi(t=hji(£) "xi(t—hji (1))
o 2bh2 N i=1j=1j#i Jj=li=1i#]
- > [ hy() —xi(e— ho)| Uy [xi(t—hji(£) —xi(t— )] N[ N
N=1 55 =2 | D xlt—hyu(e) (e (1))
€S L= ) = (1)] s o)~ (1)) o
— Xi(T—hy)—xi(T—h(t il Xi(t—hm)—xi(t—h;i(t N N N N
N=1 5 3 aglixge=hygO)P=" > allxi(t—h(e)|,
i=1jAij=1 i=1jAij=1
o2 N T
— N_1 Z .[xi(t—hj,-(t))—x,-(t—hz)] S,-[xi(t—hl)—xi(t—hji(t))]
=i we obtain
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N
V(t,x0) 2BV (5, x) <Y &) MIE( (3.14)

i=1

where for vl=x;(t—h;(t))",i # j, vi=x:i(t)",

t—hy
&1 = uil,..47vﬁvxi(tfhl)Tx,-(tfhg)Tici(t)T[ ) xi(H)TdH,ei(t)T}
Ji—n,
Mi, M, . . . Mli(N+5)
* My, . .. My,
Mi= ., i=T,N,
* * I M(iN+5)(N+5)

M}, =P;Ai+AlPi+2BP;+2Q;—e 2 R;—e 2P R;

o 2974/”’2 (l’lz *hl)

N
ot Ait3ail+ > PAALPi+EPE,

J#ig=1
M£j=0,j=l,N,j # 1, M'iN+1=372ﬁh1Ri7Mii,N+2=972ﬁthi1
2e4h:
ha+hy,
o2 o 2bh
i+ —
N-1 ' N-1
i, M}, =0,j# k,k=T,N

M
j#

' —2ph, o-2bhe ) o2 —28hs
M Ui~ My = [/ E—
M
M

M£N+3 APl’MtN+4 A MlN+5 0,

(Si+S7),

“=(36{jl‘+3)1—

JNED TN T N N-17 N-1
'i(N+3) OM (N+4) OM (N+5) =0,j#i,j=1,N,

2 -2 —2
Noin=—e MQ—e M R;—e 2y,

i — »—2Bhy QT pgi _ i _ i _
MN+1.N+2_e ZSi :MN+1‘N+3_07MN+1.N+4_07MN+1,N+5_O$
i — —2ph; —2ph; —2ph,
My o nip=—€ 2MQi—e e Ri—e 2/ U,

=M

i —
=M, N+2,N+5 707

Mj N+2.N+4

N+2,N+3

M 5 5= (R +13)Ri+(hy—hy )2 Ui+ (hy —hy ) ho A

—2P;+ Z PAGALP+EP?,
JAL=1
M1{1+3,N+4:07M1iv+3‘1v+5:07

. 2e74/fhz
Mi

N+4,N+4 hz hz N+4N+5 07

M 5 nis=Eii +ATE — C G+ 2B+ g

+ Z BiAGARE +EES.
J#Lj=1

Using the Schur complement lemma, Proposition 2.1,
the condition (3.1) leads to M! < 0,¥i=1,N and from
the inequality (3.14), it follows that

V(t,x,)+2pV(t,x;) <0, Vt>0,

which gives

V(t,x:) < V(0,x0)e 2P vt >0.

It is easy to verify that

N
V(0.%0) <) _llgill7,. (3.15)

i=1

WZII&

<Vtx[)

Taking inequalities (3.14), (3.15) in account, we
finally obtain that

< V(t,x) < aZZH@,HQ 26t for all t > 0,
i=1

mZuel(r

and hence

Oy _
lle()ll < /5 Mgl VE> 0,

which implies that the error solution of the closed-loop
system is f— stable. |

Remark 3.1.

Theorem 3.1 provides sufficient conditions for design-
ing state observer of the nonlinear large-scale system (2.1)
in terms of the solutions of LMIs, which guarantees the
error system to be exponentially stable with a prescribed
decay rate 5. Note that the time-varying delays are nondif-
ferentiable, therefore, the methods proposed in [10,11] are
not applicable to system (2.1). The LMI condition (3.1)
depends on parameters of the system under consideration
as well as the delay bounds. The feasibility of the LMIs
can be tested by the reliable and efficient Matlab LMI
Control Toolbox [19].

4. AN ILLUSTRATIVE EXAMPLE

In the following, we give a numerical example to show
the validity of the design of decentralized state observer
presented in this article.

Example 1.
Consider a large-scale model (2.1) composed of three
machine subsystems [1] as follows:

xl(t) =A1x1 (t) +A12X2(t*h12(t))+A13X3(t*h13(t))
Th(Ex1(2), %2(E—ha(2)), x3(1 = s(1))),
21(1)=Cixi (1) +&1 (2, x1(1)), L > 0,

x1(0)=0,(0),0 € [~hy,0],
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J'cz(t)=A2x2(t)+A21x1(t—h21 (l’))+A23X3(t—h23(t)>
ot x2(2), X1 (E=ha1 (1)), X3(1 = has(1))),
Zz(t)=C2)C2(l’) "l‘gg(l’7 xz(t)), r> 07

%2(0)=¢(6),0 € [~h2,0],

X3(t):A3X3(t)+A31x1(t*hgl([))+A32X2(t*]’l32(t))
(8, x3(8), x1 (= h31 (1)), X2 (1= hs2(1))),

Zg(t):C3X3(t)+g3(t, .ng(l')), t> 0,

X3(0):(;)3(0), 0c [_h2$ 0]7

where the absolute rotor angle and angular velocity of the
machine in each subsystem are denoted by x;=(x;1, xiz)T, i=1,
2,3; the ith system coefficient A;; the control and nonlinear
perturbations f;(-); and the modulus of the transfer admittance
Ajj; the initial input ¢;; the time-varying delays h;;(f) between
each two machines in the subsystem:

l+sint, teH, 2+0.5sint, teH,

hyp= hi3=
1, t¢H, 2, t¢ H,
1.5+1sint, te€H, 1+sint, te€H,
hor= has3=
15, t¢H, 1, t¢H,
1.8+0.5sint, te€H, 2.4+0.1sint, teH,
h3 = hsp=
18, t¢H, 24, t¢H,

x11
- = x12

H=Uren (2kn, (2k+1)n),

(-1 1 0.01 0.01 0.01 —-0.01
A= A= JAiz= )
_1 -2 0.01 0.01 —-0.01 0.01
CG=[2 1],
[—15 1 0.02 0.01 0.01 0.02
A= , Ao = Az = ,
_1.5 -2 0.03 0.01 0.03 0.01
G=[1 2],
(-1 -1 0.03 0.01 0.03 0.02
Az= Az = ,Agp = )
|1 -1 0.03 0.01 0.01 0.01
G=[2 3],
V(024 21 (£ haz(6) 2+ (1= (1))
£(.)=0.001 ,
\/x12 +XZ2 t hlz( )) +X32(t—h13(t))2_
[ a1 (0 11 (1= Py (1) + 3 (1= Paa (1)
£(.)=0.001 7
\/xzz )2 +x12(t—hoi () +x32(t—h23(t))2_
\/X';l +X11 t hgl( )) +.XZ21([*]’132(1’))2
£(.)=0.001 7
_\/x32(t)2+x12(t—h31(l‘))2+x22(f—h32(t))2_

0.03F T T T T T T T T T
xhat11

0.02F [ . . -~ — xhat12 4

0.01H,

L . . . : - - . . ; 0 . . . . . . ! n d k|

4 6 8 12 1416 18 200 22 4 6 8 10 12 14 16 18 20 22
Time(sec) Time(sec)

—— _§§; ool / /——\\ _

0_//“——-——_______________. i 0'02_1_," "'\.,\_§ — — —xhat22|]

/ L NG J
0.01F " .
I r e
2 s L L s L s L L L L oK . . T g =y i
4 6 8 0 12 14 16 18 20 22 4 6 8 10 12 14 16 18 20 22
Time(sec) Time(sec)

af T T T g 0.3F T T T T T T T T T 5

x31 xhat31

2\ — =32 | 0.2 = —xhat32|]

L P i .

0 s 01 »/ \_\. R
-2r | 0 T~ = 1
-4t A . . A L . A A A h y : : L L : . . L L

4 6 8 10 12 14 16 18 20 22 4 6 8 10 12 14 16 18 20 22
Time(sec) Time(sec)
Solution response of x1(¢), x2(t), x3(Z). Solution response of x1(t),X2(¢), and X3(t).
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&1(.)=2y/ xn ()2 +x12(0)%, &(.)=2/ X1 +x22(2), g5()
:2\ / X31(t)2+X32(t)2,

a;=a;;=0.001,Vi,j=1,2,3,i # j, g1 =8 =g3=2.

r104.8948 —7.0715 75.0815 1.5678 6.8126 —2.4370
Ey = :|7P1={ ]7(21:[ }
| —7.0715 112.6934 1.5678 73.5169 —2.4370 9.2501
[1.0850 0.5640 14.4076 5.5859 2.1217 0.9636
R = ,Ur= A= ;
10.5640 0.5212 5.5859 8.8227 0.9636 1.1585
[102.7269 —6.6339 60.3863 —1.6922 2.9314 —0.3157
E= ,Py= , Qo= )
| —6.6339 76.1245 —1.6922 42.6847 —0.3157 3.0649
10.9034 0.5491 11.5241 4.8428 2.1660 1.3128
Ry= , U= ],Az_|: :|,
10.5491 0.3740 4.8428 6.8908 1.3128 0.8953
[159.6994 —14.2791 54.4372 1.5469 2.2836 —0.3673
E3= , P3= , Q3= ,
| —14.2791 149.2812 1.5469 53.6229 —0.3673 1.5226
r0.2244 —0.0299 5.5253 —0.1649 0.6446 —0.01060
R3= s Us= 5 As= ’
| —0.0299 0.3520 —0.1649 6.7058 —0.1060 0.9053
—8.4664 —2.5966 —4.4819 —-0.5066 —3.3920 -0.1105
S1= 5 So= 5 SS = 5
—2.5964 —5.8697 —0.5219 —4.0383 —0.0997 —4.0932

The state observer gains are obtained by

0.0197 . 0.0115
L1:E;1C = ,LZZEEICZZ 5
0.0101 0.0273
0.0144
Ly=E;'C]= .
0.0215

Moreover, the error solution e(t,¢) of the system
satisfies

lle(t, )| < 2.3451e"*V||g| .

Figure 1 shows the trajectories of x;(),x2(t), and x3(t)
of the system with the initial conditions ¢, (f)=[1-1]",
0,(t)=2-2]", p5(t)=[3-3]". Figure 2 shows the trajecto-
ries of the error system X;(t),x2(¢), and Xx3(¢).

It is worth nothing that, the delay functions h;(t)
are nondifferentiable, therefore, the design method in
[10,11] are not applicable to this system. Using LMI
Toolbox in Matlab, the LMI (3.1) is feasible with h;=1,
hy=2.5,=0.1, and

9. CONCLUSIONS

The problem of full-order observer for nonlinear large-scale
systems with interconnected interval time-varying delays has
been studied in this article. By introducing a set of augmented
Lyapunov—Krasovskii functionals and using a new bounding
estimation technique, delay-dependent conditions for design-
ing state observer and exponential stability have been estab-
lished in terms of LMIs. Furthermore, the LMI-based approach
presented in this article provides attractive features in terms of
computational efficiency and a straightforward derivation of
all the parameters of the observers. A numerical example has
been given to illustrate the derived results.
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