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a b s t r a c t

In this paper, the problem of decentralized stability of switched nonlinear large-scale
systems with time-varying delays in interconnections is studied. The time delays are
assumed to be any continuous functions belonging to a given interval. By constructing a set
of new Lyapunov–Krasovskii functionals, which aremainly based on the information of the
lower and upper delay bounds, a new delay-dependent sufficient condition for designing
switching law of exponential stability is established in terms of linear matrix inequalities
(LMIs). The developed method using new inequalities for lower bounding cross terms
eliminate the need for overbounding and provide larger values of the admissible delay
bound. Numerical examples are given to illustrate the effectiveness of the new theory.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Switching systems belong to an important class of hybrid systems, which are described by a family of differential
equations together with specified rules to switch between them. A switching system can be represented by a differential
equation of the form

ẋ(t) = fσ (t, x(t)), t ≥ 0,

where {fσ (., .) : σ ∈ I} is a family of functions parameterized by some index set I, which is typically a finite set, and
σ(.), which depends on the system state at each time, is the switching rule/signal determining a switching sequence for the
given system. Switching systems arise in many practical processes that cannot be described by exclusively continuous or
exclusively discrete models, such as manufacturing, communication networks, automotive engineering control, chemical
processes [1–3]. During the last decades, the stability problem of switched linear time-delay systems has attracted a lot of
attention [4–11].

On the other hand, there has been a considerable research interest in large-scale interconnected systems. A typical large-
scale interconnected system such as a power grid consists of many subsystems and individual elements connected together
to form a large, complex network capable of generating, transmitting and distributing electrical energy over a large geo-
graphical area. In general, a large-scale system can be characterized by a large number of variables representing the system,
a strong interaction between subsystem variables, and a complex interaction between subsystems. The problem of decen-
tralized control of large-scale interconnected dynamical systems has been receiving considerable attention, because there
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are a large number of large-scale interconnected dynamical systems inmany practical control problems, e.g., transportation
systems, power systems, communication systems, economic systems, social systems, and so on. [12–15]. The operation of
large-scale interconnected systems requires the ability to monitor and stabilize in the face of uncertainties, disturbances,
failures and attacks through the utilization of internal system states. However, even with the assumption that all the state
variables are available for feedback control, the task of effective controlling a large-scale interconnected system using a
global (centralized) state feedback controller is still not easy as there is a necessary requirement for information transfer
between the subsystems [16–19].

The majority of the previous works treated asymptotic stability for switching linear time delay systems under arbitrary
switching signal law. The exponential stability problem was considered in [20] for switching linear systems with impulsive
effects by using the matrix measure concept, and in [21] for nonholonomic chained systems with strongly nonlinear in-
put/state driven disturbances and drifts. Some extending results of [22–31] for switched systems with time-varying delays,
however, the time delays are assumed to be differentiable and the switching rule was constructed on the solutions of a set
of LMIs. To the best of our knowledge, there has been no investigation on the exponential stability of switched nonlinear
large-scale systems with time-varying delays interacted between subsystems. In fact, this problem is difficult to solve; par-
ticularly, when the time-varying delays are interval, non-differentiable and the output is subjected to such time-varying
delay functions. The time delay is assumed to be any continuous function belonging to a given interval, which means that
the lower and upper bounds for the time-varying delay are available, but the delay function is bounded but not necessary to
be differentiable. This allows the time-delay to be a fast time-varying function and the lower bound is not restricted to being
zero. It is clear that the application of anymemoryless feedback controller to such time-delay systemswould lead to closed-
loop systemswith interval time-varying delays. The difficulties then arise when one attempts to derive exponential stability
conditions. Indeed, existing Lyapunov–Krasovskii functionals and their associated results in [9,10,15,18,19,22,23] cannot be
applied to solve the problem posed in this paper as they would either fail to cope with the non-differentiability aspects of
the delays, or lead to very complex matrix inequality conditions and any technique such as matrix computation or transfor-
mation of variables fails to extract the parameters of the memoryless feedback controllers. This has motivated our research.

In this paper, we consider a class of large-scale nonlinear systems with interval time-varying delays in interconnections.
Compared to the existing results, our result has its own advantages. (i) Stability analysis of previous papers reveals some
restrictions: The timedelaywas proposed to be either time-invariant interconnected or the lower delay bound is restricted to
being zero, or the time delay function should be differential and its derivative is bounded. In our result, the above restricted
conditions are removed for the large-scale systems. In addition the time delay is assumed to be any continuous function
belonging to a given interval, whichmeans that the lower and upper bounds for the time-varying delay are available, but the
delay function is bounded but not necessary to be differentiable. This allows the time-delay to be a fast time-varying function
and the lower bound is not restricted to being zero. (ii) The developed method using new inequalities for lower bounding
cross terms eliminate the need for over bounding and provide larger values of the admissible delay bound.We propose a set
of new Lyapunov–Krasovskii functionals, which are mainly based on the information of the lower and upper delay bounds.
(iii) The conditionswill be presented in terms of the solution of LMIs, that can be solved numerically in an efficientmanner by
using standard computational algorithms [32]. (iv) A simple geometric design is employed to find the switching law and our
approach allows to compute simultaneously the two bounds that characterize the exponential stability rate of the solution.

The paper is organized as follows. Section 2 presents definitions and some well-known technical propositions needed
for the proof of the main results. Mail result for designing switching rule of exponential stability of the system is presented
in Section 3. Numerical examples showing the effectiveness of the obtained results are given in Section 4. The paper ends
with conclusions and cited references.

2. Preliminaries

The following notations will be used throughout this paper, R+ denotes the set of all real-negative numbers; Rn denotes
the n-dimensional space with the scalar product (., .) and the vector norm ∥ · ∥; Rn×r denotes the space of all matrices
of (n × r)-dimension. AT denotes the transpose of A; a matrix A is symmetric if A = AT ; I denotes the identity matrix;
λ(A) denotes all eigenvalues of A; λmax(A) = max{Reλ : λ ∈ λ(A)}; λmin(A) = min{Reλ : λ ∈ λ(A)}; λA =

λmax(ATA); C1([a, b], Rn) denotes the set of all Rn-valued differentiable functions on [a, b]; L2([0, ∞], Rr) stands for the
set of all square-integrable Rr -valued functions on [0, ∞]. The symmetric terms in a matrix are denoted by ∗. Matrix A is
semi-positive definite (A ≥ 0) if (Ax, x) ≥ 0, for all x ∈ Rn

; A is positive definite (A > 0) if (Ax, x) > 0 for all x ≠ 0; A ≥ B
means A − B ≥ 0. The segment of the trajectory x(t) is denoted by xt = {x(t + s) : s ∈ [−τ , 0]} with its norm

∥xt∥ = sup
s∈[−τ ,0]

∥x(t + s)∥.

Consider a class of nonlinear switched large-scale systems with time-varying delays composed of N interconnected subsys-
tems Σi, i = 1, 2, . . . ,N of the form:ẋi(t) = Aσi

i xi(t) +

N
j≠i,j=1

Aσi
ij xj(t − hij(t)) + f σi

i (t, xi(t), {xj(t − hij(t))}Nj=1,j≠i),

xi(t) = ϕi(t), ∀t ∈ [−h2, 0],

(2.1)
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where the function σi : Rni → {1, . . . , s} is a switching rule within each subsystemwhich takes its values in the finite set of
modes {1, . . . , s}. This rule is to be selected for all i such that σi(xi(t)) = l implies that the lth switching mode is activated
for the ith subsystem of the interconnected system. More precisely, σ(x(t)) = (σ1(x1(t)), . . . , σN(xN(t))) = (l1, . . . , lN)
means that the lith switching mode is activated for the ith subsystem.

The system matrices (Aσi
i , {Aσi

ij }
N
j=1,j≠i) take values, at arbitrary discrete instants, in the finite set of

(Al
i, {A

l
ij}

N
j=1,j≠i), ∀i = 1, . . . ,N, l = 1, . . . , s.

Thus thematrices (Al
i, {Al

ij}
N
j=1,j≠i) denote the lthmodel of local subsystem i corresponding to the operationalmode l. x(t)T =

[x1(t)T , . . . , xN(t)T ], xi(t) ∈ Rni , is the state vector with the norm

∥x(t)∥ =

 N
i=1

∥xi(t)∥2,

the delay functions hij(.) are continuous and satisfy the following condition:

0 ≤ h1 ≤ hij(t) < h2, t ≥ 0, ∀i, j = 1, . . . ,N,

and the initial function ϕ(t) = [ϕ1(t), . . . , ϕN(t)T ], ϕi(t) ∈ C1([−h2, 0], Rni), with the norm

∥ϕi∥ = sup
−h̄≤t≤0

{∥ϕi(t)∥, ∥ϕ̇i(t)∥}, ∥ϕ∥ =

 N
i=1

∥ϕi∥
2.

Let x
hij
j (t) := xj(t − hij(t)), i ≠ j, the nonlinear function f li satisfies the following growth condition

∃ ali, a
l
ij > 0 : ∥f li ∥ ≤ ali∥xi(t)∥ +

N
j≠i,j=1

alij∥x
hij
j (t)∥, i, j = 1, . . . ,N; l = 1, . . . , s. (2.2)

Before presenting the main result, we recall some well-known facts and propositions which will be used in the proof.

Definition 2.1. Given β > 0. Switched system (2.1) is exponentially stable if there exists a switching rule σ(·) such that
every solution x(t, ϕ) of the system satisfies the conditions

∃M > 0, β > 0 : ∥x(t, ϕ)∥ ≤ Me−βt , ∀t ≥ 0.

Definition 2.2. The system of matrices {Li}, i = 1, 2, . . . ,N , is strictly complete if for every x ∈ Rn
\ {0} there is i ∈

{1, 2, . . . ,N} such that

xT Lix < 0.

It is easy to see that system {Li} is strictly complete if and only if
N
i=1

Ωi = Rn
\ {0},

where

Ωi = {x ∈ Rn
: xT Lix < 0}, i = 1, 2, . . . ,N.

It is shown in [33] that system {Li}, i = 1, 2, . . . ,N , is strictly complete if there exist numbers ξi ≥ 0, i = 1, 2, . . . ,N,N
i=1 ξi > 0, such that

N
i=1

ξiLi < 0.

If N = 2 then the above condition is also necessary for the strict completeness.

Proposition 2.1. For any x, y ∈ Rn, and matrices P, E, F ,H where P > 0, F T F ≤ I , and scalar ε > 0, one has
(a) EFH + HT F TET

≤ ε−1EET
+ εHTH,

(b) 2xTy ≤ xTPx + yTPy.

Proposition 2.2 (Schur Complement Lemma [34]). Given constant matrices X, Y , Z, where Y = Y T > 0. Then

X + ZTY−1Z < 0 if and only if

X ZT

Z −Y


< 0.
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Proposition 2.3 ([35]). For any constant matrix Z = ZT > 0 and scalar h, h, 0 < h < h such that the following integrations
are well defined, then

−

 t

t−h
x(s)TZx(s)ds ≤ −

1
h

 t

t−h
x(s)ds

T

Z

 t

t−h
x(s)ds


.

−


−h

−h

 t

t+s
x(τ )TZx(τ )dτds ≤ −

2

h
2
− h2


−h

−h

 t

t+s
x(τ )dτds

T

Z


−h

−h

 t

t+s
x(τ )dτds


.

Proposition 2.4 (Lower Bounds Lemma [36]). Let f1, f2, . . . , fN : Rm
→ R have positive values in an open subset D of Rm. Then,

the reciprocally convex combination of fi over D satisfies

min
{ri|ri>0,


i ri=1}


i

1
ri
fi(t) =


i

fi(t) + max
gi,j(t)


i≠j

gi,j(t)

subject to
gi,j : Rm

→ R, gj,i(t) = gi,j(t),

fi(t) gi,j(t)
gi,j(t) fj(t)


≥ 0


.

3. Main result

In this section, we investigate the exponential stability of linear system (2.1) with interval time-varying delays. Before
introducing the main result, the following notations of several matrix variables are defined for simplicity.

Pi1 = P−1
i , Qi1 = P−1

i QiP−1
i , Ri1 = P−1

i RiP−1
i , Ui1 = P−1

i UiP−1
i ,

Λi1 = P−1
i ΛiP−1

i , S li1 = P−1
i S liP

−1
i , i = 1, 2, . . . ,N, l = 1, 2, . . . , s

aij = sup
l∈1,s

alij, i, j ∈ 1,N, H l
11(i) = −

e−4βh2(h2 − h1)

h2 + h1
Λi − e−2βh1Ri − e−2βh2Ri

H l
1k(i) = 0, ∀k = 2,N, H l

1(N+1)(i) = e−2βh1Ri, H l
1(N+2)(i) = e−2βh2Ri,

H l
1(N+3)(i) = PiAlT

i , H l
1,(N+4)(i) = 2

e−2βh2

h2 + h1
Λi, H l

km(i) = 0, ∀k ≠ m, k,m = 2,N,

H l
kk(i) = −2

e−2βh2

N − 1
Ui +

e−2βh2

N − 1
(S li + S lTi ), ∀k = 2,N,

H l
k(N+1)(i) =

e−2βh2

N − 1
Ui −

e−2βh2

N − 1
S li; H l

k(N+2)(i) =
e−2βh2

N − 1
Ui −

e−2βh2

N − 1
S lTi ,

H l
k(N+3)(i) = H l

k(N+4)(i) = 0, k = 2,N, H l
(N+1)(N+1)(i) = −e−2βh1Qi − e−2βh1Ri − e−2βh2Ui,

H l
(N+1)(N+2)(i) = e−2βh2S lTi , H l

(N+1)(N+3)(i) = H l
(N+2)(N+3)(i) = H l

(N+1)(N+4)(i) = 0

H l
(N+2)(N+4)(i) = 0, H l

(N+2)(N+2)(i) = −e−2βh2Qi − e−2βh2Ri − e−2βh2Ui,

H l
(N+3)(N+3)(i) = (h2 − h1)h2Λi + h2

1Ri + h2
2Ri + (h2 − h1)

2Ui − 2Pi +
N

j=1,j≠i

Al
ijA

lT
ij + εl

iI.

H l
(N+3)(N+4)(i) = 0, H l

(N+4),(N+4)(i) = −2
e−4βh2

h2
2 − h2

1
Λi, H l

(N+5)(N+5)(i) = −
I
2ali

, H l
(N+5)1 = Pi,

H l
(N+4+k)(N+4+k)(i) = −

I
2 + 2aki

, H l
(N+4+k)k(i) = Pi, k = 2,N, i = 1,

H l
(N+4+k)(N+4+k)(i) = −

I
2 + 2a(k−1)i

, H l
(N+4+k)k(i) = Pi, k = 2,N, i ≠ 1, k ≤ i,

H l
(N+4+k)(N+4+k)(i) = −

I
2 + 2aki

, H l
(N+4+k)k(i) = Pi, k = 2,N, i ≠ 1, k ≥ i + 1,
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εl
i = ali +

N
j≠i,j=1

aij, αi1 = λmin(Pi1), α1 = min
i=1,N

αi1, α2 = max
i=1,N

αi2.

αi2 = λmax(Pi1) + β−1λmax(Qi1) + h3
1λmax(Ri1) + h3

2λmax(Ri1) + (h2 − h1)
3λmax(Ui1) + (h2 − h1)h2

2λmax(Λi1),

Lli = PiAlT
i + Al

iPi + 2βPi + 2Qi −
e−4βh2(h2 − h1)

h2 + h1
Λi +

N
j=1,j≠i

Al
ijA

lT
ij + εl

iI,

i = 1, 2, . . . ,N, l = 1, 2, . . . , s,

Ω l
i = {x ∈ Rni : xTPi1LliPi1x < 0}, l = 1, . . . , s, i = 1, 2, . . . ,N,

Ω̄1
i = Ω1

i ∪ {0}, Ω̄
j
i = Ω

j
i \

j−1
k=1

Ω̄k
i , j = 2, 3, . . . , s, i = 1, 2, . . . ,N.

The following is themain result of the paper, which gives sufficient conditions for designing switching rule of exponential
stability of system (2.1).

Theorem 3.1. Given β > 0. System (2.1) is exponentially stable if there exist symmetric positive definite matrices Pi,Qi, Ri,Ui,
Λi, i = 1, 2, . . . ,N and matrices S li , i = 1, 2, . . . ,N, l = 1, 2, . . . , s such that the following conditions hold:

(i) The system {Lli}, l = 1, 2, . . . , s is strictly complete for every i = 1, 2, . . . ,N, i.e., there exist numbers ξ l
i ≥ 0 : l =

1, 2, . . . , s, i = 1, 2, . . . ,N,
s

l=1 ξ l
i > 0, i = 1, 2, . . . ,N, such that

s
l=1

ξ l
i L

l
i < 0, i = 1, 2, . . . ,N. (3.1)

(ii) For i = 1, 2, . . . ,N, l = 1, 2, . . . , s,
H l

11(i) H l
12(i) . . . H l

1(2N+4)(i) 0 0
∗ H l

22(i) . . . H l
2(2N+4)(i) 0 0

. . . . . . . .

∗ ∗ . . . H l
(2N+4)(2N+4)(i) 0 0

∗ ∗ . . . ∗ −Ui −S li
∗ ∗ . . . ∗ ∗ −Ui

 < 0. (3.2)

The switching rule is chosen as σ(x(t)) = (l1, l2, . . . , lN) whenever x(t) ∈ Ω̄
l1
1 × Ω̄

l2
2 × · · · × Ω̄

lN
N . Moreover, the solution

of this system satisfies

∥x(t)∥ ≤


α2

α1
e−βt

∥ϕ∥, ∀t ≥ 0.

Proof. Consider the following Lyapunov–Krasovskii functional for the closed loop system:

V (t, xt) =

N
i=1

7
j=1

Vij(t, xt),

where

Vi1 = xi(t)TPi1xi(t), Vi2 =

 t

t−h1
e2β(s−t)xi(s)TQi1xi(s)ds,

Vi3 =

 t

t−h2
e2β(s−t)xi(s)TQi1xi(s)ds, Vi4 = h1

 0

−h1

 t

t+s
e2β(τ−t)ẋi(τ )Ri1ẋi(τ )dτds,

Vi5 = h2

 0

−h2

 t

t+s
e2β(τ−t)ẋi(τ )Ri1ẋi(τ )dτds, Vi6 = (h2 − h1) ×


−h1

−h2

 t

t+s
e2β(τ−t)ẋi(τ )Ui1ẋi(τ )dτds.

Vi7(t, xt) =


−h1

−h2

 0

θ

 t

t+s
e2β(τ+s−t)ẋi(τ )TΛi1ẋi(τ )dτdsdθ.

It is easy to verify that

α1

N
i=1

∥xi(t)∥2
≤ V (t, xt), V (0, x0) ≤ α2

N
i=1

∥ϕi∥
2. (3.3)
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Taking the derivative of V (.) in t along the solution of the system, we have

V̇i1 = 2xi(t)TPi1


Ali
i xi(t) +

N
j≠i,j=1

Ali
ijxj(t − hij(t)) + f lii


V̇i2 = xi(t)TQi1xi(t) − 2βVi2 − e−2βh1xi(t − h1)

TQi1xi(t − h1),

V̇i3 = xi(t)TQi1xi(t) − 2βVi3 − e−2βh2xi(t − h2)
TQi1xi(t − h2),

V̇i4 ≤ h2
1ẋi(t)

TRi1ẋi(t) − 2βVi4 − h1e−2βh1

 t

t−h1
ẋi(s)TRi1ẋi(s)ds,

V̇i5 ≤ h2
2ẋi(t)

TRi1ẋi(t) − 2βVi5 − h2e−2βh2

 t

t−h2
ẋi(s)TRi1ẋi(s)ds,

V̇i6 ≤ (h2 − h1)
2ẋi(t)TUi1ẋi(t) − 2βVi6 − (h2 − h1)e−2βh2

 t−h1

t−h2
ẋi(s)TUi1ẋi(s)ds.

V̇i7(t, xt) ≤ (h2 − h1)h2ẋi(t)TΛi1ẋi(t) − e−4βh2


−h1

−h2

 t

t+θ

ẋi(s)TΛi1ẋi(s)dsdθ − 2βVi7(t, xt).

Applying Proposition 2.3 and the Newton–Leibniz formula
 t
t−h ẋi(s)ds = xi(t) − xi(t − h), we have

−h
 t

t−h
ẋi(s)TRi1ẋi(s)ds ≤ −[xi(t) − xi(t − h)]Ri1[xi(t) − xi(t − h)].

Note that t−h1

t−h2
ẋiT (s)Ui1ẋi(s), ds =

 t−hji(t)

t−h2
ẋiT (s)Ui1ẋi(s)ds +

 t−h1

t−hji(t)
ẋiT (s)Ui1ẋi(s), ds.

Using Proposition 2.3 and h2 − hji(t) ≤ h2 − h1, hji(t) − h1 ≤ h2 − h1 gives

−(h2 − h1)

 t−hji(t)

t−h2
ẋiT (s)Ui1ẋi(s)ds

≤ −
h2 − h1

h2 − hji(t)
[xi(t − hji(t)) − xi(t − h2)]

TUi1[xi(t − hji(t)) − xi(t − h2)],

−(h2 − h1)

 t−h1

t−hji(t)
ẋiT (s)Ui1ẋi(s)ds

≤ −
h2 − h1

hji(t) − h1
[xi(t − h1) − xi(t − hji(t))]TUi1[xi(t − h1) − xi(t − hji(t))],

and hence

− (h2 − h1)

 t−h1

t−h2
ẋiT (s)Ui1ẋi(s) ds

≤ −
h2 − h1

h2 − hji(t)
[xi(t − hji(t)) − xi(t − h2)]

TUi1[xi(t − hji(t)) − xi(t − h2)]

−
h2 − h1

hji(t) − h1
[xi(t − h1) − xi(t − hji(t))]TUi1[xi(t − h1) − xi(t − hji(t))]. (3.4)

To estimate inequality (3.4) by using Proposition 2.4 we set r1 =
h2−hji(t)
h2−h1

, r2 =
hji(t)−h1
h2−h1

, and

f1(t) = [xi(t − hji(t)) − xi(t − h2)]
TUi1[xi(t − hji(t)) − xi(t − h2)],

f2(t) = [xi(t − h1) − xi(t − hji(t))]TUi1[xi(t − h1) − xi(t − hji(t))],

g1,2(t) = [xi(t − hji(t)) − xi(t − h2)]
T S lii1[xi(t − h1) − xi(t − hji(t))]

g2,1(t) = [xi(t − h1) − xi(t − hji(t))]T S
liT
i1 [xi(t − hji(t)) − xi(t − h2)],



28 N.T. Thanh, V.N. Phat / Nonlinear Analysis: Hybrid Systems 11 (2014) 22–36

we have from condition (3.2):
f1(t) g1,2(t)
g1,2(t) f2(t)


=


[xi(t − hji(t)) − xi(t − h2)]

T 0
0 [xi(t − h1) − xi(t − hji(t))]T


×


Pi1 0
0 Pi1

 
Ui S lii
S liTi Ui

 
Pi1 0
0 Pi1


×


[xi(t − hji(t)) − xi(t − h2)] 0

0 [xi(t − h1) − xi(t − hji(t))]


≥ 0,

where g1,2(t) = g2,1(t) and r1 + r2 = 1. Applying Proposition 2.4 gives

−(h2 − h1)

 t−h1

t−h2
ẋiT (s)Ui1ẋi(s) ds ≤ −

1
r1

f1(t) −
1
r2

f2(t)

≤ −f1(t) − f2(t) − g1,2(t) − g2,1(t)

= −[xi(t − hji(t)) − xi(t − h2)]
TUi1[xi(t − hji(t)) − xi(t − h2)]

− [xi(t − h1) − xi(t − hji(t))]TUi1[xi(t − h1) − xi(t − hji(t))]

− [xi(t − hji(t)) − xi(t − h2)]
T S lii1[xi(t − h1) − xi(t − hji(t))]

− [xi(t − h1) − xi(t − hji(t))]T S
liT
i1 [xi(t − hji(t)) − xi(t − h2)].

Therefore, we have

V̇i4 ≤ h2
1ẋi(t)

TRi1ẋi(t) − 2βVi4 − e−2βh1 [xi(t) − xi(t − h1)]
TRi1[xi(t) − xi(t − h1)],

V̇i5 ≤ h2
2ẋi(t)

TRi1ẋi(t) − 2βVi5 − e−2βh2 [xi(t) − xi(t − h2)]
TRi1[xi(t) − xi(t − h2)],

V̇i6 ≤ (h2 − h1)
2ẋi(t)TUi1ẋi(t) − 2βVi6 −

e−2βh2

N − 1

×

N
j=1,j≠i

[xi(t − hji(t)) − xi(t − h2)]
TUi1[xi(t − hji(t)) − xi(t − h2)]

−
e−2βh2

N − 1

N
j=1,j≠i

[xi(t − h1) − xi(t − hji(t))]TUi1[xi(t − h1) − xi(t − hji(t))]

−
e−2βh2

N − 1

N
j=1,j≠i

[xi(t − hji(t)) − xi(t − h2)]
T S lii1[xi(t − h1) − xi(t − hji(t))]

−
e−2βh2

N − 1

N
j=1,j≠i

[xi(t − h1) − xi(t − hji(t))]T S
liT
i1 [xi(t − hji(t)) − xi(t − h2)]. (3.5)

Note that if r1 = 0 or r2 = 0 or f1(t) = 0 or f2(t) = 0 and [xi(t −h1)− xi(t −hji(t))]T = 0 or [xi(t −hji(t))− xi(t −h2)] = 0,
then relation (3.5) still holds. Besides, using Proposition 2.3 again, we have

−e−4βh2


−h1

−h2

 t

t+θ

ẋi(s)TΛi1ẋi(s)dsdθ

≤ −
2e−4βh2

h2
2 − h2

1


(h2 − h1)xi(t) −

 t−h1

t−h2
xi(θ)dθ

T

Λi1


(h2 − h1)xi(t) −

 t−h1

t−h2
xi(θ)dθ


.

Hence,

V̇7(.) ≤ (h2 − h1)h2ẋi(t)TΛi1ẋi(t) − 2βV7(t, xt) −
2e−4βh2

h2
2 − h2

1


(h2 − h1)xi(t) −

 t−h1

t−h2
xi(θ)dθ

T

× Λi1


(h2 − h1)xi(t) −

 t−h1

t−h2
xi(θ)dθ


. (3.6)

From the following identity relation

−2ẋi(t)TPi1 ×


ẋi(t) − Ali

i xi(t) −

n
j≠i,j=1

Ali
ijxj(t − hij(t)) − f lii (.)


= 0,
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applying Proposition 2.1 and condition (2.2), we obtain

2xi(t)TPi1


N

j≠i,j=1

Ali
ijxj(t − hij(t))


≤

N
j≠i,j=1

xi(t)TPi1A
li
ijA

liT
ij Pi1xi(t),

+

N
j≠i,j=1

xj(t − hij(t))T xj(t − hij(t)),

2ẋi(t)TPi1


N

j≠i,j=1

Ali
ijxj(t − hij(t))


≤

N
j≠i,j=1

ẋi(t)TPi1A
li
ijA

liT
ij Pi1ẋi(t),

+

N
j≠i,j=1

xj(t − hij(t))T xj(t − hij(t)),

2xi(t)TPi1f
li
i (.) ≤ ε

li
i ∥xi(t)

TPi1∥2
+ alii ∥xi(t)∥

2
+

N
j≠i,j=1

aij∥x
hij
j (t)∥2,

2ẋi(t)TPi1f
li
i (.) ≤ ε

li
i ∥ẋi(t)

TPi1∥2
+ alii ∥xi(t)∥

2
+

N
j≠i,j=1

aij∥x
hij
j (t)∥2,

0 = −2ẋi(t)TPi1


ẋi(t) − Ali

i xi(t) −

N
j≠i,j=1

Ali
ijxj(t − hij(t)) − f lii (.)



≤ −2ẋi(t)TPi1


ẋi(t) − Ali

i xi(t)


+

N
j≠i,j=1

ẋi(t)TPi1A
li
ijA

liT
ij Pi1ẋi(t) +

N
j≠i,j=1

xj(t − hij(t))T xj(t − hij(t))

+ ε
li
i ∥ẋi(t)

TPi1∥2
+ alii ∥xi(t)∥

2
+

N
j≠i,j=1

aij∥x
hij
j (t)∥2, (3.7)

V̇i1(.) ≤ 2xi(t)TPi1A
li
i xi(t) +

N
j≠i,j=1

xi(t)TPi1A
li
ijA

liT
ij Pi1xi(t) + ε

li
i ∥xi(t)

TPi1∥2
+ alii ∥xi(t)∥

2

+

N
j≠i,j=1

xj(t − hij(t))T xj(t − hij(t)) +

N
j≠i,j=1

aij∥x
hij
j (t)∥2. (3.8)

Therefore, applying inequalities (3.5)–(3.8) and note that

N
i=1

N
j=1,j≠i

xj(t − hij(t))T xj(t − hij(t)) =

N
i=1


N

j=1,i≠j

xi(t − hji(t))T xi(t − hji(t))


,

N
i=1

N
j=1,j≠i

aijxj(t − hij(t))T xj(t − hij(t)) =

N
i=1


N

j=1,i≠j

ajixi(t − hji(t))T xi(t − hji(t))


,

we have

V̇ (.) + 2βV (.) ≤

N
i=1


2xi(t)TPi1A

li
i xi(t) + 2βxi(t)TPi1xi(t)

+ xi(t)TQi1xi(t) − e−2βh1xi(t − h1)
TQi1xi(t − h1) + xi(t)TQi1xi(t)

− e−2βh2xi(t − h2)
TQi1xi(t − h2) + h2

1ẋi(t)
TRi1ẋi(t)

− e−2βh1 [xi(t) − xi(t − h1)]
TRi1[xi(t) − xi(t − h1)] + ε

li
i ∥xi(t)

TPi1∥2
+ alii ∥xi(t)∥

2

− e−2βh2 [xi(t) − xi(t − h2)]
TRi1[xi(t) − xi(t − h2)] + ε

li
i ∥ẋi(t)

TPi1∥2
+ alii ∥xi(t)∥

2

+ (h2 − h1)
2ẋi(t)TUi1ẋi(t) + h2

2ẋi(t)
TRi1ẋi(t)

−
e−2βh2

N − 1

N
j=1,j≠i

[xi(t − hji(t)) − xi(t − h2)]
TUi1[xi(t − hji(t)) − xi(t − h2)]

−
e−2βh2

N − 1

N
j=1,j≠i

[xi(t − h1) − xi(t − hji(t))]TUi1[xi(t − h1) − xi(t − hji(t))]



30 N.T. Thanh, V.N. Phat / Nonlinear Analysis: Hybrid Systems 11 (2014) 22–36

−
e−2βh2

N − 1

N
j=1,j≠i

[xi(t − hji(t)) − xi(t − h2)]
T S lii1[xi(t − h1) − xi(t − hji(t))]

−
e−2βh2

N − 1

N
j=1,j≠i

[xi(t − h1) − xi(t − hji(t))]T S
liT
i1 [xi(t − hji(t)) − xi(t − h2)]

+ (h2 − h1)h2ẋi(t)TΛi1ẋi(t) +

N
j≠i,j=1

xi(t − hji(t))T xi(t − hji(t))

−
2e−4βh2

h2
2 − h2

1


(h2 − h1)xi(t) −

 t−h1

t−h2
xi(θ)dθ

T

Λi1


(h2 − h1)xi(t) −

 t−h1

t−h2
xi(θ)dθ



− [2ẋi(t)TPi1] × [ẋi(t) − Ali
i xi(t)] +

N
j≠i,j=1

xi(t)TPi1A
li
ijA

liT
ij Pi1xi(t)

+

N
j≠i,j=1

xi(t − hji(t))T xi(t − hji(t)) +

N
j≠i,j=1

ẋi(t)TPi1A
li
ijA

liT
ij Pi1ẋi(t)

+

N
j≠i,j=1

aji∥x
hji
i (t)∥2

+

N
j≠i,j=1

aji∥x
hji
i (t)∥2


.

Setting yi(t) = Pi1xi(t), we obtain

V̇ (t, xt) + 2βV (t, xt) ≤

N
i=1

yi(t)T L
li
i yi(t) +

N
i=1

ξi(t)TM li(i)ξi(t), (3.9)

where

ξi(t)T =


yi(t)T {yi(t − hji(t))T }Nj=1,j≠i yi(t − h1)

T yi(t − h2)
T ẏi(t)T

 t−h1

t−h2
yi(θ)Tdθ


,

M li(i) =


M li

11(i) M li
12(i) . . . M li

1(N+4)(i)
∗ M li

22(i) . . . M li
2(N+4)(i)

. . . . . .

∗ ∗ . . . M li
(N+4)(N+4)(i)

 , i = 1,N, li = 1, 2 . . . , s,

M li
11(i) = −

e−4βh2(h2 − h1)

h2 + h1
Λi − e−2βh1Ri − e−2βh2Ri + 2alii P

2
i

M li
1k(i) = 0, ∀k = 2,N, M li

1(N+1)(i) = e−2βh1Ri, M li
1(N+2)(i) = e−2βh2Ri,

M li
1(N+3)(i) = PiA

liT
i , M li

1,(N+4)(i) = 2
e−2βh2

h2 + h1
Λi, M li

kj(i) = 0, ∀k ≠ j, k, j = 2,N,

M li
kk(i) = −2

e−2βh2

N − 1
Ui +

e−2βh2

N − 1
(S lii + S liTi ) + (2 + 2aki)P2

i , ∀k = 2,N, i = 1,

M li
kk(i) = −2

e−2βh2

N − 1
Ui +

e−2βh2

N − 1
(S lii + S liTi ) + (2 + 2a(k−1)i)P2

i , k = 2,N, i ≠ 1, k ≤ i,

M li
kk(i) = −2

e−2βh2

N − 1
Ui +

e−2βh2

N − 1
(S lii + S liTi ) + (2 + 2aki)P2

i , k = 2,N, i ≠ 1, k ≥ i + 1,

M li
k(N+1)(i) =

e−2βh2

N − 1
Ui −

e−2βh2

N − 1
S lii ; M li

k(N+2)(i) =
e−2βh2

N − 1
Ui −

e−2βh2

N − 1
S liTi ,

M li
(N+1)(N+1)(i) = −e−2βh1Qi − e−2βh1Ri − e−2βh2Ui, M li

(N+1)(N+2)(i) = e−2βh2S liTi ,

M li
(N+1)(N+3)(i) = M li

(N+2)(N+3)(i) = M li
(N+1)(N+4)(i) = M li

(N+2)(N+4)(i) = 0,

M li
(N+2)(N+2)(i) = −e−2βh2Qi − e−2βh2Ri − e−2βh2Ui,

M li
(N+3)(N+3)(i) = (h2 − h1)h2Λi + h2

1Ri + h2
2Ri + (h2 − h1)

2Ui − 2Pi +
N

j=1,j≠i

Ali
ijA

liT
ij + ε

li
i I.

M li
(N+3)(N+4)(i) = 0, M li

(N+4),(N+4)(i) = −2
e−4βh2

h2
2 − h2

1
Λi, M li

k(N+3)(i) = M li
k(N+4)(i) = 0, k = 2,N.
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Since matrix P−1
i > 0, the system of matrices {P−1

i LliP
−1
i : l = 1, 2, . . . , s} is strictly complete. Then, we have

s
l=1

Ω l
i = Rni \ {0}

and it follows by constructing the sets Ω̄ l
i that

s
l=1

Ω̄ l
i = Rni , Ω̄

l1
i ∩ Ω̄

l2
i = ∅, for l1 ≠ l2.

Therefore, for x(t) = (x1(t)T , x2(t)T , . . . , xN(t)T )T ∈ Rn1 ×Rn2 ×· · ·×RnN , there exists li ∈ {1, 2, . . . , s} such that xi(t) ∈ Ω̄
li
i

and

xi(t)TP−1
i Llii P

−1
i xi(t) ≤ 0 and hence yi(t)T L

li
i yi(t) ≤ 0.

Choosing the switching rule as σ(x(t)) = (l1, l2, . . . , lN) whenever

x(t) ∈ Ω̄
l1
1 × Ω̄

l2
2 × · · · × Ω̄

lN
N .

Thus, from (3.9), (3.1), (3.2) we obtain

V̇ (t, xt) + 2βV (t, xt) ≤ 0. (3.10)

Therefore, we have

V (t, xt) ≤ V (0, x0)e−2βt , ∀t ≥ 0.

Taking inequality (3.3) into account, we finally obtain that

α1

N
i=1

∥xi(t)∥2
≤ V (t, xt) ≤ α2

N
i=1

∥ϕi∥
2e−2βt , for all t ≥ 0.

This completes the proof of the theorem. �

Remark 3.1. Theorem 3.1 provides sufficient conditions for designing switching law of the nonlinear large-scale system
(2.1) in terms of the solutions of LMIs, which guarantees the closed-loop system to be exponentially stable with a prescribed
decay rate β . The developed method using new inequalities for lower bounding cross terms eliminate the need for over
bounding and provide larger values of the admissible delay bound. Note that the time-varying delays are non-differentiable,
therefore, themethods proposed in [9,10,15,18,19,22,23] are not applicable to system (2.1). The LMI condition (3.2) depends
on parameters of the system under consideration as well as the delay bounds. The feasibility of the LMIs can be tested by
the reliable and efficient Matlab LMI Control Toolbox [32].

4. Numerical examples

In this section, we give two numerical examples to show the effectiveness of the proposed result.

Example 4.1. This example is a large-scale model composed of two machine subsystems [14] as follows:
ẋ1(t) = Aσ1

1 x1(t) + Aσ1
12x2(t − h12(t)) + f σ1

1 (t, x1(t), x2(t − h12(t))),
x1(t) = ϕ1(t), ∀t ∈ [−h2, 0],
ẋ2(t) = Aσ2

2 x2(t) + Aσ2
21x1(t − h21(t)) + f σ2

2 (t, x2(t), x1(t − h21(t))),
x2(t) = ϕ2(t), ∀t ∈ [−h2, 0],

where the absolute rotor angle and angular velocity of the machine in each subsystem are denoted by x1 = (x11, x12), and
x2 = (x21, x22), respectively; the ith system coefficient Ai; the control and nonlinear perturbations fi(.) and the modulus of
the transfer admittance Aij; the initial input ϕi; the time-varying delays hij(t) between the two machines in the subsystem:

h12 =


0.1 + 0.4 sin2(t), t ∈ H,
0.1, t ∉ H,

h21 =


0.2 + 0.3 sin2(t), t ∈ H,
0.2, t ∉ H,

H = ∪k∈N(2kπ, (2k + 1)π),

A1
1 =


−1.2 0.1
0.2 −1.3


, A2

1 =


−1 0
0 −1.3


, A1

2 =


−1.1 0.2
0.1 −1


, A2

2 =


−0.9 0.1
0 −1.2


,

A1
12 =


0.1 0
0 0.1


, A2

12 =


0.2 0
0 0.1


, A1

21 =


0.1 0
0 0.2


, A2

21 =


0.2 0
0 0.2


,

a11 = a21 = a12 = a22 = a112 = a121 = a212 = a221 = 0.01.
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It is worth nothing that, the delay functions h12(t), h21(t) are non differentiable, therefore, the methods in [9,10,15,18,19,
22,23] are not applicable to this system. By using LMI Toolbox in Matlab, LMIs (3.1), (3.2) are feasible with h1 = 0.1, h2 =

0.5, β = 0.01, and

P1 =


2.4277 0.9127
0.9127 2.5280


, Q1 =


2.5516 0.8833
0.8833 3.1343


, R1 =


4.8699 1.7459
1.7459 4.9864


,

U1 =


8.1686 4.5412
4.5412 6.9322


, Λ1 =


0.2137 0.1384
0.1384 0.1571


,

P2 =


4.2938 0.4716
0.4716 3.4603


, Q2 =


4.1022 0.1090
0.1090 3.6822


, R2 =


7.7860 0.7776
0.7776 6.5886


,

U2 =


17.5932 3.7369
3.7369 12.1542


, Λ2 =


0.4503 0.1251
0.1251 0.2933


, S11 =


5.3224 3.1503
3.1529 4.9629


,

S21 =


5.2757 3.2732
3.2713 5.0573


, S12 =


12.8735 2.5152
2.5163 8.4604


, S22 =


12.5743 2.6729
2.6715 8.7318


.

In this case, it can be shown that

L11 =


−0.6018 0.1510
0.1510 0.0388


, L21 =


0.2168 −0.4048

−0.4048 −0.3263


,

L12 =


−1.2317 0.2767
0.2767 0.4757


, L22 =


0.4215 −0.4987

−0.4987 −1.0027


.

Moreover,

L11 + L21 =


−0.3850 −0.2539
−0.2539 −0.2874


< 0, L12 + L22 =


−0.8102 −0.2220
−0.2220 −0.5270


< 0.

The sets Ω l
i are given as

Ω1
1 = {(x1, x2) : (x1 − 0.7744x2)(x1 − 0.2698x2) > 0}

Ω2
1 = {(x1, x2) : (x1 − 1.7336x2)(x1 − 0.0098x2) < 0}

Ω1
2 = {(x1, x2) : (x1 − 1.1021x2)(x1 + 0.4299x2) > 0}

Ω2
2 = {(x1, x2) : (x1 − 2.8152x2)(x1 + 0.9016x2) < 0}.

The union of Ω1
1 and Ω2

1 is equal to R2
\ {0}. The union of Ω1

2 and Ω2
2 is equal to R2

\ {0}.
The sets Ω̄ l

i are given as

Ω̄1
1 = {(x1, x2) : (x1 − 0.7744x2)(x1 − 0.2698x2) ≥ 0}

Ω̄2
1 = {(x1, x2) : (x1 − 0.7744x2)(x1 − 0.2698x2) < 0}

Ω̄1
2 = {(x1, x2) : (x1 − 1.1021x2)(x1 + 0.4299x2) ≥ 0}

Ω̄2
2 = {(x1, x2) : (x1 − 1.1021x2)(x1 + 0.4299x2) < 0}.

According to Theorem 3.1, the systemwith the switching rule σ(x(t)) = (l1, l2)whenever x(t) ∈ Ω̄ l1 ×Ω̄ l2 is exponentially
stable. Finally, the solution x(t, ϕ) of the system satisfies (see Figs. 1–4)

∥x(t, ϕ)∥ ≤ 15.7140e−0.01t
∥ϕ∥.

Example 4.2. Consider system (2.1) composed of two interconnected subsystemswith switching rulewhich takes its values
in the finite set of modes {1, 2}, where

A1
1 =


−0.06 0.01
0.01 −0.06


, A2

1 =


−0.06 0.01
0.02 −0.06


, A1

2 =


−0.06 0.02
0.01 −0.06


,

A2
2 =


−0.06 0.02
0.02 −0.06


, A1

12 = A2
12 = A1

21 = A2
21 =


0.01 0
0 0.01


,

a11 = a21 = a12 = a22 = a112 = a121 = a212 = a221 = 0.001; β = 0.01.
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Table 1
Upper bound of the delay.

Methods Theorem3.1 Hi–Ph [9] Ma–Fo [4] Hua–Wa–Gu [19] Pa–Ko–Je [36]

max{h2 − h1} 7.1 0.2 3.229 1 1.86
h2 10 0.6 4.113 1 4.09

We have h1 = 5, h2 = 10, and LMI (3.1) is feasible with

P1 =


0.0397 0.0111
0.0111 0.0431


, Q1 = 10−3


0.7610 0.0113
0.0113 0.8537


, R1 = 10−3


0.1880 0.0249
0.0249 0.1796


,

U1 =


0.0012 0.0007
0.0007 0.0013


, Λ1 = 10−4


0.2054 0.1446
0.1446 0.2232


,

P2 =


0.0406 0.0155
0.0155 0.0406


, Q2 = 10−3


0.6272 0.0222
0.0222 0.6948


, R2 = 10−3


0.1748 0.0365
0.0365 0.1756


,

U2 =


0.0013 0.0009
0.0009 0.0013


, Λ2 = 10−4


0.2050 0.1903
0.1903 0.2098


, S11 =


0.0011 0.0006
0.0006 0.0012


,

S21 =


0.0011 0.0006
0.0006 0.0012


, S12 =


0.0012 0.0008
0.0008 0.0012


, S22 =


0.0012 0.0008
0.0008 0.0012


.

In this case, it can be shown that

L11 = 10−3

−0.1287 −0.2669
−0.2669 −0.2851


, L21 = 10−3


−0.1287 0.1300
0.1300 −0.0622


,

L12 = 10−3

−0.0960 −0.2865
−0.2865 −0.2675


, L22 = 10−3


−0.0960 0.1199
0.1199 0.0416


.

Moreover,

L11 + L21 = 10−3

−0.2574 −0.1370
−0.1370 −0.3473


< 0, L12 + L22 = 10−3


−0.1920 −0.1666
−0.1666 −0.2260


< 0.

The sets Ω l
i are given as

Ω1
1 = {(x1, x2) : (x1 + 32.9221x2)(x1 + 0.3835x2) > 0}

Ω2
1 = {(x1, x2) : (x1 − 1.2849x2)(x1 − 0.4793x2) > 0}

Ω1
2 = {(x1, x2) : (x1 − 4.719x2)(x1 + 0.1617x2) < 0}

Ω2
2 = {(x1, x2) : (x1 − 1.5121x2)(x1 − 0.2319x2) > 0}.

The union of Ω1
1 and Ω2

1 is equal to R2
\ {0}. The union of Ω1

2 and Ω2
2 is equal to R2

\ {0}.
The sets Ω̄ l

i are given as

Ω̄1
1 = {(x1, x2) : (x1 + 32.9221x2)(x1 + 0.3835x2) ≥ 0}

Ω̄2
1 = {(x1, x2) : (x1 + 32.9221x2)(x1 + 0.3835x2) < 0}

Ω̄1
2 = {(x1, x2) : (x1 − 4.719x2)(x1 + 0.1617x2) ≤ 0}

Ω̄2
2 = {(x1, x2) : (x1 − 4.719x2)(x1 + 0.1617x2) > 0}.

Table 1 illustrates the numerical results for different values of upper bound delay. This shows that our result provides a
larger allowable upper bound than the one obtained by the technique of [4,9,19,36].

5. Conclusion

In this paper, the problem of the decentralized stability for switched large-scale time-varying delay systems with
nonlinear perturbations has been studied. The time delay is assumed to be a function belonging to a given interval, but
not necessary to be differentiable. By effectively combining appropriate Lyapunov functionals with the Newton–Leibniz
formula and free-weighting parametermatrices, this paper has derived newdelay-dependent conditions for the exponential
stability in terms of linear matrix inequalities, which allow simultaneous computation of two bounds that characterize the
exponential stability rate of the solution. The developed method using new inequalities for lower bounding cross terms
eliminate the need for overbounding and provide larger values of the delay bound. Numerical examples are given to show
the effectiveness of the obtained result.
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Fig. 1. The region Ω1
1 of Example 4.1.

Fig. 2. The region Ω2
1 of Example 4.1.

It is worth noting that the proposed method can be applied for large-scale switched systems with multiple (mixed)
interval time-varying delays; however, it may have difficulty in obtaining the solution within a reasonable amount of the
time delays, when the number of the delays is extremely large. Future research will focus on extending the method to solve
the robust stabilization problem for uncertain large-scale switched systems with interval time-varying delays in state and
control.
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Fig. 3. The region Ω1
2 of Example 4.1.

Fig. 4. The region Ω2
2 of Example 4.1.
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