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1. Introduction

Switching systems belong to an important class of hybrid systems, which are described by a family of differential
equations together with specified rules to switch between them. A switching system can be represented by a differential
equation of the form

x(t) = fo (¢, x(1)), t=0,

where {f;(.,.) : o € {4} is a family of functions parameterized by some index set {, which is typically a finite set, and
o (.), which depends on the system state at each time, is the switching rule/signal determining a switching sequence for the
given system. Switching systems arise in many practical processes that cannot be described by exclusively continuous or
exclusively discrete models, such as manufacturing, communication networks, automotive engineering control, chemical
processes [1-3]. During the last decades, the stability problem of switched linear time-delay systems has attracted a lot of
attention [4-11].

On the other hand, there has been a considerable research interest in large-scale interconnected systems. A typical large-
scale interconnected system such as a power grid consists of many subsystems and individual elements connected together
to form a large, complex network capable of generating, transmitting and distributing electrical energy over a large geo-
graphical area. In general, a large-scale system can be characterized by a large number of variables representing the system,
a strong interaction between subsystem variables, and a complex interaction between subsystems. The problem of decen-
tralized control of large-scale interconnected dynamical systems has been receiving considerable attention, because there

* Corresponding author.
E-mail address: vnphat@math.ac.vn (V.N. Phat).

1751-570X/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.nahs.2013.04.002


http://dx.doi.org/10.1016/j.nahs.2013.04.002
http://www.elsevier.com/locate/nahs
http://www.elsevier.com/locate/nahs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nahs.2013.04.002&domain=pdf
mailto:vnphat@math.ac.vn
http://dx.doi.org/10.1016/j.nahs.2013.04.002

N.T. Thanh, V.N. Phat / Nonlinear Analysis: Hybrid Systems 11 (2014) 22-36 23

are a large number of large-scale interconnected dynamical systems in many practical control problems, e.g., transportation
systems, power systems, communication systems, economic systems, social systems, and so on. [12-15]. The operation of
large-scale interconnected systems requires the ability to monitor and stabilize in the face of uncertainties, disturbances,
failures and attacks through the utilization of internal system states. However, even with the assumption that all the state
variables are available for feedback control, the task of effective controlling a large-scale interconnected system using a
global (centralized) state feedback controller is still not easy as there is a necessary requirement for information transfer
between the subsystems [16-19].

The majority of the previous works treated asymptotic stability for switching linear time delay systems under arbitrary
switching signal law. The exponential stability problem was considered in [20] for switching linear systems with impulsive
effects by using the matrix measure concept, and in [21] for nonholonomic chained systems with strongly nonlinear in-
put/state driven disturbances and drifts. Some extending results of [22-31] for switched systems with time-varying delays,
however, the time delays are assumed to be differentiable and the switching rule was constructed on the solutions of a set
of LMIs. To the best of our knowledge, there has been no investigation on the exponential stability of switched nonlinear
large-scale systems with time-varying delays interacted between subsystems. In fact, this problem is difficult to solve; par-
ticularly, when the time-varying delays are interval, non-differentiable and the output is subjected to such time-varying
delay functions. The time delay is assumed to be any continuous function belonging to a given interval, which means that
the lower and upper bounds for the time-varying delay are available, but the delay function is bounded but not necessary to
be differentiable. This allows the time-delay to be a fast time-varying function and the lower bound is not restricted to being
zero. It is clear that the application of any memoryless feedback controller to such time-delay systems would lead to closed-
loop systems with interval time-varying delays. The difficulties then arise when one attempts to derive exponential stability
conditions. Indeed, existing Lyapunov-Krasovskii functionals and their associated results in [9,10,15,18,19,22,23] cannot be
applied to solve the problem posed in this paper as they would either fail to cope with the non-differentiability aspects of
the delays, or lead to very complex matrix inequality conditions and any technique such as matrix computation or transfor-
mation of variables fails to extract the parameters of the memoryless feedback controllers. This has motivated our research.

In this paper, we consider a class of large-scale nonlinear systems with interval time-varying delays in interconnections.
Compared to the existing results, our result has its own advantages. (i) Stability analysis of previous papers reveals some
restrictions: The time delay was proposed to be either time-invariant interconnected or the lower delay bound is restricted to
being zero, or the time delay function should be differential and its derivative is bounded. In our result, the above restricted
conditions are removed for the large-scale systems. In addition the time delay is assumed to be any continuous function
belonging to a given interval, which means that the lower and upper bounds for the time-varying delay are available, but the
delay function is bounded but not necessary to be differentiable. This allows the time-delay to be a fast time-varying function
and the lower bound is not restricted to being zero. (ii) The developed method using new inequalities for lower bounding
cross terms eliminate the need for over bounding and provide larger values of the admissible delay bound. We propose a set
of new Lyapunov-Krasovskii functionals, which are mainly based on the information of the lower and upper delay bounds.
(iii) The conditions will be presented in terms of the solution of LMIs, that can be solved numerically in an efficient manner by
using standard computational algorithms [32]. (iv) A simple geometric design is employed to find the switching law and our
approach allows to compute simultaneously the two bounds that characterize the exponential stability rate of the solution.

The paper is organized as follows. Section 2 presents definitions and some well-known technical propositions needed
for the proof of the main results. Mail result for designing switching rule of exponential stability of the system is presented
in Section 3. Numerical examples showing the effectiveness of the obtained results are given in Section 4. The paper ends
with conclusions and cited references.

2. Preliminaries

The following notations will be used throughout this paper, RT denotes the set of all real-negative numbers; R" denotes
the n-dimensional space with the scalar product (., .) and the vector norm || - ||; R"*" denotes the space of all matrices
of (n x r)-dimension. AT denotes the transpose of A; a matrix A is symmetric if A = AT; I denotes the identity matrix;
A(A) denotes all eigenvalues of A; Apnax(A) = max{Red : A € A(A)}; Amin(A) = min{ReA : X € AA)}; M =
Amax(ATA): C1([a, b], R") denotes the set of all R"-valued differentiable functions on [a, b]; L,([0, oo], R") stands for the
set of all square-integrable R"-valued functions on [0, co]. The symmetric terms in a matrix are denoted by . Matrix A is
semi-positive definite (A > 0) if (Ax, x) > 0, for all x € R"; A is positive definite (A > 0) if (Ax,x) > Oforallx # 0;A > B
means A — B > 0. The segment of the trajectory x(t) is denoted by x; = {x(t + s) : s € [—t, 0]} with its norm

xll = sup [Ix(t + ).
se[—7,0]
Consider a class of nonlinear switched large-scale systems with time-varying delays composed of N interconnected subsys-
tems X;, i=1,2,..., N of the form:

N
k(0 = ATxi(0) + Y ATt — hy(0) + £ (€ xi(0), (xi(E = by 1),
£ j=1
X(0) = ¢(0), Vi€ [—hs, 0],
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where the function o; : R" — {1, ..., s} is a switching rule within each subsystem which takes its values in the finite set of
modes {1, ..., s}. This rule is to be selected for all i such that o;(x;(t)) = I implies that the Ith switching mode is activated
for the ith subsystem of the interconnected system. More precisely, o (x(t)) = (o1(x1(t)),...,on(xn(£))) = (l1, ..., In)
means that the [;th switching mode is activated for the ith subsystem.

The system matrices (A}, {Aj}}, ;) take values, at arbitrary discrete instants, in the finite set of

ALAYL ). Yi=1,... N, I=1...5s.

Thus the matrices (Af, {Afj JI'V:LJ 7&1') denote the Ith model of local subsystem i corresponding to the operational mode . x(t)T =

[X1(O)T, ..., xn(0T], xi(t) € R, is the state vector with the norm

N
> k@2,
i=1

the delay functions h;(.) are continuous and satisfy the following condition:
0<hy <hj(t) <hy, t>0,Vi,j=1,...,N,
and the initial function ¢(t) = [@(t), ..., en(D)T], @i(t) € C'([—hy, 0], R™), with the norm

N
> gl
i=1

Let le?"j (t) = x;(t — h;(t)), i # j, the nonlinear functionfi' satisfies the following growth condition

Xl =

leill = sup {lleiOI @1}, llel =

—h<t<0

N
hi' PR
Ja,dy>0: |fIl <dlx®l+ Y ailx’ Ol ij=1,....Nil=1..5s. (2.2)
J#Lj=1
Before presenting the main result, we recall some well-known facts and propositions which will be used in the proof.

Definition 2.1. Given 8 > 0. Switched system (2.1) is exponentially stable if there exists a switching rule o (-) such that
every solution x(t, ¢) of the system satisfies the conditions

IM >0, B>0:|xt @)l <Me P, vt>o.

Definition 2.2. The system of matrices {L;},i = 1,2, ..., N, is strictly complete if for every x € R" \ {0} thereisi €
{1, 2, ..., N} such that

x'Lix < 0.

It is easy to see that system {L;} is strictly complete if and only if

N
Uei=r"\ (0},
i=1

where
Qi={xeR :xLx<0}, i=1,2,...,N.

It is shown in [33] that system {L;},i = 1, 2, ..., N, is strictly complete if there exist numbers § > 0,i = 1,2,...,N,
SV & > 0,such that

N
Z SiLi < 0.
i=1

If N = 2 then the above condition is also necessary for the strict completeness.

Proposition 2.1. For any x, y € R", and matrices P, E, F, H where P > 0, FTF < I, and scalar ¢ > 0, one has

(a) EFH + H'FTET < ¢ 'EET + ¢H"H,
(b) 2x"y < x"Px + y"Py.

Proposition 2.2 (Schur Complement Lemma [34]). Given constant matrices X, Y, Z, whereY = YT > 0. Then

Ty—1 . . x Zz'
X+Z'Y 'Z <0 ifandonlyif 7 _y < 0.



N.T. Thanh, V.N. Phat / Nonlinear Analysis: Hybrid Systems 11 (2014) 22-36 25

Proposition 2.3 ([35]). For any constant matrix Z = ZT > 0 and scalar h, h, 0 < h < h such that the following integrations
are well defined, then

t t T t
—/ x(s)7Zx(s)ds < 1 (/ x(s)ds) Z(f x(s)ds).
th h\Ji-n t—h
—h t 2 —h pt T —h pt
—/ / x(r)' Zx(v)drds < — = (/ f x(r)drds) z(/ / x(r)drds).
—h t+s h™ — h? —h Jt+s —h Jt+s

Proposition 2.4 (Lower Bounds Lemma [36]). Let f1, f>, ..., fy : R™ — R have positive values in an open subset D of R™. Then,
the reciprocally convex combination of f; over D satisfies

: 1
{ri\r,->r(}:112r:1i ri:l} Z F'fl(t) = Zfl(t) —+ glf(lr))(;gh](t)

subject to

3. Main result
In this section, we investigate the exponential stability of linear system (2.1) with interval time-varying delays. Before
introducing the main result, the following notations of several matrix variables are defined for simplicity.
Py=P7', Q=P 'QP”'., Ra=P 'RP”'. Uy=P'UP ",
An =P 'AP, Sh=P7USIPTY, i=1,2,...,N, I=1,2,...,5

—4ph; _
_ e h h
aj = sga’» i,je1,N, HY () = —MA,- — e 2R, — e72Bhap,

lel,s v hy + hy

Hy (@ =0, Vk=2N,  Hyy, () =e?MR,  Hjy,, >0 =e "R,

I . I I - e 2 I
Higs) () = PA, Hi (yyay () = 2——— A, Hp,,(0) =0, Vk#m, k,m=2N,

hy + hy

I e 2 e
Hkk(l) =—ZﬁU,+ N — 1(51—}—51 ), Vk=2,N,

| ) efzﬁhz efzﬂhz | | . e*Zﬂhz efzﬂhz I
Hiwiy @O = o—7Ui— g5 Hoa O = 50— 5

Hiwgs D = Hyngay @ =0, k=2,N,  Hiy psp () = —e2MQ — e MR — e72PP2y,

~2phy It
1

I ; | . 1 . 1 .
Hivinova () =€ Hivenaes D = Higyvas) ) = Hpvsa () =0

1 : 1 - —2Bh: —2pBh —2Bh:
Hivizpea @D =0, Hiyiaia (@) = —e Q- e 2R — e,

N
Hixysyvszy D = (hy — h)hy A + WiR; + B3R + (hy — hy)?Us — 2P + Y AJAT + ]l

Ry
I . I . e 4 I . I I
Hyiaora @ =0, Hipgy gD = =255 4 Hyusons @ = =57 Hogsn =P,
2 1 i
I
I . 1 . .
H(N+4+k)(N+4+k) (i) = _2 T 2an , H(N+4+k)k(l) =P, k=2,N,i=1,
1
I -
I . I . . .
Hinariyivrarh () = T2 2000 Hviapon® =P, k=2,N, i# 1, k=i,
K— 1)1
I
I . 1 . . .
H(N+4+k)(N+4+k)(1):—m, H(N+4+k)k(z):P,-, k=2,N,i#1,k>i+1,
1



26 N.T. Thanh, V.N. Phat / Nonlinear Analysis: Hybrid Systems 11 (2014) 22-36

1 .
& =a+ E ai, ait = Amin(Pi1), Q1 = min o, oy = Max .
£ i=T.N i=T,N

iz = Amax(Pi1) + B Amax(Qi1) + M3 Amax (Ri1) + M3 Amax (Rit) + (ha — h1)*Amax (Un) + (hy — h)h3Amax(Ain),

e~ "2 (hy — hy)
hy, + hy

i=1,2,...,N,1=1,2,...,5,

Il = PAT + AP +28P +2Q — —— 2 A 4 Z ALAT 4 el1,

j=1j#
={(xeR":X'PyLlPux <0}, I=1,...,s,i=1,2,...,N,
) oo
Ql=0lu), 2 =2\|J%F j=2.3.....5i=12_...N

The following is the main result of the paper, which gives sufficient conditions for designing switching rule of exponential
stability of system (2.1).

Theorem 3.1. Given § > 0. System (2.1) is exponentially stable if there exist symmetric positive definite matrices P;, Q;, R;, Uj,
A;,i=1,2,..., N and matrices Si’, i=1,2,...,N, l=1,2,...,ssuch that the following conditions hold:

(i) The system {Lf}, I = 1,2,...,sis strictly complete for every i = 1,2, ..., N, i.e., there exist numbers Si' >0:1=
1,2,...,si=1,2,...,N, > & >0,i=1,2,...,N, such that

N
Y gli<o, i=12....N. (3.1)
I=1
(ii) Fori=1,2,...,N,I=1,2,...,s,
HiG() Hp() . . . Higniae® 0 o0
x  HyuG) . . . Hygyee® 0 O
: : TR o <0. (32)
* * Hontaonia@ 0 0
* * o * -U; S
* * L. * * —U;

The switching rule is chosen as o (x(t)) = (l1, Lo, . . ., Iy) whenever x(t) € .(_241 X .(_Zé2 X o X .(_2,'\§V Moreover, the solution
of this system satisfies

oy _
x(®)] < ,/a—e Plgll, vVt =o.
1

Proof. Consider the following Lyapunov-Krasovskii functional for the closed loop system:

V(t,x) = ZZVu(t X:),

i=1 j=

where

t
Vir = x:(0) Puxi(t), Vip = / e 0x(5)T Quxi(s)ds,
t—hy
t 0 t
Vs = / e 0% () Quxi(s)ds, Vi =hy / / eV ()Riux;(t)drds,
t—hy —hy Jt+s
0 t —hq t
Vis = Iy / / ek (D)Ruxi(t)drds, Vg = (hy — hy) X / / e?P =% (T)Unk; () dzds.
—hy Jt+s —hy +s

—hq 0 t
Vir(t, X)) = / / / e =05.(0)T Apki(v)drdsdo.
—hy t+s

It is easy to verify that

N N
ar Y IO Ve x),  VO0.x0) <y llgill”. (33)

i=1 i=1
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Taking the derivative of V(.) in t along the solution of the system, we have
N
Vir = 2x;(t) Py [Affx,-(r) + Z Ag.x,-(t — hy() + f,-”}
J#Lj=1
Vi = x:(0)" Quxi(t) — 2BVip — e *PMxi(t — hy)" Qui(t — hy),
Vis = (D) Quxi(t) — 2BVis — e7*PM2xi(t — hp)T Qui(t — hy),

t
Vig < h2%:(0) R&i(t) — 2BVig — hye 2P / i(5) Rinki(s)ds,

t—hq
t

Vis < h2%:(t)" RuXi(t) — 2BVis — hye™2h"2 / X(s) R (s)ds,
t—hy

t—h

. 1
Vie < (hy — h1)*%()"Unki(t) — 28Vis — (hy — hy)e "2 / X(s) U ki(s)ds.

t—hy
. —hy t
Vir(t, %) < (hy — h)haki(6)" Apki(t) — e~ 4™ / / xi(s)" Apki(s)dsdd — 2BVir (¢, x;).
—hy t+60
Applying Proposition 2.3 and the Newton-Leibniz formula ftt—h xi(s)ds = x;(t) — x;(t — h), we have
t
—h / (9 Rk (9)ds < —Dxi(6) — x(t — WY R B (6) — (e — )],
t—h
Note that
t—hq t—h;i(t) t—hq
/ X' (s)Upn%i(s), ds :/ XiT(S)Un?éi(S)dS-i-/ %1 ($)Unxi(s), ds.
t—hy t—hy t—h;i(t)

Using Proposition 2.3 and h, — h;i(t) < h, — hy, hji(t) — hy < h, — hy gives

t—h;i ()
—(hy — h])/ X' (s)Un%i(s)ds
t—hy

e o et — T Tt — P (E)) — e (F —
= _h2 _hji(t) [x;(t hjl(t)) Xi(t — )] Unlxi(t hjl(t)) xi(t — hy)]1,
t—hy
—(hy — hy) %" (s)UnHi(s)ds
t—hji(t)
< M = ) — X = RO Ut = hy) — (€ — By(6))]
= hj,'(f)—hl i i ji i i i 'ji s

and hence

t—hq
—(hy — hl)/ X' (9)UnXi(s) ds
t—hy

hy—h
< = xi(t — (D) = xi(t — h)T U [xi(t = h(©) = xi(¢ — ho)]
hy — h;i(t)
hZ - h] T
— ——[x;(t — hy) — x;(t — h(t))] Un[x;(t — hqy) — x;(t — h;i(£))].
hji(t) — hy
. . . . . _ hz*hj,‘(t) _ hj,’(t)fh
To estimate inequality (3.4) by using Proposition 2.4 we set r; = oh 2= TR and

fi(®) = [xi(t — b)) — xi(t — ho)]"Un [xi(t — hii()) — xi(t — hy)],
fa(t) = [xi(t — hy) = x;(t — h(0)]" U [x;(¢ — hy) — x;(t — hy(£)],
g12(t) = [xi(t — h;;(t)) — x;(t — hz)]TSilﬁ[Xi(f — hy) — x;(t — h;(t))]
£2.1(6) = [x;(t — hy) — x;(¢ — hi@)TTS! [x:(t — hji(6)) — xi(t — hy)],
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we have from condition (3.2):

H@O g2t | _ | Xt = hjl(t)) xi(t — hy)]" 0
gi2(0)  fo(b) [ (t — h1) — xi(¢ — h(O)]

P 0] u SiPy 0
0 Puf|si" U [0 Pa

[xi(t — hji(t)) — x;i(t — hy)] 0
x [ 0 [x(t — hy) = xi(¢ = hy ()] | = °
where g1 5(t) = g2,1(t) and ry 4+ r, = 1. Applying Proposition 2.4 gives
t—hy T . 1 1
—(hy — hl)f X (HUnxi(s)ds < ——f1(t) — —f()
t—hy o} L)

< —fi) = f2(t) — &12(t) — &2.1(t)
—[xi(t — hji(t)) — xi(t — h)]"Un[xi(t — hji(t)) — xi(t — hy)]
— [xi(t — hy) — x;(t — h(e)]" ll[xi(t — h1) — xi(t — h(t))]
— [Xi(t — hi(0) — Xt — )1 Ixi(E — hy) — xi(¢ — h(0)]

— [x;(t — hy) — x;(t — hjl(t))] ,1 [xl(t h]i(t)) — Xx;i(t — hy)].
Therefore, we have

Vig < 23O Ru&i(t) — 2BVig — e 2P [xi(t) — xi(t — hi)1 Ry [xi(t) — xi(t — hy)],
Vis < h3%:(0)"Ruki(t) — 2BVis — e P2 [xi(t) — x;(t — ho)1" R [%:(£) — xi(t — hp)],

efzﬂhz
< (hy — h)*%(t) Unxi(t) — 2BVig —
N—-1
N
X Z [xi(t — hji(£)) — xi(t — h)]"Un [xi(t — hji(£)) — xi(t — hy)]
1,j#i
! —Z;hz N
T D (e = he) = (6 = ()] Un (e = o) = x(¢ = h(0))]
j=1,j#1
_2,3]12] NJ L
— Z [%(t — hii(t)) — xi(t — hx)]" S [xi(¢ — hy) — X (€ — hi(0)]
j=1,j#1
—Zﬁhz ! N]
~“N_1 Z [xi(t — hy) — x;(t — hi(EDTTS] [xi(t — hi(£)) — xi(¢ — hy)]. (35)
J=1j#
Note thatifr; = 0orr, = 0orfi(t) = Oorfo(t) = 0and [x;(t —hy) —x;(t — hj,-(t))]T = 0or [x;(t — h;(t)) —=x;(t —hy)] =
then relation (3.5) still holds. Besides, using Proposition 2.3 again, we have
—hy pt
—e 4P / 1 f %(s)" Apki(s)dsdf
—hy t+6
T
2p—4Bh2 t—hy t=hy
<=2ty — oyt - / x©)d6 | An( (hy — hoyx(o) - / x(6)d6 ).
h2 — h] t—hy t—hy
Hence,
T
. ) 9p—4Bh2 t—hy
V7() < (ha — h)haki ()" Apki(t) — 2BV (t, %) — 2o ((hz — h)xi(t) —/ Xf(9)d9>
- t—hy
t—hy
X A ((hz — h)x(t) — / Xi(9)d9>~ (3.6)
t—hy

From the following identity relation

~2k(0) an{xl(o Ax© — 3 At hq(r))—ﬁ’fo}:o

J#ij=1
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applying Proposition 2.1 and condition (2.2), we obtain

A

N N
2xi(t)TP,-1LZ Ai}xj(t—h,-j(t»} < Y O PRAAL Paxi(t),

#i,j=1 J#ij=1

N
+ ) %t — hy(0) xi(t — hy(D),

A=
N N
zx,»(tanLZ Alx(t —hf,-a))} < Y kO PRAAL Paki(o),
j#ij=1 j#i=1
N
+ ) %t — hy(0) xi(t — hy(D),
A=

N
I; I I hij
20 Paf' () < & IO P’ + g 16O I7 + ) ayllx” O,
Jj#ij=1

N
. I; liy s l; hij
2% (O Pafi () < & 1% Pull* + af [x:(D 1> + E aij”xjj(t)”zv
i

N
0 = —2&(t)"Py {&-(t) —Alxi(t) = > Alxi(t — hy(t)) —f,»l"(-)}

j#ij=1
l u li ALT X
< —2%(t)" Py |:5cl-(t) —A,-’x,»(t)j| + Y KO PAAIAL Paki(t) + Y xi(t — hy(0) xi(t — hy(6))
=1 =1
+e 15O Pl + a/ %O 17+ D allx” O, (3.7)
J#Lj=1
y 1 N i AT 1 I}
V() < 26(0) PaAixi(0) + Y xi(0) PaATAL Puxi(t) + & [x:(D) P> + g} [1xi(0) |
J#Lj=1
N N h
+ Y %t = hyO) (e —hy(0) + Y allxT ()] (3.8)
J#Lj=1 J#Lj=1

Therefore, applying inequalities (3.5)-(3.8) and note that

N N N N
DY Xt — () x(t — hy(0) = ZLZ x,»<r—hﬁ(t))fx,-<r—hj,-(r»},

i=1 j=1,j#i i=1 | j=1,i#j

N N N N
D0 agx(t — hy(0) Xt — hy(0) = ZL > axit — h(0)xi(t — hﬁ(t»],

=1 j=1,j#i i=1 | j=1,i#j

we have
N

V() +2BV() < Z|:2Xi(f)TPi1AiiXi(f) + 2Bx:(t)" Pxi(t)

i=1

+x(0TQuxi(t) — e M x;(¢ — h) Quxi(t — hy) + x:(O) Quxi(t)

—e Py (t — hy)TQuxi(t — hy) + h2%:(6) Riy&i(t)

— e M [x(6) — x:(t — h)] Ralxi(6) — xi(t — h)] + &/ I1x:(O) P |1 + af [1x:(0) |12
— e P2 () — xi(t — hp) 1 Rt [xi() — xi(¢ — ho)] + &} ()P |12 + g [x:(0) |2
+ (hy — h)*%(6) " Un%:(6) + hoxi(6)" R (¢)

e—28ha N
N1 Z [xi(t — hji(t)) — xi(t — h)]"Un [xi(t — hji(t)) — xi(t — hy)]
j=1i
e—26hy N
— 7 2 I = ) = xi(t = )] U (= hy) = xi(c = h(6))]

J=1j#
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—2ﬂh2 N
— 7 2 Il = i) = xi(t = )V ST = hy) = (€ = hy(©))]
J=1j#
e—28hy N
7 D Bt — ) = (e = BN (€ — () — xi( — hy)]
J=1j#
N
+ (hy — h)haki (D Anki(6) + Y xilt — () xi(t — h (1))
#ij=1
2e—4Bh t—hy ! Py
= 2¢ 7 (= howco) — / x©)d6 | An( (hy — (o) - / x(6)d6
h2 - hl [7}12 [7]12
l N i LT
— [2%(0)Pa] X [%(0) — Ax(OT+ Y (D) PuAJAL Puxi(t)
#iL=1
N N
+ ) Xt = h(O) xi(t — hp(0) + Y &0 PuALAL Puki(D)
J#Lj=1 jiLj=1
+ ) @l O+ > aji||xiﬂ(t)||2:|~
=1 #Lj=1
Setting y;(t) = P;1x;(t), we obtain
. N . N
V(E, %) + 2BV (6, x) < Yy Lyit) + ) &OMEDE®), (3.9)
i=1 i=1
where
T I T TN T T . T = T
&) = | yi(© {yi(t = hi()" }iq oz Vit — h1) yi(t — ho)” yi(t) / yi(6)'do |,
L t—hy
I /s I /s
M, () M}Az(z) Lo ](N+4)(1)
Mig=| * M@ o M@ TR =12,
: R
L * L. M(N+4)(N+4)(’)
. e 4h2(h, — h .
M () = — ' (+2h 1)/\,‘ e 2R, 2R, 4 2lp?
2 1
Mi() =0, Vk=2N, My, ) =eMR, M., >0 =e?"R,
I . KT e 2Ph Lo
M1I(N+3)(l) = PiAjl s 1 (N+4)(1) ?Ai, k](l) =0, Vk #.’7 k,] =2,N,
2 1
efzﬁhz 6725’12 f
M, () = — ﬁu,» + 3T (s' +5") + @+ 2a)P?, Vk=2,N, i=1,
L e 2hh2 6*25 L AT 5
M) = =2 — Ui+ (5 +8) + @+ 2a0-)P?, k=2N.i#1 k<i
I efzﬁhZ e ZﬂhZ I
Mg () = =2 Ui+ -— i+ + @ +2a)P?, k=2 Ni#1k>i+1,
e—Zﬂhz 72ﬁh2 s i ) e—Zﬁhz e*2ﬂh2 T
Mk(N+1)(l) _1Ui_ N—]Si; M2y D = N_1i~ N_lsi ;
—_28h _28h —28h I . _ ;T
Meys sy @ = =€ 2PM1Q — MR — e 22U, MUy, gy () = €722
I; M . I; . I; .
Miv v @D = Mivaayvgs) O = My oveay D = Moy v4a () = 0
Mé N2 (N+2) (i) = _e—Zﬂthl. _ —Zﬂth. — e 22 u;,
Mivspynes D = (hy — h)hy Aj + h2R; + 3R + (hy — hy)?U; — 2P, + Z ALALT + &1,

j=1j#

—4Bh;
li ; li ; e Ij ] I; .
My y3yova @D =0, My 44y, npay D = _Zm/‘i’ M43y (D) = My, 0 () =0, k=2,N.
2— M
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Since matrix Pi_1 > 0, the system of matrices {Pi_lLﬁPi_l :1=1,2,...,s}isstrictly complete. Then, we have

2{ =R"\ {0)

C-

Il
-

and it follows by constructing the sets (_2,’ that

QI=RM,  2'n@2 =0, forl #L.

C-

Il
-

Therefore, for x(t) = (x1(t)7, x2(0)7, ..., xy()T)T € RM xR™ x - .- x R™ thereexistsl; € {1, 2, ..., s} suchthatx;(t) € .(_Zili
and

x(O)TPTILIPx;(t) < 0 and hence y;(t)"Liyi(t) < 0.
Choosing the switching rule as o (x(t)) = (I3, I, ..., ly) whenever

x(t) € .(_241 X .(TZ;2 X - X .(_2,'\;V
Thus, from (3.9), (3.1), (3.2) we obtain

V(t,x) + 2BV (t,x;) < 0. (3.10)
Therefore, we have

V(t,x) < V(0,x0)e 2P, vt >o0.

Taking inequality (3.3) into account, we finally obtain that

N N
a1 Y k@O <Vt x) <o Y llgill’e™, forallt > 0.
i=1 i=1
This completes the proof of the theorem. O
Remark 3.1. Theorem 3.1 provides sufficient conditions for designing switching law of the nonlinear large-scale system
(2.1) in terms of the solutions of LMIs, which guarantees the closed-loop system to be exponentially stable with a prescribed
decay rate 8. The developed method using new inequalities for lower bounding cross terms eliminate the need for over
bounding and provide larger values of the admissible delay bound. Note that the time-varying delays are non-differentiable,
therefore, the methods proposed in [9,10,15,18,19,22,23] are not applicable to system (2.1). The LMI condition (3.2) depends

on parameters of the system under consideration as well as the delay bounds. The feasibility of the LMIs can be tested by
the reliable and efficient Matlab LMI Control Toolbox [32].

4. Numerical examples

In this section, we give two numerical examples to show the effectiveness of the proposed result.
Example 4.1. This example is a large-scale model composed of two machine subsystems [ 14] as follows:

X1(t) = AT'x1(8) + A3x2(t — hip () + £ (8, x1(), X2(t — haa(t))),
x1(t) = @i(t), Vte[—hy,0],

X (1) = AP X2 () + AZx1(t — ha1 (1) + £ (8, x2(t), x1(t — hay (1)),
X2(t) = @a(t), Vt e[—hy, 0],

where the absolute rotor angle and angular velocity of the machine in each subsystem are denoted by x; = (x11, X12), and
X2 = (X21, X22), respectively; the ith system coefficient A;; the control and nonlinear perturbations f;(.) and the modulus of
the transfer admittance Ay; the initial input ¢;; the time-varying delays h;;(t) between the two machines in the subsystem:

heo — 0.140.4sin’(t), teH, hot — 0.2 4 0.3sin’(t), teH,
27101, t¢H, 217102, t¢H,

H = Ugen 2k, 2k + 1)),
L [-12 01 , [-1 o L [-11 02 , _[-09 o1
A= [ 02 —1.3]’ A= [ 0 —1.3]’ Ay = [ 0.1 —1] Ay = [ 0 —1.2]’

o1 o , [o2 o y _Jo1 o ., _[o2 o
Au—[o 0.1}’ Alz—[o 0.1] Aﬂ‘[o 0.2] AN—[O 0.2}’

1 _ 2 _ 1 2_ 1 _ 1 _ 2 _ 2 _
a, =a;=a, =0a, =0a;;, =a,; =aj, = ay; = 0.01.
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It is worth nothing that, the delay functions hq,(t), hy:(t) are non differentiable, therefore, the methods in [9,10,15,18,19,
22,23] are not applicable to this system. By using LMI Toolbox in Matlab, LMIs (3.1), (3.2) are feasible with h; = 0.1, h, =
0.5, B =0.01,and

2.4277 0.9127
0.9127 2.5280 |’

Py = Q= =

[2.5516 0.8833:|
, Ry

4.8699 1.7459
0.8833 3.1343 ’

1.7459 4.9864

U — [8.1686 4.5412 4 — [02137 0.1384
17145412 6.9322 |’ 1710.1384 0.1571 |’

P, — 4.2938 0.4716 Q = 4.1022 0.1090 R, — 7.7860 0.7776
27 10.4716 3.4603 |° ~10.1090 3.6822|° 2= 10.7776 6.5886|"

U, — [17:5932 37369 _[0.4503 0.1251 1 [5:3224 3.1503
27137369 12.1542|° 27101251 0.2933|° 17 [3.1529 4.9629 |’
o [5:2757 32732 1 [128735 25152 &2 _ [125743 26729
17132713 5.0573|° 27| 25163 8.4604|° 27 | 26715 8.7318]"

In this case, it can be shown that

Ll__—0.6018 0.1510 2 _ [ 02168 —0.4048

17101510 0.0388 |° 17104048 —0.3263 |

o [1.2317 02767 2 [ 04215  —0.4987

2= 1 0.2767 04757 | 2= 1-0.4987 —1.0027|"
Moreover,

.5 [-0.3850 —0.2539 .5 [-08102 —0.2220
L1+L1—[—0.2539 —02874| <0  LFL=1_0220 —o5270| <%

The sets £2! are given as
21 = {(x1, %) : (x; — 0.7744x,) (x; — 0.2698x;) > 0}
22 = {(x1,X2) : (x; — 1.7336x,) (x; — 0.0098x;) < 0}
27 = {(x1,%2) : (x; — 1.1021xy) (x; + 0.4299x;) > 0}
22 = {(x1,%2) : (x1 — 2.8152xy) (x; + 0.9016x;) < 0}.

The union of £2{ and 27 is equal to R? \ {0}. The union of £2, and £27 is equal to R? \ {0}.
The sets £2! are given as

Q] = {(x1,%2) : (x1 — 0.7744x,) (x; — 0.2698x;) > 0}
22 = {(x1,X2) : (x; — 0.7744x,) (x; — 0.2698x;) < 0}
27 = {(x1,%2) : (x1 — 1.1021xy) (x; + 0.4299x;) > 0}
22 = {(x1, %) : (x; — 1.1021x,) (x; + 0.4299x;) < 0}.

According to Theorem 3.1, the system with the switching rule o (x(t)) = (I1, I,) whenever x(t) € 2" x 2" is exponentially
stable. Finally, the solution x(t, ¢) of the system satisfies (see Figs. 1-4)

Ix(t, )|l < 15.7140e 20" |g]].

Example 4.2. Consider system (2.1) composed of two interconnected subsystems with switching rule which takes its values
in the finite set of modes {1, 2}, where

Al = |:—0.06 0.01 } e [—0.06 0.01 } A= [—0.06 0.02 }

0.01 —-0.06 0.02 —-0.06 0.01 —-0.06
, [-0.06 0.02 C o a o _Joo1 o
A= |: 0.02 —-0.06]|"’ A = A = Ay =4y = 0 0.01})
aj=d =a=0d =a], =0, =da,=a;, =0.001; B =001



We have h; =5, hy

p. _ |0.0397
1= 10.0111
U, — [0.0012
1= 10.0007
p, _ [0.0406
27 10.0155
U, — |0-0013
2~ | 0.0009
2 0.0011
1= 10.0006
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Table 1

Upper bound of the delay.
Methods Theorem 3.1 Hi-Ph [9] Ma-Fo [4] Hua-Wa-Gu[19] Pa-Ko-Je[36]
max{h, — hy} 7.1 0.2 3.229 1 1.86
hy 10 0.6 4,113 1 4.09

= 10, and LMI (3.1) is feasible with

0.0111 0, = 103 0.7610 0.0113 R — 10-3 0.1880 0.0249
0.0431|° 1= 0.0113 0.8537 |’ 1= 0.0249 0.1796 |’
0.0007 A, — 10-4]0-2054 0.1446

0.0013 |’ 1= 0.1446 0.2232 |’

0.0155 0, = 103 0.6272 0.0222 R, — 10-3 [0-1748  0.0365
0.0406 |’ - 0.0222 0.6948 |’ 2= 0.0365 0.1756 |’
0.0009 A, — 10-4]0-2050 0.1903 g1 _ [0.0011 0.0006
0.0013 |’ 2= 0.1903 0.2098 |’ 1= 10.0006 0.0012]"
0.0006 g1 0.0012 0.0008 2 _ 0.0012 0.0008

0.0012 |’ 2= 10.0008 0.0012|° 2= 10.0008 0.0012 ("

In this case, it can be shown that

\ i3] —0.1287
Ly=10 [—0.2669

—0.2669 12— 103 —0.1287
—0.2851 " T 0.1300

0.1300
—0.0622 |’

[1 _ o3 [—0.0960 —0.2865 2 _ 103 [~0.0960 0.1199
2 = —02865 —02675|° L= 0.1199 0.0416 |
Moreover,
L 5[-02574 —0.1370 Vs 3[-0.1920 —0.1666
Ly+1y=10 [—0.1370 —o.3473}<°’ L+1;=10 [—0.1666 —0.2260:|<0'

The sets £2/ are given as

Q) = {(%1,%2) : (x1 + 32.9221x,) (x; + 0.3835x,) > 0}
27 = {(x1,%2) 1 (x; — 1.2849%,) (x; — 0.4793x;) > 0}
2) = {(x1,%2) : (x; — 4.719%;)(x; + 0.1617x;) < 0}
27 = {(x1,%2) : (xy — 1.5121x,) (x; — 0.2319x;) > 0}.

The union of £2{ and £27 is equal to R? \ {0}. The union of 2, and £27 is equal to R? \ {0}.
The sets £2! are given as

2} ={(x1. %)
27 = {4, %)
Qzl = {(*1,%2)
25 = {(x1. %)

T (%1 + 32.9221x;,) (x1 + 0.3835x;) > 0}
T (%1 + 32.9221x,) (x1 + 0.3835x;) < 0}
D (X1 —4.719%3) (x4 + 0.1617x,) < 0}

T (x1 —4.719%,) (x1 + 0.1617x,) > 0}.

33

Table 1 illustrates the numerical results for different values of upper bound delay. This shows that our result provides a
larger allowable upper bound than the one obtained by the technique of [4,9,19,36].

5. Conclusion

In this paper, the problem of the decentralized stability for switched large-scale time-varying delay systems with
nonlinear perturbations has been studied. The time delay is assumed to be a function belonging to a given interval, but
not necessary to be differentiable. By effectively combining appropriate Lyapunov functionals with the Newton-Leibniz
formula and free-weighting parameter matrices, this paper has derived new delay-dependent conditions for the exponential
stability in terms of linear matrix inequalities, which allow simultaneous computation of two bounds that characterize the
exponential stability rate of the solution. The developed method using new inequalities for lower bounding cross terms
eliminate the need for overbounding and provide larger values of the delay bound. Numerical examples are given to show
the effectiveness of the obtained result.
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Fig. 1. The region .Q]1 of Example 4.1.

Fig. 2. The region £2? of Example 4.1.

It is worth noting that the proposed method can be applied for large-scale switched systems with multiple (mixed)
interval time-varying delays; however, it may have difficulty in obtaining the solution within a reasonable amount of the
time delays, when the number of the delays is extremely large. Future research will focus on extending the method to solve
the robust stabilization problem for uncertain large-scale switched systems with interval time-varying delays in state and
control.
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Fig. 3. The region £2, of Example 4.1.

Fig.4. The region 2 of Example 4.1.
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