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show the effectiveness of the obtained results.
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1. Introduction

Time delays are often encountered in many practical systems
because of transmission of the measurement information. The
existence of these delays may be the source of instability and
serious deterioration in the performance of the closed-loop
systems [17,18,15]. In delay-dependent stability analysis of time-
delay systems, one concerns to enlarge the feasible region of
stability criteria in given time-delay interval, the case of time-
varying delay has received less, possibly due to the perceived
difficulty of the problem changes in delay make the systems state-
space vary with time, which complicates the use of standard
analysis tools. In practice, the time-varying delay may vary within
an interval where the lower bound is not restricted to being zero.
Furthermore, the time derivatives of the time-varying delay can be
unknown or undefined. Examples of such systems with an interval
time-varying delay are the networked control system, power
systems, large-scale systems, economic systems, etc. Since then
stability and control of systems containing time-varying delays
have been widely studied (see, e.g. [2,14,19,29]).

On the other hand, the H., control of time-delay systems are of
practical and theoretical interest since time delay is often encoun-
tered in many industrial and engineering processes [3,10,21]. The
main objective of the H., control is to obtain a controller that makes
the closed-loop system asymptotically stable for a maximum H.,
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performance bound. A significant development in the H. control
theory has recently been the introduction of state-space methods
[10,26]. This has led to a rather transparent solution to the standard
problem of H.. control with the objective being to find a feedback
controller stabilizing a given system that is subject to some normed
suboptimal conditions on perturbations/uncertainties. For the H.
control problem, appropriate methods for linear time-delay systems
usually make use of the Lyapunov functional approach, whereby the
H.. conditions are obtained via solving either matrix inequalities or
algebraic Riccati-type equations [4,8,22].

More recently, a simple and systematic procedure for constructing
time-varying Lyapunov functionals has been studied in [13,12], but
for H,, filtering. In [16,28,23,25], a modification of the standard LMI-
type exponential stability conditions for linear time-delay systems is
proposed, allowing to compute two bounds that characterize the
exponential nature of the solution in the case of nominal as well as
uncertain systems. There the Lyapunov function method was devel-
oped to H, control of linear systems with interval time-varying
delays, where the assumption on the derivative of the delay function
is strictly bounded, but the time-delay function is still assumed to be
differentiable. Paper [24] first time studies H. control of linear
systems with interval non-differentiable delays, but without the
delay in observation and the condition obtained for asymptotic
stability. To the best of our knowledge, there has been no investiga-
tion on the H. control of delayed systems, where the time delay
involved in state and output is interval time-varying and non-
differentiable. In fact, this problem is difficult to solve, particularly
when the time-varying delays are interval non-differentiable and the
output is subjected to such time-varying delay functions. The time
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delay is assumed to be any continuous function belonging to a given
interval, which means that the lower and upper bounds for the time-
varying delay are available, but the delay function is bounded but not
necessary to be differentiable. This allows the time-delay to be a fast
time-varying function and the lower bound is not restricted to being
zero. It is clear that the application of any memoryless feedback
controller to such time-delay systems would lead to closed-loop
systems with interval time-varying delays. The difficulties then arise
when one attempts to derive exponential stabilizability conditions
and to extract the controller's parameters for these systems. Indeed,
existing Lyapunov-Krasovskii functionals and their associated results
in [4,28,25,31,9] cannot be applied to solve the problem posed in this
paper as they would either fail to cope with the non-differentiability
aspects of the delays, or lead to very complex matrix inequality
conditions and any technique such as matrix computation
or transformation of variables fails to extract the parameters of
the memoryless feedback controllers. This has motivated our
research.

In this paper, we develop the results of [28,31,9] for the problem
of H, control for nonlinear systems with interval time-varying
delay. Compared to the existing results, our result has its own
advantages. First, the time delay is assumed to be any continuous
function belonging to a given interval, which means that the lower
and upper bounds for the time-varying delay are available, but the
delay function is bounded but not necessary to be differentiable.
Second, both problems of exponential stabilization and H.. control
will be treated simultaneously. For the former, the controller is
required to guarantee the global exponential stability for the
closed-loop system. As to the latter, a prescribed performance in
an H, sense is also required to be achieved for all admissible
uncertainties. By constructing a set of improved Lyapunov Krasovs-
kii functionals and using new bounding estimation technique, a
new delay-dependent condition for the robust H. control is
established in terms of LMIs, that can be solved numerically in an
efficient manner by using standard computational algorithms [5].
The approach allows us to apply to H.. control of uncertain linear
systems with interval non-differentiable time-varying delay.

The paper is organized as follows. Section 2 presents defini-
tions and some well-known technical propositions needed for the
proof of the main results. H. controller design for exponential
stability and an application to uncertain linear systems with
non-differentiable time-varying delay are presented in Section 3.
Numerical examples showing the effectiveness of the obtained
results are given in Section 4. The paper ends with conclusions.

2. Preliminaries

The following notations will be used throughout this paper, R™
denotes the set of all real-negative numbers; R" denotes the
n-dimensional space with the scalar product (.,.) and the vector norm
Il - Il; R™" denotes the space of all matrices of (n x r)- dimension. A"
denotes the transpose of A; a matrix A is symmetric if A=AT;
I denotes the identity matrix; A(A) denotes all the eigenvalues of A;
Imax(A) = max{Re 1 : A€A(A)}; Amin(A) = min{Re 1 : 1eA(A)}; C([-,0],
R™) denotes the set of all R"-valued differentiable functions on [-z, 0];
L>([0,],R") stands for the set of all square-integrable R'-valued
functions on [0, ~]. The symmetric terms in a matrix are denoted by
% Matrix A is semi-positive definite (A=0) if (Ax,x)=0, for all xeR";
A is positive definite (A > 0) if (Ax,x) >0 for all x+0; A=B means
A-B=20. The following norms will be used: | - || refers to the Euclidean
vector norm; [lgllc = Sup¢, glle(t)]l stands for the norm of a function
@(-)eC([-7,0],R"). The segment of the trajectory x(t) is denoted by
X¢ = {x(t + ) : se[-,0]} with its norm [|x¢|| = SUp se(—.qjIX(t + S)|I.

Consider a system with time-varying delay of the form
{ Xx(t) = Ax(t) + Dx(t—h(t)) + Bu(t) + Caw(t) + f(t, x(t), X(t=h(t)), u(t), w(t)),
z(t) = Ex(t) + Gx(t—h(t)) + Fu(t) + g(t, x(t), x(t=h(t)), u(t)),
2.1)
with the initial conditions
X(to + 0)=(0), VOEL,p,
(to, )eR™ x C([—7,0L,R"),
where ¢ : 7, ,—>R" is a continuous norm-bounded initial condi-
tion (see also [18,19]) and
Tin={teR:t=n-h(n) <to, n=to}; =  sup

toeR", teZ,p

(to—1);

h(t) : R* - R™ is a continuous function satisfying 0<h; <h(t)<h;,,
vt=0. We see in this case that hy =1.

x(-)eR" is the state vector; u(-)eL,([0,s],R™), s=0, is the control
vector; w(-)ely([0,=],R") is the uncertainty input; z(t)eR® is the
observation output.

Let x"=x(t-h(t)), the nonlinear functions f(t,x,x" u,w):
R*" xR" x R" x R" x R">R", g(t,x,x",u): R" xR" xR" x R" >R’
satisfy the following growth conditions:

3a,b,c,d>0: |If(t.X X", u, )|l <allxll + blIx"|| + cllull + dllwl, ¥(x, X", u, »)

3ay, by, > 00 |Ig(E X X" w12 <aqlIXII? + by X" |2 + cqllull, v, X", ).
(2.2)

We assume ¢()eC'([-z,0L.R") and |glic, = Sup,. gl +
SUPt—. g l@(D)ll stands for the norm of a function p()eC!
([-7,0],R"). Once the above assumption on ¢(-),f(-) are given, the
solution of system (2.1) is well defined (see, e.g. [18,15]).

Definition 1. Given g > 0. The zero solution of system (2.1), where
u(t) =0, w(t)=0, is p—stable if there is a positive number N >0
such that every solution of the system satisfies

Ix(t, @) <Nligllc,e™, vt=0.

Definition 2. Given >0, y>0. The H. control problem for
system (2.1) has a solution if there exists a memoryless state
feedback controller u(t)=Yx(t) satisfying the following two
requirements:

(i) The zero solution of the closed-loop system, where w(t) =0,
X(t) =[A + BYIx(t) + Dx(t=h(t)) + f(t, x, X", u, 0), (2.3)
is p—stable.

(ii) There is a number cg > 0 such that

Jo~ llz@®)1* dt ,

Collwll%] + Jo lleo(®2dt =
where the supremum is taken over all peC' (-7, 0], R") and the
non-zero uncertainty o(t)eL([0, =], R"). In this case we say that

the feedback control u(t) = Yx(t) exponentially stabilizes the
system.

Proposition 1. Let P,Q be matrices of appropriate dimensions and Q
is symmetric positive definite. Then,

(2Px,y)—(Qy,y) <(PQ'P'x,x).

The proof of the above proposition is easily derived from complet-
ing the square

0<(Q-Q'P'x),y-Q 'P'x).
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Proposition 2 (Schur complement lemma, Boyd et al. [1]). Given
constant matrices X,Y,Z, where Y=YT > 0. Then X+ Z'Y'Z <0 if
and only if

T
Xz <0.
zZ -Y

Proposition 3 (Sun et al. [27]). For any constant matrix Z =Z'>0
and positive numbers h, h such that the following integrals are well
defined, then

(i)
g )
/t_h X(S)' Zx(s) ds < A /t_h x(s) ds
(ii) P
—/_ / X(0) Zx(z) dz ds
-h  Jt+s

s—# (/_: [;x(r) drds>T2</_h:h /t;x(r) drds>.

Proposition 4 (Lower bounds lemma, Park et al. [20]). Let
f1.f2,.-.fn: R™—R have positive values in an open subset D of
R™. Then, the reciprocally convex combination of f; over D satisfies

t
Z(/t_h X(S) ds).

1
Eﬂfi(t) = Zilfi(t) + I;}j?[’)(%gi,i(t)

min
{rilri > 0,Xr;i = 1}
i

subject to

fit® g
{gu : R™ >R, g;(t) =g;(D), |:gi,j(t) f;(t) }20}.

3. Main result

In this section, we first design H., controller for system (2.1) with
interval time-varying delays. By constructing a new set of Lyapu-
nov-Krasovskii functionals, a new delay-dependent exponential
stability criterion for the closed-loop system with a delay varying
in an interval is derived in terms of LMIs. Then we give an
application to H., control of uncertain linear systems with interval
time-varying delay. Before introducing the main result, the follow-
ing notations of several matrix variables are defined for simplicity:

2
7=hy, e:a+b+6+%,
Pi=P', Q =P'QP", Ry =P 'RP!,
Uy =P 'UP™', Ay=P A P!, S, =plsp!
(T1n Ti2 Tis Ty Tis Tie O 07
# Typ Tz Ty Tos To¢ 0 O
* % T33 T3q T35 T3¢ 0 O
Q= * & £ T4 T45 T46 0 0
k % ES ES Tss Tse 0 0
* * * * x* Tegg O 0
% * * %* % x -U =S
B3 * * * % % % =U|]
-4 0 0 0 0
« -+ 0 0 0
Qp=|%* * ~ o 0 0 ,
* % * — ab.526 0
I % % % % —m

[PET 0 P 0 Y]
0 PGT 0 P O
0 0 00 O
Qe 0 0 00 O
0 0 00 O
0 0 00 O
0 0 00 O
0O 0 00 O]

T = AP + PAT 4 2pP—R(e~M + ey 4 AT
14

_ 2e7M2(hy—hy)

+el [

A+ (BY + YTBT) + 20,

T =DP, Ti3=e2MR,

2e~4"2(hy—hy)
hz -+ I’ll

Ty =—2e7 22U 4 e~ %h2(S 4 ST),

Tia= e‘zﬂhZR

Tis= A, Tq6=PAT +BY,

Ty = e _e- s, T,y —e 2/ U—g~2h2gT To5 =0,
Ty = PD"
T33 — _e—2/}h1 Q_e—Z/ith_e—Z/}hz U,
Tsa=enST T35=0, T3=0,
Tys = —e2P2Q_e2Ph2R_e~2h2ly Ty =0, Tus=0,
2e—4ﬂh2
Tss =——5—5A4, Ts6=0,
2~

Tes = R(h? + h3) + (hy—hy)?U + hy(hy—h1)A-2P + §CCT +el.

a1 = min(P1),
a2 = dmax(P1) + A~ Anar(Q1) + 1 Zmax(R1) + 3 dmax(R1)
+ (hy=h1)* o (Un) + (ha=h) 3 dmax(A1).
For simplicity of expression as in [21,26], we assume that
FT'[E,G]=0, F'F=I. 3.1

The following is the main result of the paper, which gives
sufficient conditions for the H., control of system (2.1). Essentially,
the proof is based on the construction of improved Lyapunov-
Krasovskii functionals satisfying Lyapunov stability theorem for
the time-delay system [6].

Theorem 1. The H.. control of system (2.1) has a solution if there
exist symmetric positive definite matrices P,Q,R,U,A and matrices
Y, S such that the following LMI holds:

211 £12
{* 922]<0. (3.2)

Moreover, stabilizing feedback control is given by
u(t)y=YP x(t), t>0,

and the solution of the system satisfies

Jaz _
</lelic,e™, 0.
a

Proof. Consider the following Lyapunov-Krasovskii functional for
the closed-loop system:

lIx(t, o)

7
V(t,x)= ¥ Vi(t,xe),
i=1



N.T. Thanh, V.N. Phat / European Journal of Control 19 (2013) 190-198 193

where

ot
Vi(t.x0) = (O P1x(D), vz(t,xt>=/ e25-0x(5)TQ,X(s) s,

Jt-hy

t
Vi(t,x) = / e25-x(s)TQ1x(s) ds,
t—hy
0t
Va(t,xe) = hy / / 03(0) Ryk(2) de ds,
J—hy Jt+s
0t
Vs(f,Xr)=h2/ / e’ % ()T Ry X(7) dr ds,
—hy Jt+s
—h ot
Vs(f,xt)=(h2—h1)/ 1/ e D% (0)TU 1 x(7) dr ds,
—hy t+s

—hy 0 t
Vo(t, X)) = / / / e/ +s-0%( ) A1 x(7) dr ds do.
—h, [ t+s

It is easy to verify that
ar[IX(DI* <V(t,x), teR" and  V(0,x0) <azllollZ,- 33)

Taking the derivative of V;(-) in t along the solution of the system,
we obtain

Va(t.xe) = 2X(t)" P1X(t)
= 2x(t)T P1[Ax(t) + Dx(t—h(t)) + Bu(t) + Cax(t) + f(-)]
= 2x(6)T P1Ax(t) + 2x(t)T Py Dx(t—h(t)) + 2x(t)' P1Bu(t)
+2x(0)TP1 Cor(t) + 2x(0) P1f () 4 28x(H)T P1x()—25V 1 (L, X¢)

Va(t,x0) = ()" Qqx(t)—e~M x(t—h1)T Q1 X(t—h1)=2pV (L, Xp),
V3(t,x) = x(0)" Qqx(t)—e~M2x(t—hy)T Q1 X(t—h2)-2pV5(t, Xp),

t
Va(t, xp) <h?x(t) Ry x(t)—h e~ / X(S) R X(5) ds—2p8V 4(t, X;)

t—hy

t
Vs(t,Xt)Sh%k(t)TRl;‘(([)_hze—zﬂhz/

t-h.

X(5) R1X(s) ds—2pV's(t, x;)
2
t—hy
V(t, x) <(hp=h1)2k(t) U1k (t)~(ha—hq)e= " / X()TU1X(s) ds—2pVs(t, X)),
t—hy

V(t, X)) <(hy—h)hak ()T A1X(8)

—hy t
—e~4h2 / / X(5)TALX(s) ds do—2pV(t, x)
J-hy Jt+o

Applying Proposition 3 and the Newton-Leibniz formula
t
/ X(s) ds =x(t)-x(t=hy), i=1,2,
t=h;

we have
T

. - ) t t
—h; X (S)R1x(s) ds<— {/t—h, x(s) ds} Ry [/t_hix(s) ds}

t—h;

<—[x(O)=x(t—h)]" Ry [x(t)-x(th;)]

Note that

t-hy t=h(t)
/ xT(s)U1x(s) ds = / xT(5)U1x(s) ds + /
t .

—h; Jt—h, t—h(t

t—hy
xT(s)U;x(s) ds.
)

Using Proposition 3 gives

—h —h T —h
[ho=h(t)] /[ (t)XT(s)Uﬁ'c(s) ds> [/[ (t))k(s) ds] U, {/tt (t)fc(s) ds}

Jt—hy t—hy —hy

2[x(t—h(t))—x(¢t=h)]" U1 [x(t—h(t))—x(t—h3)]

Since hy-h(t)<h,-h;, we have

hamhy) [ & Urk(s) ds> 2=
- X (S X(S) ds>
O

=X(t=h)]" Uy [x(t—h(t)—x(t—h3)],

(x(t=h(t))

then

hy—h4
hy—h(t)

t—h(t)
—(hy=hy) / xT(s)Upx(s) ds <— [x(t=h(t))—x(t—hy)]"
t=h,
Ui [x(t=h(t))—x(t—hy)].
Similarly, we have

hy—hy

T
h(t)—h] [X(t_h] )—X(t—h(t))]

rt—hy

—(hy—hy) / %1 ($)Uqx(s) ds<—
t—h(t)

Ui [x(t—hy)—x(t=h(t))].

On the other hand, the condition (3.2) figures out [514 7120, so using
Proposition 4 with ry = (hy—h(t))/(h,—hy); 12 = (h(t)-h1)/(hy=hy)
gives the following inequalities:

T
P-hO)-xt-ho)] |y, s, 7 [ /BREh©)-x(E=hy)
— R (t=hy)=x(t=h(t)] {SI ”l} —\/Rx(E=hy)—x(t=h(t)]

—\/g[x(t—m)—x(t—h(t))] 0 Pi||sT U
Py 0
0 P

equivalently,

{ ;?[x(t_h(t))—x(t—hz))]]T{Pl OHU S}

VEx(E=h(0)-X(t=hy)]
- Jr(e-hy—xe-hay [

—:—j[x(t—h(r))—x(t—hz)]fw [X(t—h(t)~X(t—hy)]
—%[x(t—hﬂ—x(t—h(t))]ful [X(t—hy)—X(t—h(t))]

<—[x(t—h(t))-x(t—h2)]" Sy [X(t—h1)—x(t—h(t))]
—[X(t=hy)—x(t=h(t)]" S [x(t=h(t)~x(t=h3)],

and
t—hy
~(ha—hy) xT(5)U1x(s) ds
t—h;
hy—hy .
< hy=h(o) [X(t=h(£)=x(t—h2)]" Us [x(¢=h(£))—x(t—h2)]
- hfﬁ)'_h,; [X(¢=h)=x(E=h(E)] Urx(t—h)—x(t=h(®)]

=- rl—l [X(¢=h(£)—-X(t=hy)] Uy [x(t~h(6))—x(t=h2)]

1
5 [X(t=h1)—x(t=h(®))] Uy [x(t=h1)—x(t=h(t))]

<—[x(t—=h(t)—x(t—hy)]" Uy [x(t—h(t))—X(t—h3)]
—[X(t—h1)=x(t—h(t))]" Uy [x(t—hy)—x(t=h(t)]
—[x(t=h(t)-x(t—h)]"Sy[x(t—hy)—x(t—h())]
—[x(t=hy)=x(t=h(O)]" STX(t=h(t)~X(t—h3)].
Therefore, we have
Va(t, x0) <hTR(OTRiX(t)—e ™M [x(t)—x(t—h1)]" Ry [X(D)—X(t=h1)]-2BV (L. X2),

Vs(t,xe) <h5%(6) RiX()—e 2P [x(£)-x(t—h2)]" Ry [X(t)—x(t—hy)]
—2BVs(t,x),
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Vs (t,x) <(ha—hy’X(0) U1 x(0)-2pVs (L, X¢)

—e M x(t—h(t))-X(t—h2)]" U1 [X(t—h(t)—x(t—hy)]

—e XM x(t—hy)—x(t—h(t)]" U1 [X(t—h1)—X(t-h(t))]

—e 22 [x(t—h(t))-X(t—hy)]" S1[X(t—h1)—x(t=h(t))]

—e M [x(t—hy)—x(t—h(6))]" STX(t—h(t))—x(t—h)] 3.4
Note that when h(t) = hy or h(t) = h,, the relation (3.4) still holds.
Besides, using the Proposition 3 again, we have

—hy t
—eh2 / / x(5)TA1x(s) ds do
J-h, Jt+o

2 “hyopt T /—fh /f .
—e e 2 dsdg | A X(s) dsdo
([ [ osan) ([ s

2e-4/h2 t—hy T rt=hy
< <(h2—h1)x(t)— / X(0) da) Aq | (ha—=hp)x(t)— / x(0) do |.
Jt-hy t,hz

 h3-h?

Hence,

V() <(ha—hphak (T A (-2 7(t, %)
—4ph; ity T t=hy
2e ((hz—h])x(t)— / X(©) dﬁ) A ((hz—h1)x(t)— / x(0) de)
t—hy t—h,

Ch-h}
(3.5
From the following identity relation:
=2%(0)" P1[X(6)-Ax(t)-Dx(t—h(t))-Bu(t)-Cax(t)=f ()] = 0,

combining the condition (2.2) and applying Proposition 1 for the
following inequalities:

2xXTPyf(t, %, x", u, @) <2||P1x||[f (£, %, X", u, ) |
<2|IPixl[allx|| + blix"|| + cllull + dlle|l]
<allP1x|1 + allx||* + blIP1x||1? + bIx"||?

4d® V4
HElIPXI® 4 clull® + == IP1xI1” + Z o]

4
=allx|l? + bIX" 17 + cllull® +  lloll® + ellPrxI|?

240" Pof (6., X" u,0) <allXI? + BIXI? + cllull® + % o] + el P11,
2xO"P1Co < Lol + 2 X(OTP1CCTPyx(0)

14
2%()P;Cow < % ol + é>'<(t)TP] CCTPx(t),

14

we obtain

0 = —2x(t)T P1 [X(t)—=Ax(t)—Dx(t—h(t))—Bu(t)-Ca(t)—f ()]
<=2x(t)TP1[X(t)-Ax(t)-Dx(t—h(t))—BYP1X(t)]
+2x ()T Py Car(t) + 2% ()T P1f ()
<=2x(t)TP1[X(t)—Ax(t)-Dx(t—h(t))—BYP1X(t)]

+Zlloll? + ;X(t)Tpl CCTPyx(t)

+allx|l? + bIx" |2 + clul® + % o] + el P11, (3.6)
and
V() + 2BV1() = 2Bx(1) P1x(t) + 2X(t)" P1AX(t) + 2x(t)" Py Dx(t—h(t))

+2x(t)TP1BYP1 X(t) + 2x(t)TP1 Ca(t) + 2x(t)TP1f(-)
<2px(t) Pyx(t) + 2x(t)T P1AX(t) 4 2x(t)T P1Dx(t—h(t)) + 2x(t) Py BYP1X(t)

+£ ol + ;x(t)TPl CCTPyx(t)

4
+allxl? + bIXIZ + cliull® + 7 lol® + ellP1x|1%. 3.7

Moreover, applying the inequalities (3.4)~(3.7) leads to
V() + 28V () <x(t)" [PlA +ATP; + 28P; + P1(BY + Y'BT)P; + 2Q,

2e~4h: (hz —hy)

Ay + 2al + 2¢P1YTYP
hy + 1+ + 1 1

_R.1 (e*zﬂhl + e*zﬂhz)_
4 T 2
+;P1CC Pq +8P1:|X(t)

+2x(t)T[P1 DIx(t=h(t)) + 2x(t)"[e=%M Ry 1x(t—h7)

2e~%h2(hy—hy) A1} /ffh]

+2x(t) [e=2"2 R Ix(t—hy) + 2x(t)T[ . X(0) do

t—h,
+2x(t)T[ATP; + P1BYP;]%(t)

+x(t=h(t) [-2e 22Uy + 2bI + e 2"2(S; + SHx(t—h(t))
+2x(t=h(t))T [e""2 Uy —e~2M2 Sy )x(t—hy)
+2x(t-h(t)) [e= " U —e~ 2P STIx(t—hy)

t—hy
+2x(t=h(t)T[0] / X(0) do + 2x(t—h(t)) [DTP1]%(t)
t—h;
+x(t—h) [-eM Q- Ry —e 2 Uy Jx(t—hy)
[
+2x(t—hy) e~ STx(t—hy) + 2x(t—h1)'[0] / x(0) do
t—h,

+2x(t—h)T[0]%(D)
t—hy
+2x(t—h3)T[0] X(0) d6 + x(t—hy) [-e~2M2Q—e 2/12R,

t—h;

—e~ Yy ix(t—hy)
+2x(t—hy) O (0) + 7ll(D)]?

t—hy T 26"4/”‘2 t—hy
0) do —_ o) do
+<-/f-nz X ) { Wi } </ X )
t—h, T
+2 < / x(9) de) [01%(t) + %(t) [Ry(h? + h3) + (ha—h1)?U;

t—hy

+h2(h2—h1)/\1—2P] + §P1 CCTP1 + &P%]X(t)

Setting y(t) = P™'x(t) or x(t) = Py(t), we obtain
V() +28V() <y(®) |AP + PAT + 25P + (BY + YTBT) 4+ 2Q—R(e™" 4 e~2h2)

_ 2e~4h: (hy=hy)
hy + hy
+2y(0)" [DPLy(t—h(t)) + 2y(t) [e™2"M Rly(t—h1)

—4ph _ t—hy
+2y(0)Te""Rly(t=hz) + 2y(O" {MA} /
h2 + hl t—h,

A+ 2aP? +2cYTY + %CCT + sl] y(t)

y(6) do

+2y(t)[PAT + BYy(t)
+y(t=h(t)) [-2e"2"2U + 2bP? + 22 (S 4 STY]y(t—h(t))
+2y(t=h(t)) [e=%M> U—e2"2S)y(t—hy)
+2y(t—h(t)) [e"2"2 U—e 22Ty (t—hy)
t—hy
+2y(t-h(t)[0] / " 0) o+ 2y(t=h@) D0
t—hy
+y(t—hy) [-e#M Qe 2M R—e~ 22 U]y(t—hy)
t—hy
+2y(t-h1)T[0] /t YO d0+ 2yt 00

+2y(t—hy)Te~2"2STy(t—h,)
+Y(t=hy) [-e"#"2Q—-e 2" R—e~2M Uly(t—h,)

t—hy
#20(=ha)'101 [ y(0) d0 + 2y(t-ha)'[01/0) + 7O

t=h, T 9p-4ph t—hy
+ 6) do ——A / 0) do
(L v [ ] (1 vme)
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t—hy T
+2 ( /t ¥©) d9> 0W(®)

—hy

o [R(h% + h2) + (hy=hy)?U + ha(hy—hy)A—2P + ‘;‘CCT + el}ym

Hence, we have

V() + 2BV () <rllo®))* + &6 ME)
—y()"[3PETEP + 4a;P* + (2 + 4c)YTY]y(t)
—y(t=h(t))" [3PGT GP + 4b, P*]y(t—h(t)) (3.8)

where

t—hy
&) = |y y(e=ht) yt—h) y(t-hy)" y(0)'do y‘(t)T},

Jt—h;
My Mz M1z Mg Mis Myg
% My My My My Mo
%  Msz Ms3g Mss Msg
% %  Mys Mys
% * % Mss Msg
% * % % Mgg

* K % %

My =AP + PAT 4 2pP—R(e™" + e~"2) 4 gccT +@2+4c +20Y7Y

~ 2e~¥"h2(hy—hy)

A+ (BY + Y'B") + 2Q + 3PETEP + (4a, + 2a)P?,
hy + hy

+eél
M1z =DP, M3 =e2MR M, =e 2R
2e~4h2 (ho—=hy)
hz =+ hl
Myy = —2e~%n2U 4 e=22(S 4 ST) + 3PGTGP + (4b; + 2b)P?,
Mays = e 2ay_e=2/h25 M,y = e 2May—e 2287 Mys =0, Mag=PD"

Mis= A, Mig=PAT +BY,

M3z = —e M Q—e=2MR_e~2h2y
Mg =e 28T Ms35=0, M3s=0
Mgy = —eP2Q_e2P2R_e=22 Mys =0, Mug=0
2e~4h2
2 2 A’
27"

Meg = R(h? + h3) + (hy—h1)?U + hy(hy—hy)A=2P + ;CCT + el

Mss = —

Ms6 =0,

Using the Schur complement lemma, Proposition 2, the condition
(3.2) is equivalent to the condition M < 0 and from the inequality
(3.8) it follows that

V() + 28V() <yot) wt)=y(t) [3PETEP + 4a,P? + (2 + 4c)YTYy(b)
—y(t=h(t))"[3PGT GP + 4b, P*]y(t—h(t)) (3.9)
Letting w(t) =0, and since

—y(OT[3PETEP + 4a;P? + (2 + 4c)YTY]y(t) <0,
—y(t=h(t))"[3PG" GP + 4b; P*ly(t—h(1)) <0,

we finally obtain from the inequality (3.9) that

V(t,x;) + 28V (t,x;) <O. (3.10)

Differentiating inequality (3.10) from O to t gives

V(t,x) <V(0, %)™, >0,

Taking the condition (3.3) into account, we obtain

[z -
IX(t, @)l < a—]”(/)”c‘,eﬁt, >0,

which implies that the zero solution of the closed-loop system is
p-stable. To complete the proof of the theorem, it remains to show
the y-optimal level condition (ii). For this, we consider the
following relation:

/ 2O lloOl2] dt = / OOl
+ V(t,xp)] dt— /Os V(t,x,) dt, Vs>0.
Since V(t, x;)20, we have
- /0 "Vt x0) dt = V(0. x0)-V(5.x5) <V(0.X0). V530
Therefore, for all s20

/ zON2=rllw®))I*] dt < /O 211 =7llw(O1I? + V(t,x)] dt + V(0, Xo).

s
0

@3.11)

Combining the condition (3.3) and the inequality

V(t, x0)2x(0) P1x(t) = y(t) Py(t),

we obtain from (3.9) that

V(t,x0) <yo(t) w(t)-y(t) [BPETEP + 4a;P* + (2 + 4c)YTYy()
—y(t=h(t)) [3PG" GP + 4by P*y(t—h(t)-2py(t)' Py(t). (3.12)

Observe that the value of ||z(t)||? is defined due to (2.1) and (3.1) as
i1 <IEXO)N1 + GX(E=hO)II? + lu()]|? + 2x(t)"ET Gx(t—h(t))
+2x(OTETg() + 2x(t—h(t)) G g() + 2u(t) F'g() + lg()II?
<3IEx(O)N1* + 3Gx(t—=h(t)I* + 2[|ut)]1* + 4llg)1I
<x(t)"[3ETE + 4a;]x(t) + x(t=h(t))" [3GT G + 4b,]x(t=h(t))
+[2 + 4ci]llu®?
=y(t)"[3PETEP + 4a,P? + (2 + 4c)YTYIy(b)
+y(t=h(t)) [3PGT GP + 4b; P*]y(t—h(t)). (3.13)

Submitting the estimation of V(t,x;) and ||z(t)|? defined by (3.12)
and (3.13), respectively into (3.11), we obtain

/ 2O P~ lo(17] de < / 2y Py de V0. x).  (3.14)
Hence, from (3.14) it follows that

' /0 HZOIP = lo(OI7] de <V(0, %0) <alloll,,

equivalently,

S S
/0 I2(0))1? de < /0 Pla(®2dt + ayligll?,.

Letting s —«, and setting ¢y = a, /y > 0, we obtain that
Jo llzl*de
collellg, + fo lle(t)]2dt

for all non-zero w(t)eLy([0,«],R"), ¢(t)eC'([~7,0],R"). This com-
pletes the proof of the theorem. ©

<7,

In the sequel, we give an application to H., control of uncertain
linear systems with interval time-varying delay considered in
[30,11,7]. Consider the following uncertain linear systems with
time-varying delay:

x(t) =[A + AA(D)Ix(t) + [D + AD(t)]x(t—h(t))
+[B+ AB(®)u(t) + [C + AClw(t), teR",
z(t) = [E + AEJx(t) + [G + AG]x(t—h(t)) + [F + AFJu(t),

(3.15)
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where the time-varying uncertainties AA, AD, AB, AC, AE, AG,
AF are given as

[AA AD AB AC AE AG AF]=KH(t)[Lq Ly Ly Lc Le Lg Ly],
K, Ly Ly Ly Lc L, Ly Ly are known real constant matrices of appro-
priate dimensions and H(t) is an unknown uncertain matrix with
Lebesgue measurable elements satisfying
HoOTH® <I,
To apply Theorem 1, let us denote
f(t,x,x", u, w) = AAX(t) + ADX(t—h(t)) + ABu(t) + ACw(t),
g(t, x, X", u) = AEx(t) + AGx(t—h(t)) + AFu(t).
Ak = Amax(K'K), A1, = Amax(LgLa),
A, = max(LyLp), A1, = dmax(L{Le),
Ay = dmax(LiLa), A1, = Amax(LgLe),
Aty = Amax(LyLg), A1, = Amax(L{Ly),
Observe that
1AAX(D)|1? = x(t)TLTHT (KT KH(H)Lax(t)
<ex(OTLTHT (OH(E)LaX(t) < Axx(H)T LT Lax(t)
SAALX(E)X(D),
| ADx(t—h(t)||* <Ak, IX(t=h(®)]1?,
lABu(ON1 <Ak, lu®N1%, ACo®)II* <ikdr la(®)l*
IAEX(O)1? <A, IX(OII1%,
| AGX(t—h(t)||* <Ak A, IX(E=h(t))]|?,
| AFu(t)[1* <A Ilu®)|?,

vt>0. (3.16)

and using the uncertain boundedness condition (3.16) we have

IgOII? <3IAEX|? + 3]|AGX" |12 + 3| AFul?
<3MALNIXI? + 3, IXM1% + 3, lJull?.

IF)II < IAAX]| + |ADX" | + || ABu]| + | ACa||

SV AKAL NIXI + \MKiLdIthII + AL Ul + /A AL lol|

By the same notations used in Theorem 1 and applying Theorem 1
with

a=/Akr,, b=+/Akd,, Cc=+\/iki,, d=+/AklL;
a1 =3k, b1=3A,, ©1 =3k,
we have:

Corollary 1. The H.. control of system (3.15) has a solution if there
exist symmetric positive definite matrices P,Q,R,U,A and matrices
Y,S such that the following LMI holds:

Q Q
{ 11 12}<0.

. o, (3.17)

Moreover, the stabilizing feedback control is given by
ut)=YP 'x(t), t>0,

and the solution of the system satisfies

ap _
<\/—llollc,e™”, t=0.
a1

Remark 1. Note that although the similar Lyapunov-Krasovskii
functional was used in [25] to investigate the stability of systems
with time-varying delay, the slack variables A; in Theorem 1 have
not been introduced in [24] since in the derivation of stability only
single and double integrals depending on the delay were used,
while we use additional triple integral V. This Lyapunov-Krasovskii
functional is mainly based on the information of the lower and

IX(t, @)

upper delay bounds, which allows us to avoid using any assumption
on the differentiability of the delay function. Therefore, our results
are more comprehensive and effective. Theorem 1 provides sulffi-
cient conditions for the closed-loop system to be exponentially
stable with a prescribed decay rate 3, while the existing method can
provide only asymptotic stability of the closed-loop system.

Remark 2. In the papers [31,27,30,11], additional unknowns and free
weighting matrices are introduced to make the flexibility to solve the
resulting LMIs. However, too many unknowns and free-weighting
matrices employed in the existing methods complicate the system
analysis and significantly increase the computational demand. Com-
pared with the free matrix method used in [27,30,11], our simpler
uncorrelated augmented matrix method uses fewer variables, e.g. LMI
(3.2) has 7 unknown variables, meanwhile the LMI condition proposed
in [27] has 12; in [30] has 24 and in [11] has 70. Moreover, in the
previous papers the time delays are assumed to be differentiable and
its derivative is bounded. In Theorem 1 this assumption is removed
and LMI conditions (3.2) contain fewer unknown variables and then
reduce computational complexity.

4. Numerical examples

In this section, we give numerical examples to show the
validity of the H.. controller designed in the previous section.

Example 1. Consider the nonlinear system with interval time-
varying delay (2.1), where

{ h(t)=0.1+ 0.4 sin’(t) if teH = Uo(2kz, 2k + n),

h(t)=0.1 if tgH,
-13 03 -0.01 0.02
A= [—0.5 0.1}’ - [ 0.03 —0‘04}’
0.2 ~0.02 0.01
Bz[os}’ C=[0.02 -0.03}’
oG { 0.06 —0.06} _ {0.8}
-0.08 008 |’ 06]

x3(t) + x3(t-h(t))

f()=g()=0.01
\/X5(t) + x3(t=h(t))

and a=b=c=d=a; =b; =c; =0.01.

It is worth noting that the delay function h(t) is non-
differentiable and the results obtained in [4,28,31,9] cannot be
applicable to this system. By using LMI Toolbox in Matlab [5], the
LMI (3.2) is feasible with h;y =0.1, h, =0.5, p=0.1, y =4, and

7.1005 3.4234 47944 12645
:{3.4234 10.3682]’ :[1.2645 8.0441]’
13189 1.2254 9.2066 8.0385
:{1.2254 4.0863]’ :[8.0385 23.2425]’

_ [30.4436 13.7492
_{13.7492 70‘8113}’

-1 02
Y=[-1 -1], sz{ }

06 -1
The feedback control is given by
u(t)=YP~'x(t) =[-0.1122 —0.0594]x(t), t>0.

Moreover, the solution x(t, ¢) of the system satisfies

llx(t, @)l <5.6402e~1||g]|c, .

Fig. 1 shows the response solution x(t) of the closed-loop system
(2.1) with the initial condition ¢(t) =[-4 4]".
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0 10 20 30 40 50 60 70 80
Time

Fig. 1. Response solution of the system (2.1).

Example 2. Consider the uncertain linear systems with interval
time-varying delay (3.15), where

h(t)=2 + 1.7sin’(t) if teH= kuo(zkﬂ, 2k + D),
>

ht)=2 if teH,

-3 2 -01 0.1
AZ[—l 0.1}’ Dz{o.a —0.3}’
5 [3} c_ {—0.02 0.01 }

5/ 0.02 -003]

0.06 -0.06 0.8
E=G= {—0.08 0.08 } F= [0.6]’

01 0 ,
K:La:Ld:Lb:LCZ{O 01}’ Le:Lg:Lf:{ 0 003

It is worth noting that, the delay function h(t) is non-differentiable
and the results obtained in [30,11,7] are not applicable to this
system. By using LMI Toolbox in Matlab, the LMI (3.17) is feasible
with h] =2, hz =37, p= 0.1, )/24, and

2.8078 2.7685 0.0276 -0.0622

:{2.7685 3.2946}’ :[—0.0622 0.1495}’

_5[0.1641 0.1822 0.9909 1.1102

k=10 [0.]822 0.2033}’ ={1.1102 1.3080}’
A:10,3{0.4483 0.4936},
0.4936 0.5465

0.4263 0.4970
Y =[-0.3259 -0.2143], sz{ }

0.4994 0.5174

The feedback control is given by
u(t) = YP~'x(t) = [-0.3029 0.1895]x(t), t>0.
Moreover, the solution x(t, ¢) of the system satisfies
lIx(t, @)l <29943e %1 |glc, .

Fig. 2 shows the response solution x(t) of the closed-loop system of
system (3.15) with the initial condition ¢(t) =[5 -5]".

5. Conclusion

In this paper, the problem of H., control for nonlinear systems
with interval time-varying delays has been studied. By introducing
a set of improved Lyapunov-Krasovskii functionals and using new
bounding estimation technique, delay-dependent conditions for
the H.. control and exponential stability have been established in
terms of LMIs. An application to H. control of uncertain linear

-2+

10 20 30 40 50 60 70 80
Time

Fig. 2. Response solution of the system (3.15).

systems with interval time-varying delay has been given. Numer-
ical examples are given showing the effectiveness of the obtained
results.
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