Journal of Process Control 22 (2012) 1325-1339

Contents lists available at SciVerse ScienceDirect

Journal of Process Control

journal homepage: www.elsevier.com/locate/jprocont

Decentralized H,, control for large-scale interconnected nonlinear time-delay
systems via LMI approach

Nguyen T. Thanh?, Vu N. Phat?-*

a Department of Mathematics, Hanoi University of Mining and Geology, Hanoi, Viet Nam
b Institute of Mathematics, VAST, 18 Hoang Quoc Viet Road, Hanoi 10307, Viet Nam

ARTICLE INFO ABSTRACT

Article history: In this paper, the problem of H,, control of nonlinear large-scale systems with interval time-varying
Received 8 April 2012 delays in interconnection is considered. The time delays are assumed to be any continuous functions
Received in revised form 7 june 2012 belonging to a given interval involved in both the state and observation output. By constructing a set of
Accepted 8 June 2012

new Lyapunov-Krasovskii functionals, which are mainly based on the information of the lower and upper
delay bounds, a new delay-dependent sufficient condition for the existence of decentralized H., control
is established in terms of linear matrix inequalities (LMIs). The approach is applied to decentralized H,
control of uncertain linear systems with interval time-varying delay. Numerical examples are given to
show the effectiveness of the obtained results.

Available online 10 July 2012

Keywords:

H,, control

Large-scale system
Decentralized control
Nonlinear systems

Interval time-varying delay
Lyapunov function

Linear matrix inequalities

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The H,, control of time-delay systems are of practical and theoretical interest since time delay is often encountered in many industrial and
engineering processes [1-4]. The main objective of the H,, control is to obtain a controller that makes the closed-loop system asymptotically
stable for amaximum H,, performance bound [5]. Many practical systems are of large scale models and consist of interconnected subsystems
in the real world and the control of large scale systems can become very complicated owing to the high dimensionality of the system
equation, uncertainties and time delays [6-13].

During the last two decades, decentralized H,, control for large-scale systems has been one of the focused study topic in the past year and
alot of interesting results have been made, see [14-21]. There are two different approaches to study H,, control of time delay systems. They
are the Lypunov-Krasovskii approach and the Lyapunov-Razumikhin approach. The obtained results using Lyapunov-Krasovskii approach
are usually less conservative than those using the Lyapunov-Razumikhin approach. The Lyapunov function method was developed in
[22-26] to decentralized H,, control of linear systems with interval time-varying delays, where the assumption on the derivative of the
delay function is either strictly bounded, but the time-delay function is still assumed to be differentiable. Stability analysis of the above
cited papers reveals some restrictions: (i) the time delays should be either time-invariant interconnected or the lower delay bound is
restricted to being zero; and (ii) the time delay function should be differential and its derivative is bounded. In this paper, the above
restricted conditions are removed on the large-scale systems. In fact, this problem is difficult to solve; particularly, when the time-varying
delays are interval and non-differentiable in state and observation output. In this paper, the time delay is assumed to be any continuous
function belonging to a given interval, which means that the lower and upper bounds for the time-varying delay are available, but the delay
function is bounded but not necessary to be differentiable. This allows the time-delay to be a fast time-varying function and the lower
bound is not restricted to being zero. It is clear that the application of any memoryless feedback controller to such time-delay systems
would lead to closed-loop systems with interval time-varying delays. Difficulties then arise when one attempts to derive exponential
stabilizability conditions and to extract the controllers parameters for these systems. Indeed, existing Lyapunov-Krasovskii functionals
and their associated results in [10,17-22,24,25] cannot be applied to solve the problem posed in this paper as they would either fail to cope
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with the non-differentiability aspects of the delays, or lead to very complex matrix inequality conditions. Moreover, any technique such as
matrix computation of variables fails to extract the parameters of the memoryless feedback controllers. This has motivated our research.

In this paper, we consider a class of large-scale nonlinear systems with interval time-varying delays. Compared to the existing results,
our result has its own advantages. First, the time delays are assumed to be any continuous functions belonging to a given interval involved
in both the state and observation output. Second, both problems of exponential stabilization and H,, control will be treated simultaneously.
For the former, the controllers are required to guarantee the global exponential stability for the closed-loop system. By constructing a set
of new augmented Lyapunov-Krasovskii functionals, a new delay-dependent condition for the decentralized H,, control is established in
terms of LMIs, that can be solved numerically in an efficient manner by using standard computational algorithms. It is worth mentioning
that although the similar Lyapunov-Krasovskii functional was used in [21,23,25,29] to investigate the stability of systems with time-varying
delays, the slack matrix variables in main theorem have not been introduced in [21,23,25,29] since in the derivation of stability only single
integrals depending on the delay function were used, while we use additional triple integrals. This Lyapunov-Krasovskii functional is mainly
based on the information of the lower and upper delay bounds, which allows us to avoid using additional free-weighting matrices and
any assumption on the differentiability of the delay function. Therefore, our results are more comprehensive and effective. The approach
allows us to apply to H., control of uncertain linear systems with interval non-differentiable time-varying delay.

2. Preliminaries

The following notations will be used throughout this paper, R* denotes the set of all real-negative numbers; R" denotes the n-dimensional
space with the scalar product (., .) and the vector norm || -||; R™" denotes the space of all matrices of (n x r)-dimension. AT denotes the
transpose of A; a matrix A is symmetric if A=AT; I denotes the identity matrix; A(A) denotes the all eigenvalues of A; Amax(A)=max{Re A :
A e AA)}; Amin(A)=min{Re A : . € A(A)}; Aa = Amax(ATA); C1([a, b], R™) denotes the set of all R"-valued differentiable functions on [a, b]; Ly([O0,
oo], R") stands for the set of all square-integrable R"-valued functions on [0, oo]. The symmetric terms in a matrix are denoted by *. Matrix
A is semi-positive definite (A > 0) if (Ax, x) > 0, for all x e R"; A is positive definite (A> 0) if (Ax, x)>0 for all x #+ 0; A>B means A— B> 0. The
segment of the trajectory x(t) is denotes by x¢ = {x(t+s): s e [— t, 0]} with its norm

lIxe]l = sup ||x(t +s)II.
se[-1,0]

Consider a class of large-scale nonlinear systems X with time-varying delays composed of N interconnected subsystems X; described by
the following equations:

N
Xi(t) = Apx;(t) + Bju;(t) 4 Djowi(t) + Z Agixi(t = hy(£)) + fi(t, x;(t), ui(t), wi(t), (x;(t - hij(f))}jlil,j#i),
j£ij=1
5 v 2.1)
zj(t) = Gx;(t) + Fu;(t) + Z Gijx;i(t — hy(£)) + gL, x;(8), w;(t), (x;(t - hij(f))}]N:Lj#,»),

Jj#ij=1
x;(t) = @i(t), Vte[-h,0],

where xT(t)=[x1(t), . .., xn(£)T], x;(t) € R™, is the state vector, z;(t) € R% is the output vector, u; € R™ are the control input, w; € L,([0, o], R"i)
is the uncertain input, the systems matrices A;, B;, G;, D; and Ay, Gj; are of appropriate dimensions, the time delays hy;(.) satisfy the following
condition:

0<hy <hyt)<hy, t=0, Vi,j=1,N, h=hy,

and the initial function @T(t)=[@1(t)7, ..., on(t)T], @i(t) e C'([- h, 0], R™), with the norm

N
> gl
i=1

Let x}‘ij(t) :=Xj(t — hy(t)), i+j,the nonlinear functions fi(.), gi(.) satisfy the following growth conditions

lgil = sup (el N@i(ONY, Nl =
—h=t<0

N
hy;
3 ai, biy diy a5 > 02 (I = @illxi(O)] + byllwi(Oll + dillo(O1 + > allx; ()]
i# =1 (2.2)

N
hii
3 ¢, e, 85 > 0 1g(II? < Gllx(O1? + e;llu (N2 + E &iillx; " (O
j#ij=1

Definition 1. Given 8> 0. The zero solution of system (2.1), where u;(t)=0, w;(t)=0, is - stable if there is a positive number Ny >0 such
that every solution of the system satisfies:

IX(0)Il < Nollglle ™, vt = 0.

Definition2. Given >0,y >0.The Hy control problem for system (2.1) has a solution if there exists memoryless state feedback controllers
u;(t)=K;x;(t), satisfying the following two requirements:
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(a) The zero solution of the nonlinear closed-loop system

N

%(t) = [A; + BiK;]xi(t) + Z Agi(t = hyi(0) + filt, xi(6), Kixi(), 0, {x;(t — hy(OWYL, ;. ((£)),
j £ i.j=1

xi(t) = ¢i(t), Vte [—h,JO],]

is B- stable.
(b) There is a number ¢ > 0 such that

Jo niz(t)2de
9 =
collel? + [y~ le(t)112dt

where the super is taken over all ¢; € C!([— 7, 0], R%) and the non-zero uncertainty w;(t) € L,([0, o], R"i). In this case we say that the
feedback controls u;(t) = Kix;(t) exponentially stabilizes the system.

Proposition 2.1. For any x, y € R" and positive definite matrix M € R"*", we have

2Ty <y™™y +xTM~1x.

Proposition 2.2. [27] Given matrices X, Y, Z, where Y=YT >0. Then X+ZT'Y-1Z<0 if and only if
X zT
< 0.
zZ -Y

Proposition 2.3 ([28]). For any constant matrix Z=Z" >0 and scalar h, h, 0 < h < h such that the following integrations are well defined, then

—h t ) —~h t T —h t
,/ / xT(1)Zx(t)dt ds < -= (/ / x(t)dt ds) Z (/ / x(r)dtds) .
—h t+s h —h2 \J-h t+s -h t+s

Proposition 2.4 (Lower bounds lemma [29]). Letf1, f>, ..., fn : R™ — R have positive values in an open subset D of R™. Then

min Zrl,-ff(t) =D RO+ g0
=1 i i

rilri>0, i#]

subject to

fi(t) g
gj: R™— R, gj(t)=gt), >0,.
g fi(t)
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3. Main results

In this section, we investigate the decentralized H,, control of nonlinear system (2.1) with interval time-varying delays. It will be
seen from the following theorem that neither free-weighting matrices nor any transformation are employed in our derivation. Before
introducing main result, the following notations of several matrix variables are defined for simplicity.

Py =P', Qi =P'QP;', Rq=P'RP;', Uy=P'UP ",
Ay :P;1A,'P;1, Sii = P{lsiP;1

e~4Bh2(h, —

Hi, = PAT + AiP; + B;Y; + Y] B +28P; +2Q; — e"2MR; — e~2PaR —2—— =~ —

LDy Z A,]AT+ DDT+81
j=lj#i

—2Bh R. i — e—2B2R.
Hi, =0, Yk=2,N, Hj, , =e MR, H  —e 2R,
e—zﬂhz

=PAl +YIBI, H! 2——A;, H,

i _
H N+ = “h, 1 iy ki

1(N+3) =0, Vk#j, k,j=2,N,

. e—2phy e—2ph

H;<k = —271\]_ 1 U; + N_

e—2pBhy e—zﬁhz : e—2pBhy e—2pBhy T

Hinsa) = T Ry v LS VI el v sty v
‘e =05 Yk=2N,

Hi = Hi
e*zﬂh] Ql — e*zﬂh] Ri — e*zﬁhz Ui?

(s +SD),

k(N+3) =

(N+T)YN+1) = —

—2Bhy cT
INs1 e 2) = € 2PR2S],

Hi
Hi
H(N+1)(N+3) H(1N+2)(N+3) = HéN+1)(N+4) H(N+2)(N+4) =0,
Hi

— 2B, _ o2BhaR _ o-2Bha(].
(Ns2yNs2) = —€ P Q — e72P2R; — ey,

N
4
= (hy — hy)hy A + h2R; + h2R; — 2P; + (hy — hy) U+VDDT+ > agal e,
Jj=1j#i

H{ (N+3)(N+3) =

. . e—4Bhy
1 — 1 —
Hovnvea =0 Hovavs = 21272

. I ;
Hinysynes) = N+2 Hinys)

_ I yi
(N+a+N+a+0) = "N 727 Titv+4+k)

_PC Hi

ines) =0, Yk=2,(N+4),

=0, Vk=2,N, j=1,(N+3+k), j+k,

=PGl, i=1, k=2,N,

ki’

_PG(,< i° i#+1, k<i, k=2,N,

k(N+4+k)

k(N-+4-+k)
=PGL, i#1, i<k=2,N,
— I Hi _
(N+3+K)2N+3+K) — 7 24 2a; + [N + 2]gg’ KCN+3+k)
I

(2N+3+K)2N+3+k) = T 2 1 2q 1) + [N + 2]g0
=P, i#+1, k<i, k:Z,N,

— I Hi
(N+3+K)2N+3+K) — 7 24 2a; + [N + 2]g k(2N+3+k)

=0, Vk=2,N, j=1,2N+3+k), j#k,j+#(2N+3+k),

I i ; . .
(3N+4)(3N+4)__Za,-+c,-[N+2]’ Hl](3N+4):Pi’ H]!(3N+4):O’ J:/'l:]s J¢(3N+4)7
Hi =— ! , Hi

(3N+5),(3N+5) 2b; +(N +2)(e; + 1) 1,3N+5) —
2 N
& =a;+ b+ 711 + A Z aj, Q1 = Amin(Pi1),
Jj#ij=1 3
iy = Amax(Pi1) + B~ Amax(Qi1) + M3 Amax(Ri1) + h3Amax(Ri1 ) + (h2 — h1)” Amax(Uin) + (h — h1)h3 Amax(Ar),
o1 = Mine;;, o = Maxaj, Y = maxy;.
i=T,N i=1.N i=1,N

k(N+4+k) — ki’

Hi
H
Hi
Hi
Hi

P, i=1, k=2,N,

k(2N+3+k) =

=P, i#1, i<k=2,N,

Hi
Hi
Hi
Hj (2N+3+K)
Hi

Y
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Then, for simplicity of expression [5], we assume that
F'Fi=1, FI[C,G3]1=0, Vj,i=T1,N, j#i.

The following is the main result of the paper, which gives sufficient conditions for the decentralized H., control of system (2.1). Essentially,
the proof is based on the construction of Lyapunov-Krasovskii functions satisfying Lyapunov stability theorem for time-delay system [30].

Theorem 3.1. The H,, control of the system (2.1) has a solution if there exist symmetric positive definite matrices P;, Q;, R;, U;, A; and matrices
Si, Y; such that the following LMIs hold:

Hyy Hip . Hignys) o 0
* Hy oo Hysyys o 0
. . .i . . <O’ 1:1,2,.. ,N, (31)
% -~ Hinisiangsy 00 0
* * . —Ui _Si
| * * . * _Ui_

Moreover, stabilizing feedback controls are defined as
u;(t) = YiPyyx;(t), t >0, i=1,2,...,N,

and the zero solution of the closed-loop system is B-stable, i.e. the solution satisfies

IX(0)I < \/Eeﬂtlwl, vt > 0.
(231

Proof. Consider the following Lyapunov-Krasovskii functional for the closed loop system:

N 7
V(t, x) = ZZVij(f, Xt),

i=1 j=1

where

t
Vi =xT (6P xi(t), Vi =/ e2P5=DxT(5)Qi x(s)ds,
t—hy
t
Vis = / e2Ps=0xT (5)Qi xi(s)ds,
t—hy
0 t
Vig =M / / e2PT-O%I (T)Ry ;(T)dT ds,
—hy Jt+s

0 t
Vis = h / / PO (1R ,(T)d ds,
—hy Jt+s

—hy gt
Vig = (hy — h1) x / / 2P0 (D) Un &i(T)d ds.
—hy t+s

—hy 0 t
Vig(t, xe) = / / / e2PTs=OT(T) Ay &;(T)dT ds 6.
—hy 0 t+s

It is easy to verify that

N N
D anlix(OIF < Vit x),  V(0,%0) = > _apligill®. (3.2)
i=1 i=1
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Taking the derivative of V in t along the solution of the system, we have

N N
Vi = 2x (0P [A(D) + ZAi,-xj<r—hg<r))+3iu.-(r>+D,-w,-(r)+f,-(.)1:in’(r)Pn [A,-xi(m ZAi,-x,u—hq<r))+BiY,-an,-(r)+D,-wx-(t)+fi(.) ,

j#ij=1 j#ii=1

Vip = X! (0)Quxi(t) — 2BVip — =2 x] (¢ — hi )Quxi(t — hn),

Viz = xI(£)Quxi(t) — 2Viz — e=2P2x (t — hy)Quxi(t — ha),
t
Via < 2T ()R &i(t) — 2BVig — hye=2PM / X! ()R Xi(s)ds,
t—[hl
Vis < h2XT ()R i(t) — 2BVis — hpe=2Ph / X! ()Ri1 Xi(s)ds,

t—hy

t—hy
Vi < (hy — hl)zkiT(f)Unki(f) —2BVig — (hy — hy)e2P1 / &l (s)Unxi(s)ds.
t—hy
t
& ($)Aixi(s)ds d6 — 2BVis (L, x:)
t4+6

—hy
Vir(t, %) < (hy — hy )hzkiT(t)Ailiti(t) — e~z /
—~hy
Applying Proposition 2.3 and the Newton-Leibniz formula

t
/ Xi(s)ds = x;(t) — x;(t — h),
t—h

we have
t t T t
—h/ X ()R X;(s)ds < — [/ ki(S)dS} Rix {/ ki(s)ds] = —[x(t) = x;(t — )] Ry [%:() — x;(t — h)].
t-h t—h t—h
Note that
t—hq t—hj;(t) t—hy
/ X' (5)UpXi(s)ds = / X" (5)UpXi(s)ds + / X' (5)UpXi(s)ds.
t—hy t—hy tfhji([)

Using Proposition 2.3 again gives

t—hyi(t) t—hy(t) T t—hyi(t)
[h2 - hji(f)]/ X (s)UnXi(s)ds = |:/ X'i(S)dS] Un |:/ Xi(S)dS:| = [xi(t = hi(0)) = xi(t — h2)]"Upy [%i(t = h(£)) — xi(t — ha)]
t t t

—hy —hy ~hy

Because of hy — hjj(t) <hy — hq, we have

t—h;;(t)
e . h, —h
—(hy —Iy) X ($)UnXi(s)ds < —————1<[xi(t — hjs(£)) — xi(t — h2)]" Uy [%i(t — hji(£)) — %i(t — ho)],

t—hy hy — hyi(t)

t—hq hy —h
~(hy — ) X ($)UnXi(s)ds < — 21— [xi(t — 1) — x(t — ()] Uy [%i(t — hy) — x;(t — hyi(E))].
t—hi(t) hji(t) = hy
. Ui S; . L . hy—hy(t) hi(t)=hy . .
On the other hand, condition (3.1) figures out Ul = 0, so using Proposition 2.4 with ry = hz—jh1 ;T = th—h] gives the following
i 1

inequalities:
T ' T T !
%[Xi(t_hji(t)_xi(t_hZ))] [u“ Si ] \/g[xi(t—hﬁ(t)—xi(t—hz))] %[Xi(t—hji(t)—xi(t—hZ))] [pﬂ 0 ] [Ui 5,1

-\ /%{xxr— hy) = xi(t - h(6))] —\/g[xf(r—hl)—x.(r—hﬁ(t)n -\ /%[xi(t— hy) = xi(t - h(6))]
[p“ 0 ] \/ e = hi(0) = (e ha))]
X >0,

-1/ %[xi(t— hy) = xi(t - h(6))]

*%[Xi(t — hii(6)) = xi(t — ho)]" Uy [%(t — hy(0)) — xi(t — h2)] — %[Xi(t — h1) = %t — ()" Ut [%:(t — hy) — xi(t — hy(6))] <

ST Uy

il

0 Py

equivalently,

—[xi(t — hi(0)) = xi(t — ho)1 S [xi(t — h1) — x;(t — h(6))] — [Xi(t — hy) — x(¢ — hji(f))]TS,-Tl [xi(t — hy(£)) — x;(t — h)],
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and

hy — hy

o . hy —h
—mrmn[‘ 4 (YU () = = 2 Dt = () = (8 = Bl Ui [t = hy(0) = (8 = )] = e (e = )

—hy ha — hy;(t)
—xi(t — hji(f))]TUn [xi(t = hq) = x;(¢ — h(£)] = —rl][xi(f — h;i(t)) — x;(t - ho)I" U [xi(t — h;i()) — x;(t — h2)] - rlz[xi(t - hy)

—X;(t — hji(t))]TUil [x:(t — h1) = x;(t = h(£)] < —[xi(¢ — hyi(£)) — x;(t - ho)I" U [xi(t — h;i(t)) — x;(t — hy)]

—[xi(t = hy) = xi(t = hg(ED] Un [xi(t — hp) = xi(t = B(0)] = [xi(t — his(6)) = it — ho)] S [%i(t — hy) = xi(t = hy(£)] = [%i(t — hy)
—xi(t — i (E)]" ST [xi(t — hyi(6)) — xi(t — ha)].
Therefore,
Via < 2T (DR &i(t) — 2BVig — e 2P [x;(£) — xi(t — h1)]" Ry [xi(t) — x;(t — hy)],
Vis < &I (ORinXi(t) — 2BVis — e 2PR2[x;(t) — xi(t — h2)]" R [xi(t) — xi(t — ha)],

Vis < (hy — hy PXT (DU &;(t) — 2BVis — N T Z [xi(t — h(0)) — %t — ho)] Up [xi(€ — hs(£)) — xi(¢ — h2)]
N j=1j#i N (3.3)
o—2Bh o—26h
_/512 Z [xi(t — hq) — x;(¢ hji(f))]TUn[Xi(f—hl)—Xi(f—hji(f))] ﬂf Z [x;(t — hyi(£)) — xi(t — h2)]" St [%i(t — h1)
j=1j#i Jj=1j+#i
e—2Bh
=x;(t — hy(6))] N-T Z [x;(t xi(t — hji(f))]TST [x:(t = hj;(£)) — x;(t — h2)].
J=1j+#i

Note that when h;;(t)=hy or h;i(t)=hy, we have
[i(t — h1) = x;(t = h(O)] =0 or [x;(t — h(£)) — x;(t — h2)] =0,

respectively. So the relation (3.3) still holds. Besides, using Proposition 2.3 again, we have

74,8h2/ S)A,]X, Yds df < ef4ﬁh2 5 (/ X, dsd@) Aj (/ / Xi(s d5d9>
hy t+0 —hi hy t+6 ha t+0

2e~4bh; = '
o ((hz = hi)xi(t) - / (9)119) Ai ((hz —h1)X1(f)—/ (9)d9>
t—hy t—hy

Hence,

. 2e—4Bha t—hy T t—hy
V7(.) < (hy — hy)hoikT () A xi(8) = 2BV (t, X)) — —— ((hz — hy)x(t) —/ Xi(e)d9> Aj <(h2 — hy)x;(t) - / x;(0)do
t t
(34)

From the following identity relation

—2xI(6)Py x | &) — At ZA,Jx]t— () = Biui(t) — Diwi(t) — fi(.) | =0,
Jj#ij=1

and applying Proposition 2.1 and condition (2.2), we obtain

N N
20 OPq | > At —hy(0)| = Y xI(OPaAATPaxi(O)+ > KT (£ hy(O)xi(t — hy(©),
J#1.j=1 1 i#ii= j#ij=1

N N N
247 (£)Py Z Agxi(t —hi(t)| =< Z KT ()P AGAT P (L) + Z X (€ = Ryt — hy(0)),

J #i=1 j#ij=1 Jj#ij=1
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4
2x] (t)Py Diw;(t) < ?xiT(t)P“D,-DiTP“x,-(t) +0.25y;0] (H)wi(t),

1

. 4 . .
2x] ()P Diw;(t) < ?XiT(f)Pi1DiDiTPi1Xi(t) +0.25y;0] (wi(t),
1

2xT(OPfi(.) < 21T (P I1LI(E %i(6), wi(E), wi(£), X (E), ... xf"f(t), e XN < 211XT )Py I
4di2 o T 2 2 2
=(a+bi+ L+ > @I OPa 1P + aillx (012 + billui(e)]

N
hy;
a;lx(E)1 + billu (O + dillo( Ol + > aglix (O]
j#ij=1

j#ij=1
N h h,
+0.25p (D12 + > aglx (O17 < &ill] (P 12 + il X1 + byl (O + 02533l + Y~ aglix ()12,
J#ij=1 J#ij=1
LT ol 2 2 2 2 hij
25(6) Pufi(-) = il (P 112 + @il (D12 + billui( )12 +0.25¥illoi( I + > aglix (6))2.
j#ij=1
Moreover, the following estimations hold

0= —2%] (t)P;y | X;(t) — Aixi(t) — Z Aixi(t — hyj(t)) — Biu(t) — Dywi(t) + fi(.) | < —[2&] ()P ][%;(t) — Aixi(t) — B;Y;iPyy ;(t)]

j#ije1
N N 4
+ Z X (6P AgALPa Xi() + Z XJ (£ = hy(O(t = hy(6) + %xiT(t)P“D,-DiTPHX,-(t) +0.25y0] (O)oi(t) + &l 1%() Py |12
Jj#ij=1 Jj#ij=1
N
+al Xi(O12 + billus(O1 2 + 0.25yill(O12 + > aglixli(e))?, (3.5)
j#ije1

and

N
Vin(\) = 2xT (0P | Aixi(t) + Z Ayxi(t = hy(0)) + Biui(t) + Dyooy(t) + fi( ) | < 2xI (£)Piy [Aixi(t) + B;YiPyy ;(t)]

j#ij=1
N N 4
+ ) M OPRAATP(O + D X[ (e =B = hy(0) + Zx] (P DID] Paxi(1) +0.25%] (Dex(t) + il () Pl
Jj#ij=1 Jj#ij=1
N
+ailIxi(O12 + bil (D12 + 025yl (O + Y ayli(0))2. (3.6)
j#ij=1

Therefore, applying the inequalities from (3.3) to (3.6) and note that

N N N N N
DN K- hyOmile—hy©)=> Y Kl (e~ (o)l = Z X[ (6 = (Ot = h(©) |
i=1j=1,j+#i j=1i=1i+#j i=1 |j=1,i#]j
we have
N
+2BV() = Y [2x] (0P [Axi(6) + BiYiPxi( )] + 28] (0P xi(6) + X (Qunxi(t) — 2PNl (£ — hy)Qux(t — ho) + X (DQuxi(8)
i=1

—e~2PaxT (t — hy)Qixi(t — hy) + W3XT (DR Xi(t) — e 2PM [x;(£) — x;(t — h)] Rig [Xi(6) — %i(t — hy)]

—e 282 [x;(t) — x;(t — ho)] Ry [xi(£) — Xi(t — h2)] + (ha — hy PXT (Ui Xi() + h3&T (DR %,(0)

e o268
N1 Z [xi(t — hji(6)) — it — h2)1 Upy [x:(€ — hy(£)) — xi(t — hp)] — N1 Z [xi(t — h1) = xi(t — his(E)] Up [x(¢ — hy)
J=1j#i Jj=1j#i

72;312 e—2Bh
Z [xi(t = hi(£)) = xi(t = ) Sip (e = o) = xi(t = B )] = = Z [xi(t =)

—x(t — h;(t))] -
J=1j#i

1 1j#i

=xi(t = R ODISHIXi(¢ — M(0)) = %i(t — )] + (ha = h)hoX] () A Xi(t)
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2e-46h; t=hy T t—hy
T ((hz = hy)xi(t) - / X1(9)d9) A <(h2 = hy)xi(t) —/ Xi(e)d9> — [2&] (t)P;1] x [%i(£) — Aixi(£) — B;YiPi x;(t)]
2~ M ¢ t

—hy ~hy
N N N N
+ > K OPHAATPaxi(©) + > Xt = ROt = hi() + Y K (OPaAGATPaxi(0)+ Y K] (¢ = hi(e)xi(t = hy(D))
Jj#ij=1 j#ij=1 j#ij=1 Jj#ij=1

4 4 . .
+;X,T(t)Pi1DiDiTPi1Xi(t) + () () + ?XiT(f)PnDiDiTPnXi(f) + 24,1101 + 2Dyl |u; ()11
1 1

N
+ > 2a X017 + &l X (P 12 + &il| ()P |2
j#ij=1

Setting y;(t) = P;1x;(t), it leads to

where

N
V(t %) +2BV(t, x0) < Z%Hw, i +ZST IMIE(D) — (N +2)> [ 1IGx(OI + 11012 + Z IG; (E)IP
i=1 j#i,j=1
—(N+2)Z GO + eillu (D1 + Z gillxpi ()] (3.7)
i=1 j#ij=1
t—hq
() = |y OW] (e —hi(ONL, ;. ; (€ —h1) y](t—h2) y(0) / ) yl(©)do |
t=hy
My, M, M
M= |* My oo Mg , i=1,N,
* * M(1N+4)(N+4)

—aBhy (.
e *P2(hy hl)A

Mi, = PAT + AiP; + B;Y; + YT B + [2b; + (N + 2)(e; + 1)] Y] Y; + 28P; + 2Q; — e 2P R; — e~2PN2R; — 2 e

i

+ Z AUAT+ DDT+(N+2)PCTCP +(2a; + G[N + 2])P? + &l

J=1lj#i )
Mi =0, Vk=2,N, M, . =e 2R, M 4
. e—2phy
— p.AT & yTRT _
My, 5 =PAT +YBI, M\ \ = 2h2+h Ai, Mi;=0, Yk#j, kj=2.N,

e-2Phy  o-2phy . , . _
Mi, = 27Ui+7(5i+5,‘)+(2+2aki+[N+2]gki)Pi + (N +2)PiG;GiPi, Vk=2,N, i=1,

N-1 N-1

e-26; o-2Ph

i
Mkk 271\]_1 U; + N_

e-26hy e—zﬂh
My = 25— Uit §—

. e—2phy e—zﬁhz ; e—2Bh e—2Bh T
MI,<(N+1):N_1U1'_N_1S"’ Mini2) = N_lui_N_lsi’

=0, k=2,N,

— e-2BaR,.

1(N+1) 1(N+2)

(5 +ST) + (24 2001y + [N + 21g0-130)P} + (N + 2)P,Gl_1,Gu—1yiPis  k=2,N, i#1, k=i,

N1 i +ST)+ (2 + 2a; + [N + 2]gii)P? + (N + 2)P,GLGP;,, k=2N, i#1, k=i+1,

Mi

II<(N+3) k(N+4) =

e=2PM Q; — e=2PM R, — e=26M2yy;, M! = e*zﬁhzsiT,

(N+1)N+1) = — (N+1)(N+2)

(N+1)(N+3) — M(N+2)(N+3) - M(N+1)(N+4) - M(N+2)(N+4) =0,

M
M
M
Miy o2 = —€ 12 Qs — e 2R, — €202 U,

N
Mix aynss) = (h2 = ho Ay + B3R, + W3R, + (hy — hy YUy = 2P+ Y AgAT + VDD +éil.
j=1j#i

i i e~
Mivasiveay =0 Mivaayvia = =237 52
2 1

Using the Schur complement lemma, condition (3.1) leads to Mi <0, Vie 1, N and from the inequality (3.7), it follows that
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V(E xe) +2BV(E. x) < N+2)Z GO + (011 + Z IG; (O
J#ij=1
+2)Z GIX(OI +ellui( )12 + Zgﬁuw 012 +Zy,||w,(t|\2 (3.8)
Jj#ij=1

Letting w;(t)=0, and since

N N
~(N+2))  [IGX(OI + 1OIP + Y 1IGxilt = hi(e)I | <0,

i=1 j#ij=1
N N i
~(N+2) cillxi (1% + egllu ()1 + gilx (17| <0,
1
i=1 j#ij=1

we obtain from the inequality (3.8) that
V(t, x¢)+2BV(t, x) < 0. (3.9)
Differentiating the inequality (3.9) from O to t, we have
V(t, x¢) < V(0,x0)e 2P, vt > 0.
Taking inequality (3.2) in account, we finally obtain that
N N
a1y IO = V(e x) sy llgilPe 2, ¥ £ =0,
i=1 i=1

which implies that the zero solution of the close loop system is the S-stable. To complete the proof of the theorem, it remains to show the
y;-optimal level condition. For this, we consider the following relation:

s N s
/Z 1Zi(OI7 = yillw(O11%] dt = /Z (117 = villo( I + V(e x:)] dt—/ V(t,x)dt, Vs> 0.
i=1 0

Since V(t, x;)>0, Vt>0,we have

—/ V(t, x¢)dt = V(0, xo) — V(s, x5) < V(0, xg).
0

Therefore, for all s > 0, we have

s N
/Z 12O ~ yillex(D] ] /Z 12D = yillox(DI2 + V(t x)] dt + V(0, xo) (3.10)
0 i=1

Combining (3.8) and the inequality

N N
V(tx) = > (0 Paxi(t) = Y yi(0) Pyi(e),

i=1 i=1

we obtain

v, xt)<ZyI||wl G ZﬂZy, t)TP,yl(t)—(N+2)Z GO + (0] + Z 1Gixi(t = (O]

i=1 i=1 i=1 j#i,j=1

N
~(N+2)) (a1 +ellui( )1 + Z gillxi(0)]12 (3.11)
i=1

j#ij=1

Observe that the value of ||z;(t)|]? is defined due to (2.1) as

lIzi()I1% = [1Cix;(t Z Gijx;i(t £)) + Fiui(t) + gOl* < (N + 2)I1IGxi(0)[1% + (N + 2)[IFu(0)I12 + (N + 2)I1g;l1?
Jj#i,j=1
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N
+ > (N+2)IG5(t = (O = (N+2)ICx (I + (N + 2)IFui( D12 + Y (N+2)IGyxi(t — hy(0)] 2
j#ij=1 j#ij=1
N
+(N+2) GO + el + Y gylxi(0))
j#ij=1
Then, from the expressions
N N
S UG mOIE =Y 3 1G e
i=1j+#1i,j=1 i=1j#i,j=1
N N N h
3 gyl = Z > gl (o1
i=1j+#1i,j=1 i=1j+#ij=1
and the assumption
FT'F=1, FI[C,Gj1=0, Vj,i=1,N,j#i,
we have
N N
an, OIF < (N+2)) [ 1IGxOI2 + IFui(OIP + > 11Gyxi(e = hy(e))]?
i=1 j#ij=1
N i N
+(N+2)) a0 +elu(®? + > gylxlio)]?
=1 | j# =1
N[ N
= (N+2)) (GO + (DI + Y IGxi(t = hy(©)]?
i=1 | J#ij=1
N N
+(N+2)) | alx(®? +elu(OF + Y guli(o)]? (3.12)
i=1 j#ij=1

Submitting the estimation of V(.) and ||z;(t)||? defined by (3.12) and (3.11), respectively into (3.10), we obtain

s N
/Z 1z = yilloi( 11> dt</ [ ZﬂZy, t)Ply,(t)] dt +V(0, %), Vs=0. (3.13)

1=
Hence from (3.13) it follows that

N

s N
/ > (12012 = villox(O12] dt < V(0,x0) = Y ailigill?, Vs =0,
0 im

i=1

equivalently, Vs >0,

s N s N N s N N
/an,-(t)nzdts/ Zyi||wi(t)”2dt+Zai2||§0i||25)’/ > It + a2y gl
0 im 0 im i=1 0 im i=1

Letting s— + oo, and setting ¢y = "‘72 > 0, we obtain

w N o N N
/ani(t)uzdtsy/ D llO1Pde+ a2y ligill,
0 ix 0 ix i=1
implies

Jo_ Nlz(t)2de
collgll? + [~ lle(©)12dt ~

This completes the proof of the theorem. O
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In the sequel, we give an application to Hy, control of uncertain linear systems with interval time-varying delay. Consider the following
uncertain linear systems with time-varying delay:

N
X,‘(t) = [A, + AAi]Xi(t) + [B,‘ + AB,‘]U,‘(I’) + [D,‘ + ADi]a)i(t) + Z [Al] + AAU]XJ(I' — h’](t))’
j #i,j=1
N Y (3.14)
Z,'(f) = [C, + AC,']X,‘(I') + [Fi + AF,‘]U,’(r) + Z [GU + AGU]XJ(f — hl](t))’

Jj#ij=1
xi(t) = ¢i(t), Vte[-h,0],
where the time-varying uncertainties AA;, AB;, AD;, AAjj;, AG;, AF;, AGy;, satisfy
AM = KL H (DL,

and Kl"v], L}w, M € {A;, B, Dj, Ayj, G, F;, G} are known real constant matrices of appropriate dimensions, and H}VI(t) is an unknown matrix
uncertainty satisfying

Hi () Hi (¢) <1, Vt=0.

To apply Theorem 3.1, let us denote

N N
hyi hyi
fi(.) = AAxi(t) + ABju;(t) + ADjoy(t) + Z AAgx", () = ACX(t) + AFui(t) + Z AG",  MM) = hnax(MTM).
j#ij=1 Jj#ij=1
Observe that
[IAMx|? = xTLTHIT(6)KITKE HE (OLTx < (K xTLTHIT(0OHE (LT x < MK )AL, )XTx

and using the boundedness condition of the functions f;, g;, we have

N
G2 < (N -+ DIAGK(OIZ + (N -+ DIAFu (012 + > (N+ DIAGH 12 < (N -+ DAKE AL Ib(O1
N Jj#ij=1
+(N -+ DAKE ML)l [ui( )] + Z (N + 1)MK{;U)A(L:‘;ij)||xf""(t)u2
j#ij=1
N

IWi(Il < 1AAX(E)]] + 1| ABjui(OI] + [| ADjeoi(0)]] + Z ||AA,;xf“|| <\ MEGOMLL )X+ 4 /AR ALl )]

Jj#ij=1

N
KB AL, (O + Y~ JMKS )A(LLU)IIXf”(t)II
Jj#ij=1

Theorem 3.1 is applied for the values of {a;, b;, ¢;, d;, e;, a;;, g;;} defined as

a; = [AMKLOMLL ), b= JAKEIALY).  di =y /[AKE ALY,

aj = MK ML, ), 6= (N+ DAKEALL), e = (N + 1AKEA(LE),
J !} i i i i
gij>(N+ 1)A(1<g;j)x(LgU ).

i
With the same notation stated in Theorem 3.1, we have

Corollary 3.1. The H,, control of system (3.14) has a solution if there exist symmetric positive definite matrices P;, Q;, R;, U;, and matrices S;, Y;
such that the following LMIs hold

Hiy Hip oo Higy,s U

s Hi, .. Higyo 0 0

o o <0, i=1,2,...,N, (3.15)
* * o Hiangsyangsy 0 0

* * cee K —U,‘ —S,’

| * * R * =U; |

Moreover, stabilizing feedback controls are defined as

u;(t) = YiPuxi(t), t=>0,
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and the zero solution of the closed-loop system is B-stable, i.e. the solution satisfies

Xl < [ 22ePjg), V= 0.
aq
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Remark 3.1. Theorem 3.1 provides sufficient conditions for the closed-loop system to be exponential stable with a prescribed decay rate
B, while the existing method can provides asymptotic stability of the closed-loop system. Moreover, in these papers the time delays are
assumed to be differentiable and its derivative is bounded. In Theorem 3.1 this assumption is removed and LMI conditions (3.1) is less

conservative, since they do not contain less free weighting matrix unknowns and then reduce computational complexity.

4. Illustrative example

In this section, we give a numerical example to show the validity of the H,, controller designed in previous section. This example is a

large-scale model composed of two machine subsystems [31] as follows:

x1(t) = A1x1(t) + Bruq (£) + D1z (t) + Arax1 (t — ha2(t)) + f1(.)
z1(t) = Crxq(t) + Fru (¢) + Gr2x1(t — h12(8)) + g1(.),

x1(t) = ¢1(t), Vte[-2.1,0],

X2(8) = Agx1(t) + Bau(t) + Dawo(t) + Ag1xa(t — o1 (0)) + fo(.)
25(t) = Gaxa(t) + Faup(t) + Gaaxa(t — ha1(6)) + £2(.)

x(t) = @y(t), Vte[-2.1,0],

(4.1)

where the absolute rotor angle and angular velocity of the machine in each subsystem are denoted by x; =(x11, X12), and x5 =(X21, X22),

respectively; the ith system coefficient A;; the control and uncertain coefficients B; and D;; the ith system perturbations fi(.) ;

gi(.) and the

modulus of the transfer admittance Aj;; output observation z;; the initial input ¢;; the time-varying delays h;;(t) between the two machine

in the subsystem:

hi; =
1, t ¢ H, 1.5, t ¢ H,

H = Upen(2k, (2k + 1)),

-1 0.5 —-0.01 0.02 2 -0.02 0.01
A= , Anp= , Bi1= , D= ,
1 -1.5 0.025 -0.04 1 0.02 -0.03
0.06 -0.06
-0.08 0.08 ’

0.8 -2 1 -0.03 0.03
Fi=FK= , A= , A= ,
0.6 0.5 -1 0.01 -0.05

—-0. .01
B, — 3 . D= 0.03 0.0 ’
2 0.02 -0.01

1+sin%(t), teH, , {1.5+O.65in2(t), teH,

C1=Gzl=C2:G12=[

Vx11(6 + x21 (¢ — hya(t))? Vx11(6)% + x21(t = hya(0))
fi(.)=0.01 , &()=0.1

Vx12(6)% + %2t — ha(£))? Vx12(6)% + x5t — hyo(£))

VX21(6)? + x11(¢ — hgy (£))? Vx21(6)% + x11(t = hgy (0))
fz(.):0.0] s gz(.)=0.1

V/X22(6)? + x12(t — hpy (£))? Vx22(6)% + x15(t — ho (6))

ap=by=ci=dy=e1=0.01, a =by =c; =dy =e; =0.01,

a3 = a1 = g12 = g21 = 0.01.
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5

0 5 10 15 20
Time

Fig. 1. Response solution of the system (4.1).

It is worth nothing that, the delay functions hq,(t), h21(t) are non differentiable, therefore, the controller designed in [10,17-22,24,25]
are not applicable to this system. By using LMI Toolbox in MATLAB [32], the LMI (3.1) is feasible with hy =1, h, =2.1, 8=0.1, y1 =2 =4, and

[0.1072 0.0269] o [0.0258 0.0131]
1= 5 1

~ k. _10-3 | 0-8407 0.7267
0.0269 0.1500 ~ 00131 00587 "7 0.7267 0.6756 |

[0.0341 0.0213] [0.1031 0.0200] [0.0243 0.0070]
1= 5 2 9 = 5

0.0213 0.0476 - | 0.0200 0.1497 | 0.0070 0.0546

0.0007 0.0079 B [0.0297 0.0212]
0.0009 0.0013 | 2~ 0.0212 0.0551 |

0.0018 0.0016 0.0015 0.0019
Ay = s Np= '

Rz:

0.0016 0.0015 0.0019 0.0029
Yy =[-0.0240 -0.0282], Y»=[0.0110 -0.0292],

—0.0284 -0.0166 -0.0247 -0.0149
T {0.0161 0.0430] R [0.0145 0.0459} ’
The feedback control can be obtained as
u(t) = Y1P11x1(t) = [-0.1853 — 0.1545]x1(¢),
uy(t) = YaPo1x2(t) =[0.1488 — 0.2152]x,(t).
Moreover, the solution x(t, ¢) of the system satisfies
IIxX(t, )l < 89.1266e~ 1| p]1.
Fig. 1 shows the trajectories of x;(t) and x,(t) of the closed loop system with the initial conditions ¢1(t)=[2 5], g,(t)=[-3 3]"

5. Conclusion

In this paper, the problem of decentralized H,, control for large-scale nonlinear systems with interval time-varying delays in state
and observation has been studied. By introducing a set of improved Lyapunov-Krasovskii functionals and using new bounding estimation
technique, delay-dependent conditions for the H,, control and exponential stability have been established in terms of linear matrix inequal-
ities. An application to decentralized H,, control of uncertain linear systems with interval time-varying delay has been given. Numerical
examples are given to show the effectiveness of the obtained results.
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