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Asymptotically almost periodic solutions
on the half-line

NGUYEN TRUONG THANH*

Department of Mathematics, Hanoi University of Mining and Geology, Dong Ngac, Tu Liem, Hanoi,
VietNam

(Received 2 November 2004; revised 6 May 2005; in final form 6 June 2005)

In this paper, we first show that if x is a bounded solution of the difference equation x(n þ 1) ¼
Ax(n) þ f(n), ;n [ N and the sequence {xðnÞ}n[N is totally ergodic, sG(A): ¼ s(A) > G is countable and
the sequence {f ðnÞ}n[N is asymptotically almost periodic, then the sequence {xðnÞ}n[N is asymptotically
almost periodic. As an application, we consider the asymptotical periodicity of mild solutions to periodic
evolution equations.

Keywords: Complex Banch space; Periodic evolution; Spectral theory; Discretized equation

1. Introduction

Let us consider the difference equation

xðnþ 1Þ ¼ AxðnÞ þ f ðnÞ; ;n [ N;

where A is a bounded linear operator on a Banach space X, the sequence {f ðnÞ}n[N is

asymptotically almost periodic. We will study a spectral criteria for the existence of

asymptotically almost periodic solutions for the above equation and apply them to study a

similar problem for evolution equation of the form

d

dt
xðtÞ ¼ AðtÞxþ f ðtÞ; t [ Rþ;

where A(t) is a (in general unbounded) linear operator on X, which is periodic and f is

asymptotically almost periodic.

One of the central topics in the qualitative theory of difference equations and differential

equations is to find conditions for the existence of asymptotically almost periodic solutions.

As is well-known, there is a close relation between the behavior of a differential equation and

its discretized equation. This is a motivation of many works on the asymtotic behavior

of difference equations. In this paper, we will first consider the asymptotic periodicity of

solutions to a difference equation by means of spectral theory of sequences. As a result,

we obtain discrete analogs of several results in [2] that will be then applied to periodic

evolution equations to show that a bounded mild solution x is asymptotically almost periodic

if f is asymptotically almost periodic, the sequence {xðnÞ}n[N is bounded and totally ergodic
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and the spectrum of the monodromy operator of the equation contains only countably many

points on the unit cirle. Note that in [3], apart from the coutability conditions of the part of

spectrum of the monodromy operator on the unit cirle, the authors obtained different

conditions in terms of the boundedness, uniform continuity and total ergodicity of x(·).

The main results of this paper are stated in Theorems 3.1, 4.3.

2. Preliminaries

The section will be devoted entirely to the notation and concept of almost periodic sequence

on the line, on the half-line. Almost all results of this section are more or less known.

However, for the reader’s convenience we will quote them here and even verify several

results which seem to be obvious but not available in the mathematical literature.

Throughout this paper we will use the following notations: N, Z, R, Rþ, C stand for the

sets of natural, integer, real, non negative real, complex numbers, recpectively. X denotes a

given complex Banach space. As usual, s(A), r(A), R(l, A) are notations of the spectrum,

resolvent set and resolvent of an operator A. The notations BC(R, X), BUC(R, X), AP(R, X)

will stand for the spaces of all X-valued bounded, bounded uniformly continuous on R and

its subspace of almost periodic (in Bohr’s sense) functions, respectively. Recall that a

function h [ BUCðR;XÞ is called almost periodic (in Bohr’s sense) if the set {SðtÞh; t [ R}

is relatively compact in BUCðR;XÞ, where ðSðtÞÞt[R is the group of translations on

BUCðR;XÞ. The notations BCðRþ;XÞ, BUCðRþ;XÞ, APðRþ;XÞ will stand for the spaces of

all X-valued bounded, bounded uniformly continuous on Rþ and its subspace of almost

periodic (in Bohr’s sense) functions, respectively. In this case, a function h [ BUCðRþ;XÞ is

called almost periodic (in Bohr’s sense) if the set {SðtÞh; t [ Rþ} is relatively compact in

BUCðRþ;XÞ, where ðSðtÞÞt[Rþ is the semigroup of translations on BUCðRþ;XÞ. We denote

by l1ðXÞ; l
þ
1ðXÞ the spaces of all two-side, one side sequences with sup-norm, respectively,

i.e.

l1ðXÞ U {{xðnÞ}n[Z : xðnÞ [ X; sup
n[Z

kxðnÞk , þ1};

lþ1ðXÞ U {{xðnÞ}n[N : xðnÞ [ X; sup
n[N

kxðnÞk , þ1}:

The notation c0 will stand for the subspace of lþ1ðXÞ containing all sequences which

converge to 0. The group of translations ðSðnÞÞn[Z on l1ðXÞ is defined as follows:

SðkÞx U {xðnþ kÞ}n[Z ; x U {xðnÞ}k[Z ; ;k [ Z:

The subspace of l1ðXÞ consisting of all almost periodic sequences is denoted by AP(Z,X).

In this case, a sequence x [ l1ðXÞ is called almost periodic if the set {SðnÞx; n [ Z} is

relatively compact in l1ðXÞ.

The semigroup of translations ðSðnÞÞn[N on lþ1ðXÞ is defined as follows:

SðkÞx U {xðnþ kÞ}n[N; x U {xðnÞ}n[N; ;k [ N:

N. T. Thanh1232
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The subspace of lþ1ðXÞ consisting of all almost periodic sequences is denoted by AP(N,X),

i.e.

APðN;XÞ U span{{lny}n[N; y [ X; l [ G};

where G U {z [ C : jzj ¼ 1}. For more details, we refer the reader to [1,4,6].

2.1 Almost periodic sequences

In this section, we will show some equivalent definitions of almost periodic sequence in

l1ðXÞ, which follows from the Theorem 2.1, 2.2.

A subset Q of J is called relatively dense in J if there exists a length l . 0 such that

Q> ½a; aþ l� – Y; for all a [ J;

where J is one of the four set: R, Rþ, Z, N.

Theorem 2.1 Let x [ l1ðXÞ. Then the following assertions are equivalent.

(i) The set {SðnÞx; n [ Z} is relatively compact in l1ðXÞ.

(ii) The set {SðnÞx; n [ N} is relatively compact in l1ðXÞ.

(iii) For all 1 . 0, the set Q1;x U {t [ Z : kSðtÞx2 xk # 1} is relatively dense in Z.

Proof.

(i) (i) ) (ii). This is trivial.

(ii) (ii) ) (iii). Let 1 . 0. By assumption, there exists n1; n2; . . .; nm [ N such that for

each n [ N, there exists j [ {1,2,. . .,m} such that kSðnÞx2 SðnjÞxk # 1. Let

l U max
j[1;m

nj. We will show that Q1;x > ½n; nþ l� – Y; ;n [ Z.

Let n $ 0. Choose j [ {1,2,. . .,m} such that kSðnþ lÞx2 SðnjÞxk # 1. Let t U n þ

l 2 nj. Then,

kSðtÞx2 xk ¼ kSð2njÞðSðnþ lÞx2 SðnjÞxk ¼ kSðnþ lÞx2 SðnjÞxk # 1:

Thus t [ Q1,x > [n, n þ l]. It leads to Q1;x > ½n; nþ l� – Y for all n $ 0.

Let n , 0. Then there exists j [ {1,2,. . .,m} such that kSð2nÞx2 SðnjÞxk # 1.

Let t U n þ nj. Then

kSðtÞx2 xk ¼ kSðnÞðSð2nÞx2 SðnjÞxk ¼ kSð2nÞx2 SðnjÞxk # 1:

Thus t [ Q1,x > [n, n þ l] for n , 0.

Hence, Q1;x > ½n; nþ l� – Y for all n [ Z:

(iii) (iii) ) (i). Let 1 . 0. By assumption, there exists l [ N such that for all n [ Z;

Q1;x > ½ln; lnþ l� – Y. Let t [ Z. Take n [ Z such that t [ [ln, ln þ l] and choose

t [ Q1,x > [ 2 ln, 2 ln þ l]. Then (t þ t) [ [0,2l]. There exists j [ {1,2,. . .,2l} such

Periodic solutions on the half-line 1233
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that t þ t ¼ j. Thus

kSðtÞx2 SðjÞxk ¼ kSðtÞx2 SðtÞSðtÞxk ¼ kx2 SðtÞxk # 1:

Hence, the orbit {SðtÞx; t [ Z} is covered by balls B1ðSðjÞxÞ U {z [ l1ðXÞ :

kz2 SðjÞxk , 1}ðj [ {1; 2; . . .; 2l}Þ. Thus (i) is proved.

A

Theorem 2.2 Let x [ l1ðXÞ. Then the following assertions are equivalent.

(i) x [ span{{lny}n[Z; l [ G; y [ X}.

(ii) The set Q1;x U {t [ Z : kSðtÞx2 xk # 1} is relatively dense in Z for all 1 $ 0.

(iii) x [ APðZ;XÞ.

In order to prove the theorem, we require the following lemmas.

Lemma 2.3 Let x be a sequence in l1ðXÞ defined by the following formula

xðnÞ ¼
Xm
k¼1

ykl
n
k ; n [ Z; yk [ X; lk [ G; ;k ¼ 1;m:

Then, the sequence x is almost periodic.

Proof. We define a function h : R! X by the following formula

hðtÞ ¼
Xm
k¼1

ykl
t
k:

It is well-known that the function h is almost periodic, this is equivalent to the set

{SðtÞh; t [ R} relatively compact in BUC(R,X). Thus, for any sequences {SðnkÞh; nk [ Z},

we can extract a subsequence, which is denoted again by {SðnkÞh; nk [ Z}; converges to

h0 [ BUCðR;XÞ, i.e.

lim
k!þ1

sup
r[R

kSðnkÞhðrÞ2 h0ðrÞk ¼ 0;

Consequently

lim
k!þ1

sup
r[Z

kSðnkÞhðrÞ2 h0ðrÞk ¼ lim
k!þ1

sup
r[Z

kSðnkÞxðrÞ2 h0ðrÞk ¼ 0:

Hence, {SðnÞx; n [ Z} is relatively compact in l1ðXÞ: Applying the well-known result of

Theorem 2.1, the sequence x should be almost periodic.

A

Lemma 2.4 Let a sequence {xn}n[Z , APðZ;XÞ; which converges to x [ l1ðXÞ with sup-

norm. Then, x [ APðZ;XÞ.

N. T. Thanh1234
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Proof. Let a given 1 . 0 and a [ Z. Take n is large enough such that kxn 2 xk # ð1=3Þ and

t [ Qð1=3Þ;x n > a; aþ l ð1=3Þ; xn
� �� �

: From

kSðtÞx2 xk # kSðtÞx2 SðtÞxnk þ kSðtÞxn 2 xnk þ kx2 xnk # 3
1

3
¼ 1

we have t [ Q1;x > a; aþ l ð1=3Þ; xn
� �� �

: This completes the proof of the lemma.

A

Proposition 2.5 Let a sequence x [ APðZ;XÞ. Then, the function h : R! X defined by

the following formula

hðtÞ U sxðnÞ þ ð1 2 sÞxðnþ 1Þ; ;t [ R : t ¼ snþ ð1 2 sÞðnþ 1Þ; n [ Z; s [ ½0; 1�;

is almost periodic.

Proof of Theorem 2.2. This theorem is implied from Theorem 2.1, Proposition 2.5 and the

two above lemmas.

A

Corollary 2.6 Let x [ APðZ;XÞ. Then there exists a sequence {tn} , Z, tn ! þ 1 such

that kSðtnÞx2 xk # ð1=nÞ. Moreover, for every t [ Z we have

kxk1 ¼ sup
t$t

kxðtÞk:

2.2 Asymptotically almost periodic sequences on the half-line

The main result of the subsection is stated in Theorem 2.14, which says that a totally ergodic

bounded sequence with countable spectrum is asymptotically almost periodic.

Lemma 2.7 For each sequence x [ APðN;XÞ, there exists a unique sequence xe [

APðZ;XÞ such that

(i) xe(n) ¼ x(n), ;n [ N;

(ii) kxek ¼ kxk ¼ sup
t$t

kxðtÞk; ;t [ N.

Proof. By definition, there exists a sequence of trigonometric polynomials

xnðtÞ ¼
Xmn

k¼1

ynkl
t
nk
; ynk [ X; lnk [ G; t [ N;

such that lim n!þ1kx
n 2 xk ¼ 0. We define a sequence of trigonometric polynomials

xn
e [ l1ðXÞ by expanding x n onto Z. Since lim n;m!1sups[Nkx

nðsÞ2 xmðsÞk ¼ 0, it

follows from corollary 2.6 that x n
e n[N is a Cauchy sequence of l1ðXÞ: Hence, there exists

xe [ APðZ;XÞ which is the limit of the sequence. Obviously, xe satisfies (i) and (ii).

Periodic solutions on the half-line 1235
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Suppose that, there exists another sequence {x 0
e} satisfying the two properties. Then,

kx 0
e 2 xek ¼ sup

n$0

kx 0
eðnÞ2 xeðnÞk ¼ sup

n$0

kxðnÞ2 xðnÞk ¼ 0;

(see corollary 2.6). Hence, x 0
e ¼ xe.

A

By using the lemma 2.7, it is easy to see

APðN;XÞ> c0 ¼ {0}:

By

AAPðN;XÞ U c0 %APðN;XÞ

we denote the space of all asymptotically almost periodic sequences on the half-line.

For x ¼ x0 þ x1 with x0 [ c0; x1 [ APðN;XÞ; obviously kxk $ kx1k. Thus AAPðN;XÞ is a

closed subspace of lþ1ðXÞ:

For x [ lþ1ðXÞ and l0 [ G, we say that x is uniformly ergodic at l0 if there exists the limit

Ml0
ðxÞðkÞ ¼ lim

a#0
ax̂kðl0 exp ðaÞÞ; ;k [ N;

where xk ¼ S(k)x and x̂ðlÞ ¼
Pþ1

n¼0 l
2n21SðnÞx for all l [ C; jlj . 1. This is equivalent to

the convergence of Ml0
ðxÞ ¼ lima#0 ax̂ðl0 exp ðaÞÞ:

A sequence x [ lþ1ðXÞ is called totally ergodic if x is uniformly ergodic at each l0 [ G.

A simple calculation shows that if x is uniformly ergodic at l0 then there exists yl0;x [ X

such that Ml0
ðxÞ ¼ {ln0:yl0;x}n[N.

Consequently, Ml0
ðxÞ belongs to the space AP(N;X) whenever x is uniformly ergodic at l0.

Now, we will consider the quotient space

Y U lþ1ðXÞ=AAPðN;XÞ;

with quotient map p : lþ1ðXÞ! Y: Then Y is a Banach space with the norm

kpðxÞkY U inf
g[AAPðN;XÞ

{kx2 gk}; ;x [ lþ1ðXÞ:

We denote p(x) by �x. Since lþ1ðXÞ; AAPðN;XÞ; APðN;XÞ are invariant under the shift

semigroup, we can define a semigroup ðSðnÞÞn[N on Y by

SðnÞ�x ¼ ðSðnÞxÞ:

The interesting fact about this construction is the following:

Lemma 2.8 The operator S is isometric and surjective, where S U Sð1Þ:

Proof. We first show that

k�S�xk ¼ k�xk; ;x [ lþ1ðXÞ:

In fact,

k�S�xk ¼ inf
g[AAPðN;XÞ

kSxþ gk # inf
g[AAPðN;XÞ

kSxþ Sgk # inf
g[AAPðN;XÞ

kxþ gk ¼ k�xk:

N. T. Thanh1236
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Hence,

k�S�xk # k�xk: ð1Þ

For x [ lþ1ðXÞ and g [ AAPðN;XÞ; we define a sequence h : N! X by the formula

hðnÞ U
gðn2 1Þ; n $ 1;

xð0Þ; n ¼ 0:

(

Then h [ AAPðN;XÞ (see proposition 2.7) and

kx2 hk ¼ sup
n$1

kxðnÞ2 gðn2 1Þk ¼ kSx2 gk:

Thus,

k�xk # kx2 hk ¼ kSx2 gk:

Since g is arbitrary so that

k�xk # inf
g[AAPðN;XÞ

kSx2 gk ¼ k�S�xk: ð2Þ

It follows from equations (1) and (2) that

k�S�xk ¼ k�xk; ;x [ lþ1ðXÞ:

Now, we prove the surjectivity of �S: For arbitrary x [ lþ1ðXÞ; we define a sequence

g [ lþ1ðXÞ as follows,

gðnÞ U
xðn2 1Þ; n $ 1;

0; n ¼ 0:

(

It is obvious that

�S�g ¼ �x:

This proves the proposition.

A

We will denote by Mx for x [ lþ1ðXÞ the closure of the subspace of Y spanned by all

elements SðnÞx; n [ Z. In this case, we define

Sð2nÞx ¼ ð0; 0; . . .; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n elements

; xð0Þ; xð1Þ; . . .Þ; n [ N:

Lemma 2.9 Let x [ lþ1ðXÞ. Then Mx is invariant under �S and �SjMx
is isometric, surjective

from Mx onto Mx:

Proof. It is clear from the definition of SðnÞ that �SðSðnÞxÞ [ Mx for all n [ Z: Let �g [ Mx;

then there exists a sequence {gn}n[N , Mx defined as follows

gn ¼
Xmn

k¼1

ankSðnkÞx; nk [ Z; ank [ C;

Periodic solutions on the half-line 1237
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which converges to �g. From

lim
n!1

k�S�g2 �Sgnk ¼ lim
n!1

k�Sð�g2 gnÞk ¼ lim
n!1

k�g2 gnk ¼ 0;

we have �S�g [ Mx, i.e. Mx is invariant under �S. We will show that �SjMx
is surjective. We see

that for all k [ Z then SðkÞx ¼ �SðSðk2 1ÞxÞ; it leads to

gn ¼
Xmn

k¼1

ankSðnkÞx ¼ �S
Xmn

k¼1

ankSðnk 2 1Þx

 !
¼ SðhnÞ;

and kgm 2 gnk ¼ khm 2 hnk; where hn ¼
Pmn

k¼1ankSðnk 2 1Þx; ;n;m [ N. Since

{gn}n[N is a Cauchy sequence in the Banach space Mx; it follows that {hn}n[N is a

Cauchy sequence in the Banach space Mx and the limit belongs to Mx, i.e. �SjMx
is surjective.

A

Remark 2.10 It follows from Lemma 2.9 that sð�SjMx
Þ , G:

Definition 2.11 Let x [ lþ1ðXÞ: The subset of all l0 [ G at which

cxAPxAPðlÞ U
Xþ1

n¼0

l2n21SðnÞ�x; ;l [ C; jlj . 1;

has no holomorphic extension to any neighborhood of l0, is said to be the quotient spectrum

of the sequence x [ lþ1ðXÞ and will be denoted by sþ
APðxÞ:

Lemma 2.12 Let x [ lþ1ðXÞ and l0 [ G, 0 , 1 , ð1=2Þ: Suppose that cxAPxAP has a

holomorphic extension to B1(l0). Then for all �g [ Mx; cgAPgAP has a holomorphic extension to

this neighborhood.

Proof. Let �g [ Mx; there exists a sequence {gn}n[N defined in a similar way to the sequence

of the lemma 2.9, which converges to �g and kgn 2 �gk # 1 for all n [ N:

It is obvious that cgnAPgnAP has a holomorphic extension to this neighborhood for all n [ N andcgnAPgnAP uniformly converges to cgAPgAP on every compact subset of the set {l [ C; jlj . 1}: Let a

given m [ C; jmj . 1. Then knðlÞ ¼ ðl2 �SjMx
ÞRðm; �SjMx

ÞcgnAPgnAPðlÞ defines a holomorphic

function on B1(l0) and knðlÞ ¼ Rðm; �SjMx
Þg�n for n [ N; l [ B1(l0), jlj . 1. By the

uniqueness theorem, knðlÞ ¼ Rðm; �SjMx
Þgn for n [ N; l [ B1(l0). Hence,

l2 �SjMx

� �cgnAPgnAPðlÞ ¼ gn; ;l [ B1ðl0Þ; n [ N:

From isometricity of the operator �SjMx
we have

kcgnAPgnAPðlÞk #
k�gk þ 1

j1 2 jlk
; ;l [ B1ðl0Þ nG:

Using exactly the argument of the proof of the proposition 2.3, page 4 in [5], we can show

that cgAPgAPðlÞ has a holomorphic extension onto B1(l0).

A

N. T. Thanh1238
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Lemma 2.13 Let x [ lþ1ðXÞ: Then s ð�SjMx
Þ , sþ

APðxÞ:

Proof. Let l0 [ G, l0 � sþ
APðxÞ: Then there exists a neighbourhood B1(l0), 0 , 1 , ð1=2Þ

to which cxAPxAP has a holomorphic extension.

Since,

cgAPgAPðlÞ ¼ R l; �SjMx

� �
�g; ;jlj . 1; �g [ Mx;

we have

R l; �SjMx

� �
�g

��� ��� ¼ kcgAPgAPðlÞk # sup
l[Bð1=2Þðl0Þ;jlj.1

kcgAPgAPðlÞk , þ1;

for all l [ Bð1=2Þðl0Þ; jlj . 1. It follows from uniformly bounded principle that

sup
l[Bð1=2Þðl0Þ;jlj.1

R l; �SjMx

� ���� ��� , þ1:

Hence, l0 � s �SjMx

� �
. A

Theorem 2.14 Let x [ lþ1ðXÞ be totally ergodic and sþ
APðxÞ is countable. Then x [

AAPðN;XÞ:

Proof. We will prove the theorem by contradiction. Suppose that x � AAPðN;XÞ. Then, Mx

is a non trivial Banach space and s ð�SjMx
Þ is non empty.

Since sð�SjMx
Þ , sþ

APðxÞ and sð�SjMx
Þ is countable and closed in C; sð�SjMx

Þ is not a perfect

set (see [7], theorem 2.43), and hence sð�SjMx
Þ has an isolated point l0 which is an eigenvalue.

Hence, there exists a non zero z [ Mx such that SðnÞz ¼ ln0z; ;n [ N:

From lim
a#0

ax̂ðl0e
aÞ ¼ Ml0

ðxÞ, we have

lim
a#0

a
Xþ1

k¼0

ðl0e
aÞ2k21SðkÞx ¼ Ml0

ðxÞ ¼ �0:

Moreover, lim
a#0

a
Pþ1

k¼0ðl0e
aÞ2k21SðkÞg ¼ �0; ;g [ Mx:

Observe that the following formula holds:

a
Xþ1

k¼0

ðl0e
aÞ2k21SðkÞz ¼

a

l0ðea 2 1Þ
z:

Letting a # 0, we have z ¼ �0: This contradiction proves the result. A
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3. Asymptotically almost periodic solutions of discrete system on the half-line

Let A be a linear bounded operator on X and f [ lþ1ðXÞ; and consider the abstract

inhomogeneous Cauchy problem

xðnþ 1Þ ¼ AxðnÞ þ f ðnÞ;;n [ N: ð3Þ

Theorem 3.1 Suppose that sG(A) U s (A) > G is countable and f [ AAPðN;XÞ; x is a

bounded solution of equation (3) which is totally ergodic. Then, x [ AAPðN;XÞ.

Proof. Fomula (3) is equivalent to

Sx ¼ A1xþ f ;

where A1x U {AxðnÞ}n[N: Hence �S�x ¼ A1 �x: Therefore, for any l [ C with jlj . 1 we get

ðl2 A1ÞcxAPxAPðlÞ ¼ ðl2 A1Þ
X1
n¼0

l2n21SðnÞ�x

¼
X1
n¼0

l2nSðnÞ�x2
X1
n¼0

l2n21SðnÞ�x ¼ �x;

which shows that cxAPxAP has a holomorphic extension R(l, A1) at any l � sG(A1) ¼ sG(A).

Thus we have sþ
APðxÞ , sGðAÞ: It follows from Theorem 2.14, x [ AAPðN;XÞ:

A

Example 3.2 Let X U Rm; A [ MnðRÞ; f ¼ 0 and s (A) consists m eigenvalues tk,

k [ {1,2,. . .m} which satisfies the following conditions:

(i) tk – ts ;k – s and k, s [ {1,2,. . .,m},

(ii) jtkj # 1;;k [ {1; 2; . . .;m}:

Then, the equation

xðnþ 1Þ ¼ AxðnÞ;;n [ N

satisfies all the conditions of Theorem 3.1.

Proof. It is easy to show that

xðnÞ ¼
Xm
i¼0

tni Pixð0Þ; ;n [ N;

where Pi ¼
Qm

j¼1; j–i
A2tj
ti2tj

; i [ {1; 2; . . .;m}:

To prove the example, we solve the two following cases.
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. x [ c0 is totally ergodic.

Let a given 1 . 0, l0 [ G. Choose n0 : kSðnÞxk # 1; ;n $ n0, we see that

a
X1
n¼0

ðl0e
aÞ2n21SðnÞx

�����
����� # a

Xn0

n¼0

ðl0e
aÞ2n21SðnÞx

�����
�����þ a

X1
n¼n0þ1

ðl0e
aÞ2n21SðnÞx

�����
�����

# jaj
Xn0

n¼0

ðeaÞ2n21kxk þ
1jaje2aðn0þ1Þ

ea 2 1
:

Letting a # 0, it is obvious to show that x is totally ergodic.

. x ¼ {tn0c}n[N : t0 [ G; c [ X is totally ergodic.

We have

a
X1
n¼0

ðl0e
aÞ2n21SðnÞx ¼ a

X1
n¼0

ðl0e
aÞ2n21tn0x ¼

at0

l0eaðt0 2 l0eaÞ
x:

Hence, x is totally ergodic.

Finally, the sum of two totally ergodic sequences is totally ergodic, so the example is

proved.

A

4. Applications to evolution equation

Although the result of previous section should have independent interest, we now discuss

several applications of our result to study the asymptotically almost periodic solutions of

evolution equations.

4.1 Asymptotically almost periodic solutions to periodic evolution equations

We consider in this section the following equation

d

dt
xðtÞ ¼ AðtÞxðtÞ þ f ðtÞ; t [ Rþ; ð5Þ

where A(t) is a (in general unbounded) linear operator on X which is periodic and f is

asymptotically almost periodic. For more details, we refer to [1].

We now consider in the subsection condition for the existence of mild asymptotically

almost periodic solution to equation (5). Once equation (5) is well-posed, this problem is

actually reduced to find conditions for the existence of asymptotically almost periodic

solutions to the following more general equation

xðtÞ ¼ Uðt; sÞxðsÞ þ

ðt
s

Uðt; jÞf ðjÞ dj; ;t $ s $ 0; ð6Þ

where (U(t, s))t$s $ 0 is a 1-evolution process on the half-line, i.e. it satisfies conditions as

stated in the following definition.
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Definition 4.1 A family of bounded linear operators (U(t,s))t$s$0 from a Banach space X

to itself is called 1-periodic strongly continuous evolutionary process on the half-line if the

following conditions are satisfied:

(i) Uðt; tÞ ¼ I; ;t [ Rþ,

(ii) Uðt; sÞUðs; rÞ ¼ Uðt; rÞ; ;t $ s $ r $ 0,

(iii) The map (t,s) ! U(t,s)x is continuous for every fixed x [ X;

(iv) Uðt þ 1; sþ 1Þ ¼ Uðt; sÞ; ;t $ s $ 0;

(v) kUðt; sÞk , Nevðt2sÞ; ;t $ s $ 0, for some positive N, v independent of t, s.

Lemma 4.2 Let (U(t,s))t$s $ 0 be a 1-periodic strongly continuous evolutionary process

and f be asymptotically almost periodic. Suppose that u is a solution on the half-line of

equation (5). Then, if the sequence {uðnÞ}n[N is asymptotically almost periodic, the solution

u is asymptotically almost periodic as well.

Proof. We define a function w from Rþ to X as following

wðtÞ U suðnÞ þ ð1 2 sÞuðnþ 1Þ; t ¼ snþ ð1 2 sÞðnþ 1Þ; s [ ½0; 1�; n [ N:

It is obvious that the function is asymptotically almost periodic. Hence, the function

g(t) U (w(t), f(t)) defined on Rþ is asymptotically almost periodic (see [1], page 305,

Theorem 4.7.4) and the sequence {gðnÞ}n[N is asymptotically almost periodic, too.

For each given 1 . 0, there is a positive real number m such that the following set

Q U Q1;mðgÞ>N

is relatively dense in Z; where

Q1;mðgÞ U {t [ Rþ : sup
t[Rþ;t$m

kgðt þ tÞ2 gðtÞk # 1}:

Hence, for every m [ Q

k f ðmþ tÞ2 f ðtÞk # 1; ;t $ m; kuðmþ nÞ2 uðnÞk # 1; ;n [ N; n $ m:

Since u is a solution of equation (5), we have

kuðnþ mþ sÞ2 uðnþ sÞk # kUðs; 0Þðuðnþ mÞ2 uðnÞÞk

þ

���ðs
0

Uðs; jÞð f ðnþ mþ jÞ2 f ðnþ jÞÞ dj
���

# Nevkuðnþ mÞ2 uðnÞk þ N
ev

v
sup
t[Rþ

k f ðmþ tÞ2 f ðtÞk

for all n $ m, s [ [0,1].

Clearly m [ Q11;mðuÞ for 11 U 1 1 þ ð1=vÞ
� �

Nev: Moreover, it follows from Theorem

4.7.5 (see [1]) that u is asymptotically almost periodic.

A
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Consider the function

gðtÞ U

ðtþ1

t

Uðt þ 1; jÞ f ðjÞ dj; t [ Rþ:

We can easily verify that the sequence {gðnÞ}n[N is asymptotically almost periodic.

Theorem 4.3 Suppose that equation (5) has a bounded solution x(t), sG (U(1,0)) is

countable, the sequence {xðnÞ}n[N is totally ergodic. Then, x(t) is asymptotically almost

periodic.

Proof. From the 1-periodicity of the process (U(t,s))t$s$0, we can deal with the discrete

equation

xðnþ 1Þ ¼ Uð1; 0ÞxðnÞ þ gðnÞ:

By the sequence {gðnÞ}n[N is asymptotically almost periodic, it follows from Theorem 3.1

and Proposition 4.2 that the bounded solution x(t) is asymptotically almost periodic.

A
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