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In this paper, we first show that if x is a bounded solution of the difference equation x(n + 1) =
Ax(n) + f(n), Vn € N and the sequence {x(n)},cp is totally ergodic, o-(A): = o(A) N I is countable and
the sequence {f(n)},ep is asymptotically almost periodic, then the sequence {x(n)},cn 1s asymptotically
almost periodic. As an application, we consider the asymptotical periodicity of mild solutions to periodic
evolution equations.

Keywords: Complex Banch space; Periodic evolution; Spectral theory; Discretized equation

1. Introduction

Let us consider the difference equation
x(n+ 1) =Ax(n) + f(n), Vn €N,

where A is a bounded linear operator on a Banach space X, the sequence {f(n)},en 1S
asymptotically almost periodic. We will study a spectral criteria for the existence of
asymptotically almost periodic solutions for the above equation and apply them to study a
similar problem for evolution equation of the form

%x(r) =A(x+f1), tERT,

where A(?) is a (in general unbounded) linear operator on X, which is periodic and f is
asymptotically almost periodic.

One of the central topics in the qualitative theory of difference equations and differential
equations is to find conditions for the existence of asymptotically almost periodic solutions.
As is well-known, there is a close relation between the behavior of a differential equation and
its discretized equation. This is a motivation of many works on the asymtotic behavior
of difference equations. In this paper, we will first consider the asymptotic periodicity of
solutions to a difference equation by means of spectral theory of sequences. As a result,
we obtain discrete analogs of several results in [2] that will be then applied to periodic
evolution equations to show that a bounded mild solution x is asymptotically almost periodic
if fis asymptotically almost periodic, the sequence {x(n)},cn is bounded and totally ergodic
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and the spectrum of the monodromy operator of the equation contains only countably many
points on the unit cirle. Note that in [3], apart from the coutability conditions of the part of
spectrum of the monodromy operator on the unit cirle, the authors obtained different
conditions in terms of the boundedness, uniform continuity and total ergodicity of x(-).
The main results of this paper are stated in Theorems 3.1, 4.3.

2. Preliminaries

The section will be devoted entirely to the notation and concept of almost periodic sequence
on the line, on the half-line. Almost all results of this section are more or less known.
However, for the reader’s convenience we will quote them here and even verify several
results which seem to be obvious but not available in the mathematical literature.

Throughout this paper we will use the following notations: N, Z, R, R*, C stand for the
sets of natural, integer, real, non negative real, complex numbers, recpectively. X denotes a
given complex Banach space. As usual, o(A), p(A), R(A, A) are notations of the spectrum,
resolvent set and resolvent of an operator A. The notations BC(R, X), BUC(R, X), AP(R, X)
will stand for the spaces of all X-valued bounded, bounded uniformly continuous on R and
its subspace of almost periodic (in Bohr’s sense) functions, respectively. Recall that a
function h € BUC(R, X) is called almost periodic (in Bohr’s sense) if the set {S(¢)h,t € R}
is relatively compact in BUC(R,X), where (S(7)),cg is the group of translations on
BUC(R, X). The notations BC(R", X), BUC(R™,X), AP(R*,X) will stand for the spaces of
all X-valued bounded, bounded uniformly continuous on R" and its subspace of almost
periodic (in Bohr’s sense) functions, respectively. In this case, a function 4 € BUC(R™, X) is
called almost periodic (in Bohr’s sense) if the set {S(t)h,t € R} is relatively compact in
BUC(R™,X), where (8(1)),er+ 1s the semigroup of translations on BUC(R™,X). We denote
by 1. (X), I1,(X) the spaces of all two-side, one side sequences with sup-norm, respectively,
i.e.

LoX) = { {x() sz * 1) € X, sup[lx(m)l| < +eo },

100 := { {a(m)uen : 2() € X, sup [x(w)l] < +o0}.
ne

The notation ¢, will stand for the subspace of [} (X) containing all sequences which
converge to 0. The group of translations (S(n)),cz on Il (X) is defined as follows:

Sx = {x(n+ B }yez, x={x(Mhez, VkEL

The subspace of /., (X) consisting of all almost periodic sequences is denoted by AP(Z,X).
In this case, a sequence x € [»(X) is called almost periodic if the set {S(n)x,n € Z} is
relatively compact in [ (X).

The semigroup of translations (S(n)),en on [5(X) is defined as follows:

Stkyx = {x(n + k) },en, x:={x(M}en, VEkEN.
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The subspace of [ (X) consisting of all almost periodic sequences is denoted by AP(N,X),
ie.

AP(vi) = Span{{)\ny}nENa y EX, AE F}a

where I' := {z € C : |z] = 1}. For more details, we refer the reader to [1,4,6].

2.1 Almost periodic sequences

In this section, we will show some equivalent definitions of almost periodic sequence in
1 (X), which follows from the Theorem 2.1, 2.2.
A subset Q of J is called relatively dense in J if there exists a length / > 0 such that

ONla,a+1]#0, for all a € J,

where J is one of the four set: R, R, Z, N.

THEOREM 2.1 Let x € lo(X). Then the following assertions are equivalent.

(1) The set {S(n)x,n € Z} is relatively compact in l(X).
(ii) The set {S(n)x,n € N} is relatively compact in l«(X).
(iii) For all € > 0, the set Q.= {1 € Z : ||S(n)x — x|l = &} is relatively dense in Z.

Proof.

(i) (1) = (ii). This is trivial.
(i) (ii) = (iii). Let & > 0. By assumption, there exists n,n,,...,n,, € N such that for
each n €N, there exists j € {1,2,...,m} such that [[S(n)x — S(nx|| =e. Let
[ == max n;. We will show that Q,, N [n,n+1] #0, Vn€E Z.
j€Tm
Let n = 0. Choose j € {1,2,...,m} such that [[S(n + D)x — S(nj)x|| = e. Let 7:=n +
[ — n;. Then,

IS(m)x — xll = IS(=n)(S(n + Dx — Snpxll = IS + Dx — S(npxl| = e.

Thus 7€ Q. N [n, n + []. It leads to Q. N [n,n+ 1] # 0 for all n = 0.
Let n < 0. Then there exists j € {1,2,...,m} such that ||S(—n)x — S(n))x|| = e.
Let 7:= n + n;. Then

IS(m)x = x|l = [IS()(S(=m)x = Smpxll = IS(=n)x — S|l = e.

Thus € Q.. N [n, n+ 1] forn <O0.
Hence, Q. N [n,n+1] # 0 foralln € Z.
(iii) (iii) = (i). Let € > 0. By assumption, there exists / € N such that for all n € Z,
Qex N[ln,ln+1] # 0. Let t € Z. Take n € Z such that ¢ € [In, In + [] and choose
TE Qcx N[ — In, —In 4+ []. Then (t + 7) € [0,2]]. There exists j € {1,2,...,2]} such
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that t + 7=j. Thus
1S()x — SGHxll = IS(1)x — SOS(Dx|| = [lx — S(Dxl| = &.

Hence, the orbit {S(f)x,t € Z} is covered by balls B.(S(j)x) = {z € l(X) :
llz — SG)xll < e} € {1,2,...,21}). Thus (i) is proved.

O

THEOREM 2.2  Let x € ls(X). Then the following assertions are equivalent.

() x € span{{A"y},ez, A €'y € X}.
(ii) The set Qg = {17 E Z: |IS(Dx — x|l = &} is relatively dense in Z for all € = 0.
(i) x € AP(Z, X).

In order to prove the theorem, we require the following lemmas.

LEMMA 2.3 Let x be a sequence in 1(X) defined by the following formula

x(n)zZyk/\Z, n€Z, weX, MET Vi=1,m.
=1

Then, the sequence x is almost periodic.

Proof. We define a function £ : R — X by the following formula

h(t) = yihp.
k=1

It is well-known that the function % is almost periodic, this is equivalent to the set
{S(H)h,t € R} relatively compact in BUC(R,X). Thus, for any sequences {S(ny)h,n;, € 7},
we can extract a subsequence, which is denoted again by {S(ny)h,n, € Z}, converges to
hyp € BUC(R, X), i.e.

lim sup [[S(m)h(r) — ho(r)l| = 0;
k—=+00,cR
Consequently
lim sup [IS(i)A(r) — ho(M)Il = lim sup [|S()x(r) — ho(r)l| = 0.
k—+00,e7 k=007

Hence, {S(n)x,n € Z} is relatively compact in l(X). Applying the well-known result of
Theorem 2.1, the sequence x should be almost periodic.

O

LEMMA 2.4 Let a sequence {x"},c7 C AP(Z,X), which converges to x € lo(X) with sup-
norm. Then, x € AP(Z,X).
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Proof. Leta givene > 0 and a € Z. Take n is large enough such that [|x" — x|| = (¢/3) and
7€ Qeyun N |a,a+1((e/3),x")]. From

&
IS(rx = 2l = IS(Dx = SOl + IS(Dx" = 2"l + Iy ="l =37 =e

we have 7€ Q. N [a, a—+ l((s/3),x”)]. This completes the proof of the lemma.
O

PROPOSITION 2.5 Let a sequence x € AP(Z,X). Then, the function h : R — X defined by
the following formula

h(t)=sx(m)+ (1 —sxn+ 1), ViER:t=sn+{1—-s)n+1),nE Z, s €[0,1],

is almost periodic.

Proof of Theorem 2.2. This theorem is implied from Theorem 2.1, Proposition 2.5 and the
two above lemmas.

O

COROLLARY 2.6  Let x € AP(Z,X). Then there exists a sequence {t,} C Z, t, — + oo such
that ||S(t,)x — x|l = (1/n). Moreover, for every T € Z we have

llxlloo = sup [lx(®)I.

=7

2.2 Asymptotically almost periodic sequences on the half-line

The main result of the subsection is stated in Theorem 2.14, which says that a totally ergodic
bounded sequence with countable spectrum is asymptotically almost periodic.

LEMMA 2.7 For each sequence x € AP(N,X), there exists a unique sequence x, €
AP(Z,X) such that

(1) x.(n) =x(n), Vn €N,
(i) llxll = llxll = sup [lx(®ll, V7 € N.

=7

Proof. By definition, there exists a sequence of trigonometric polynomials

My
x"(1) = Zynk)\flk,y,,k EX A, ET, 1 EN,
k=1

such that lim,— |[x" — x|]| = 0. We define a sequence of trigonometric polynomials
x! € lo(X) by expanding x" onto Z. Since lim, ,—cosupsenllx”(s) —x"(s)|l =0, it
follows from corollary 2.6 that x/ _, is a Cauchy sequence of /(X). Hence, there exists
X, € AP(Z,X) which is the limit of the sequence. Obviously, x, satisfies (i) and (ii).
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. ; C .
Suppose that, there exists another sequence {x,} satisfying the two properties. Then,

lIx!, — x|l = sup llx’(n) — x.(w)|l = sup llx(n) — x(n)]| = 0,
n=0 n=0

(see corollary 2.6). Hence, x/, = x,.

By using the lemma 2.7, it is easy to see
AP(N;X) N ¢y = {0}.
By
AAP(N, X) == co DAP(N, X)
we denote the space of all asymptotically almost periodic sequences on the half-line.
For x = xo + x; with xy € co,x; € AP(N, X), obviously [|x]| = ||lx;||. Thus AAP(N,X) is a

closed subspace of [ (X).
For x € I1(X) and Ay € T, we say that x is uniformly ergodic at A, if there exists the limit

M, (x)(k) = lillglw?k()\o exp (@), Vk € N,

where x; = S(k)x and X(A) = :j) A" 1S(m)x for all A € C, |A| > 1. This is equivalent to
the convergence of M), (x) = limy)y ak(Agexp (a)).

A sequence x € [5(X) is called fotally ergodic if x is uniformly ergodic at each Ao € I'.
A simple calculation shows that if x is uniformly ergodic at A, then there exists y,, € X

such that M, (x) = {A§.Yrextnen-
Consequently, M, (x) belongs to the space AP(N;X) whenever x is uniformly ergodic at Ag.
Now, we will consider the quotient space

Y= 1506 /AAP(N, X),
with quotient map 7 : [, (X) — Y. Then Y is a Banach space with the norm

— : _ +
| 7()lly = geAg;)f(Nx){llx gll}, Vx € 15(X).

We denote m(x) by %. Since I (X), AAP(N,X), AP(N,X) are invariant under the shift
semigroup, we can define a semigroup (S(n)),cn on Y by

S(m)x = (S(n)x).
The interesting fact about this construction is the following:

LEMMA 2.8 The operator S is isometric and surjective, where S :== S(1).

Proof. We first show that
ISxll = llxll,  Vx € I5(X).
In fact,

ISx]l = inf [ISx+gll= _inf |ISx+Sgll= inf |lx+gll = lIxll.
gEAAP(N X) gEAAP(N X) gEAAP(N X)
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Hence,
(ISl = lIxIl. (1
For x € I7(X) and g € AAP(N, X), we define a sequence /& : N — X by the formula

gh—1, n=1,
h(n) = { x0), n=0.

Then h € AAP(N, X) (see proposition 2.7) and

llx — All = sup [lx(n) — g(n — DIl = |ISx — gll.
n=1

Thus,
1%l = llx — All = [I1Sx — gl|.
Since g is arbitrary so that

¥]l= inf Sx — gl = ||Sx]|. 2
[IxIl gEAlr}’(N,X)” x — gll = [ISx]| 2

It follows from equations (1) and (2) that
ISzl = llzll,  Vx € [5(X).

Now, we prove the surjectivity of S. For arbitrary x € [Z(X), we define a sequence

g € [£(X) as follows,
x(n—1), n=1,
g = 0, n=0.

It is obvious that

This proves the proposition.

O

We will denote by M, for x € I7(X) the closure of the subspace of Y spanned by all
elements S(n)x, n € Z. In this case, we define

S(—n)x = (0,0,...,0,x(0),x(1),...),n € N.
——

nelements

LEMMA 2.9 Let x € IZ(X). Then M, is invariant under S and SIE is isometric, surjective
from M, onto M,.

Proof. 1t is clear from the definition of S(n) that S(S(n)x) € M, foralln € Z. Let g € M,,
then there exists a sequence {g”},cn C M, defined as follows

my,

? = Z a,,kS(nk)x, n € Z7 a, € C’
k=1
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which converges to g. From
lim |15z — Sg7l = lim 15z — g7l = lim |l — g7l = 0,

we have Sg € M,, i.e. M, is invariant under S. We will show that SIE is surjective. We see
that for all k € Z then S(k)x = S(S(k — 1)x), it leads to

=) o, S =5 (Z 00, Sy = 1)x> = S,
k=1

k=1

and |[lg” — g”ll = lln™ — h"|l, where h" =" a,S( — D)x, VYn,m €N. Since
{g"},en is a Cauchy sequence in the Banach space M,, it follows that {h"},cy is a
Cauchy sequence in the Banach space M, and the limit belongs to M, i.e. § 77, 18 surjective.

O

Remark 2.10 Tt follows from Lemma 2.9 that o(S5) C T

DEFINITION 2.11  Let x € [£(X). The subset of all Ay € I at which
+00 -
Tp(V) =D A" SmE, YAEC, Al > 1,
n=0
has no holomorphic extension to any neighborhood of A, is said to be the quotient spectrum
of the sequence x € I5(X) and will be denoted by o p(x).

LEMMA 2.12 Let x €I5(X) and A ET, 0<e < (1/2). Suppose that X;p has a
holomorphic extension to By(Ao). Then for all § € M., gap has a holomorphic extension to
this neighborhood.

Proof. Letg € M,, there exists a sequence {g"},cn defined in a similar way to the sequence
of the lemma 2.9, which converges to g and [|g” — gl| = 1 for all n € N.

It is obvious that g//’i\P has a holomorphic extension to this neighborhood for all n € N and
gﬁ\P uniformly converges to gap on every compact subset of the set {A € C,|A| > 1}. Let a
given u € C, |ul > 1. Then k,(A) = (A — Sp)R(u; S‘lE)(@,()\) defines a holomorphic
function on Bg(Ag) and k,(A) = R(u; SIE)gﬁ for n €N, A € B,(Ay), |A| > 1. By the
uniqueness theorem, k,(A) = R(w; SIE)? forn € N, A € B.()\g). Hence,

(/\ - SM) (M) =37, VAEB.(\), neN.

From isometricity of the operator SIE we have

— 7 1
g0l = 19 VA € B0 T

Using exactly the argument of the proof of the proposition 2.3, page 4 in [5], we can show
that g4p(A) has a holomorphic extension onto B(A).

O
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LEMMA 2.13  Let x € I5,(X). Then o (Sy) C o7p(%).

Proof. Let Ao €T, Ay & o7} ,(x). Then there exists a neighbourhood B.(A¢), 0 < & < (1/2)
to which x,p has a holomorphic extension.
Since,

gar) = R(A S5z )z, VIA > 1,3 € My,
we have

[R(x:55 )2 =gl = sup ligill < +oo
AEB(2)(Ao),AI>1

for all A € B(,2)(Ao), |A| > 1. It follows from uniformly bounded principle that

sup HR()\;S‘M)H < +o0.
AEB(z/2)(Ao),|AI>1

Hence, Ao & O'(S’M). O

THEOREM 2.14  Let x € I5(X) be totally ergodic and ofp(x) is countable. Then x €
AAP(N, X).

Proof. We will prove the theorem by contradiction. Suppose that x & AAP(N, X). Then, M,
is a non trivial Banach space and U(S'M) is non empty.

Since o-(S'M) C ofp(x) and a(S‘M_) is countable and closed in C, O(SIE) is not a perfect
set (see [7], theorem 2.43), and hence aﬂ(SM) has an isolated point Ay which is an eigenvalue.
Hence, there exists a non zero z € M, such that S(n)z = Ajz, Vn € N.

From lilrl% ax(Aoe®) = M), (x), we have

+o00
lim Aoe ) 1S(k)x = M, (x) = 0.
Lm"‘,;( 0e™) " 1Sx = My, ()

Moreover, lirlgl > Zohoe®) ¥ 1S(kg =0, Vg €EM,.

Observe that the following formula holds:

+o00
aN—k—1GQrN, — «a
a; (hoe) ISz = 3o =

Letting « | 0, we have z = 0. This contradiction proves the result. O
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3. Asymptotically almost periodic solutions of discrete system on the half-line

Let A be a linear bounded operator on X and f € IZ(X), and consider the abstract
inhomogeneous Cauchy problem

x(n+ 1) = Ax(n) + f(n),Vn € N. 3)

THEOREM 3.1  Suppose that o(A) == o(A) NI is countable and f € AAP(N,X), x is a
bounded solution of equation (3) which is totally ergodic. Then, x € AAP(N, X).

Proof. Fomula (3) is equivalent to
Sx = Alx '|‘f7
where Ajx := {Ax(n)},en. Hence S = A;X. Therefore, for any A € C with [A| > 1 we get

(A= ADEp() = A= ADY A" 'S(n)x
n=0

:i/\*nmx_i:)\fnflmx :)_C,
n=0 n=0

which shows that xzp has a holomorphic extension R(A, A;) at any A & or(A;) = op(A).
Thus we have o{,(x) C op(A). It follows from Theorem 2.14, x € AAP(N, X).

O

Example 3.2 Let X =R", A€ M,(R),f =0 and o(A) consists m eigenvalues f,
k € {1,2,...m} which satisfies the following conditions:

() #t,Vk#sand k, s € {1,2,...,m},
() |6l = 1,Vk € {1,2,...,m).

Then, the equation
x(n+ 1) = Ax(n),Vn € N

satisfies all the conditions of Theorem 3.1.

Proof. 1t is easy to show that

x(n) = Z "Pix(0), Vn €N,
i=0

13

m A—t; .
where P; = Hj:lyj# RS {1,2,...,m}.

To prove the example, we solve the two following cases.



Downloaded by [Heriot-Watt University] at 22:13 29 December 2014

Periodic solutions on the half-line 1241

® X € ¢y is totally ergodic.
Let a given & > 0, Ay € I". Choose ng : ||S(n)x|| = &, Vn = ny, we see that

[ no 0
@)~ (Aoe™) ™" S(mx|| = [la) ~ (hoe™) "I Sx|| + [l D (oe®) " S(n)x

n=0 n=0 n=np+1

no —a(np+1)

ay—n—1 8|O(|€
= el (el + 25—
Letting « | 0, it is obvious to show that x is totally ergodic.
o x= {tic}en:to €T, ¢ € Xis totally ergodic.
We have
(o711}

@) (Aoe™) " ISmx = ad (e " x =

= X.
— — Ape*(top — Ape®)
Hence, x is totally ergodic.

Finally, the sum of two totally ergodic sequences is totally ergodic, so the example is
proved.

O
4. Applications to evolution equation

Although the result of previous section should have independent interest, we now discuss
several applications of our result to study the asymptotically almost periodic solutions of
evolution equations.

4.1 Asymptotically almost periodic solutions to periodic evolution equations

We consider in this section the following equation
d +
3O = ADx) 1), 1 E RY, (&)

where A(f) is a (in general unbounded) linear operator on X which is periodic and f is
asymptotically almost periodic. For more details, we refer to [1].

We now consider in the subsection condition for the existence of mild asymptotically
almost periodic solution to equation (5). Once equation (5) is well-posed, this problem is
actually reduced to find conditions for the existence of asymptotically almost periodic
solutions to the following more general equation

X(0) = Ut 5)x(s) + J UG, &f (O dE Vi = 5 = 0, ©)

where (U(t, 5)),=s = o 1S @ 1-evolution process on the half-line, i.e. it satisfies conditions as
stated in the following definition.
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DEFINITION 4.1 A family of bounded linear operators (U(t,5));=s=0 from a Banach space X
to itself is called 1-periodic strongly continuous evolutionary process on the half-line if the
following conditions are satisfied:

() U@t,ry=1, VteR",
(i) U, U@, r)=U(t,r), Vi=s=r=0,
(iii) The map (t,s) — U(t,s)x is continuous for every fixed x € X,
v) U+ 1,s+1)=U(t,s), Vi=s=0,
) U, 9| < Ne®'™9 Yt = s =0, for some positive N, o independent of t, s.

LemmaA 4.2 Let (U(1,5));=s = o0 be a 1-periodic strongly continuous evolutionary process
and f be asymptotically almost periodic. Suppose that u is a solution on the half-line of
equation (5). Then, if the sequence {u(n)}, ey is asymptotically almost periodic, the solution
u is asymptotically almost periodic as well.

Proof. We define a function w from R" to X as following

wit) =sumn)+ (1 —sHun+1), t=sn+{1—-s)(n+1), s€[0,1],n € N.

It is obvious that the function is asymptotically almost periodic. Hence, the function
g() == (w(t), f(t)) defined on R" is asymptotically almost periodic (see [1], page 305,
Theorem 4.7.4) and the sequence {g(n)},cn is asymptotically almost periodic, too.

For each given & > 0, there is a positive real number w such that the following set

Q= Qeu(e) NN

is relatively dense in Z, where

0@ ={7ERT: sup lgt+mn—g0ll=e}.

tERY 1=
Hence, for every m € Q
lfm+1)—fOll=e, Vi=pu, lum-+n —umll=e VneEN n=pu
Since u is a solution of equation (5), we have
lu(n +m+s) —u(n+ sl = UG, 0)(un +m) — um)l|

+|

|, U6 o070+ m+ &~ fn-+ )4t

= Ne“llutn +m) — umll + N= supl fom + 1) — fO)

1eRT

for all n = u, s € [0,1].
Clearly m € Qg, ,(u) for g1 := 8(1 + (l/w))Ne“’. Moreover, it follows from Theorem
4.7.5 (see [1]) that u is asymptotically almost periodic.

O



Downloaded by [Heriot-Watt University] at 22:13 29 December 2014

Periodic solutions on the half-line 1243

Consider the function

t+1

g(r):J UG+ 1,6/0dé 1€ R,

1

We can easily verify that the sequence {g(n)},cn is asymptotically almost periodic.

THEOREM 4.3  Suppose that equation (5) has a bounded solution x(t), or(U(1,0)) is
countable, the sequence {x(n)},cn is totally ergodic. Then, x(t) is asymptotically almost
periodic.

Proof. From the 1-periodicity of the process (U(t,s)),=s=0, We can deal with the discrete
equation

x(n+1)=U,0)x(n) + g(n).

By the sequence {g(n)},cn 1s asymptotically almost periodic, it follows from Theorem 3.1
and Proposition 4.2 that the bounded solution x(7) is asymptotically almost periodic.

O
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