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A B S T R A C T

The Nanwenhe-Song Chay (NSC) area straddles the border of SW China and NE Vietnam, at the tectonic junction
of the Yangtze, Cathaysia, and Indochina blocks. However, the lack of a systematic understanding of the
basement rocks in this area has led to a debate about its tectonic affinity. This study presents integrated bulk
geochemical and zircon U-Pb-Hf isotopic data for the basement rocks in the NSC area. Zircon U-Pb dating results
suggest that the Mengdong Group in SW China and the Thac Ba Formation in NE Vietnam were deposited in the
late Neoproterozoic (< 619–592Ma), while the Tianpeng Formation in SW China and the Ha Giang Formation
in NE Vietnam were deposited in the Cambrian (< 527–507Ma). Bulk geochemical data and zircon Hf-isotope
compositions indicate that the sources of these sedimentary rocks were dominated by felsic rocks. The sources of
the late Neoproterozoic sedimentary rocks probably underwent weaker weathering under drier and colder
conditions than those of the Cambrian ones. The late Neoproterozoic Mengdong Group and the Thac Ba
Formation contain abundant 802–747Ma zircons. Their age distributions and the Hf-isotope compositions are
similar to those of Neoproterozoic sedimentary rocks in the southern Yangtze Block (Fanjingshan-Sibao area). In
contrast, the Cambrian Tianpeng and Ha Giang formations are characterized by Grenvillian detrital zircons with
an age peak at∼980Ma. The age spectra and Hf-isotope compositions of the detrital zircons from these rocks are
similar to those in the Cathaysia Block (Nanling-Yunkai area) and/or Indochina Block.

Integration of our data with published geological data suggests that the Precambrian basement under the NSC
area is the part of the Yangtze Block. Thus, the western boundary between Yangtze and Cathaysia blocks must be
located to the south or southeast and the boundary between the South China and Indochina blocks should be to
the southwest of the NSC area.

Numerous Pan-African (600–500Ma) detrital zircons and the diagnostic age spectra of detrital zircons in the
early Paleozoic sedimentary rocks indicate that the SCB was located at the northern margin of East Gondwana
during the early Paleozoic. The dramatic change in the clastic components from the late Neoproterozoic to
Cambrian sedimentary rocks suggests that the NSC area was probably affected by the Pan-African orogeny.

1. Introduction

Southeast Asia has been built up by the amalgamation of many
Gondwana-derived Precambrian microcontinents, including South
China, Indochina, Sibumasu and west Burma (Metcalfe, 1996, 2002).
The South China Block (SCB) consists of the Yangtze Block to the
northwest and Cathaysia Block to the southeast, which were joined
along the Jiangshan-Shaoxing fault during the early to middle

Neoproterozoic (Gao et al., 2009; Li et al., 1994, 2009; Shu et al., 1994,
2006; Shu, 2012; Wang et al., 2007a, 2008b). The compositions and
evolution of the Precambrian basements of the Yangtze and Cathaysia
blocks are different (Yu et al., 2010; Zhao and Cawood, 2012; Zhang
and Zheng, 2007; Zheng and Zhang, 2007). However, the southwest
extension of the boundary between the Yangtze and Cathaysia blocks
has not been well constrained. Different faults have been considered as
the boundary in past decades (Fig. 1a), including the Wuchuan-Sihui
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fault (e.g. Wang et al., 2003; Zhang and Wang, 2007), the Chenzhou-
Linwu-Beihai fault (e.g. Wang et al., 2008a, 2012c), the Chaling-Ping-
xiang fault (e.g. Hu and Deng, 2009; Wang, 1994), and the Shizong-
Mile fault (e.g. Dong et al., 2002; Guo et al., 2009).

The Indochina Block (ICB) is one of the largest continental blocks in
Southeast Asia. However, the boundary between the ICB and the SCB
also has been controversial. Several possibilities have been proposed,
such as the Dian-Qiong (or Babu) suture (Cai and Zhang, 2009; Wu
et al., 1999; Zhong et al., 1998) in southwestern China, the Song Chay
(Chen et al., 2013, 2014a), the Song Hong (Findlay and Trinh, 1997;
Leloup et al., 1995), Song Da (Sengor and Hsu, 1984) and the Song Ma
faults (Faure et al., 2014; Lepvrier et al., 1997, 2008; Metcalfe, 2013;
Tran and Khuc, 2011) in North Vietnam (Fig. 1a). These NW-striking
faults divide Northern Vietnam into several terranes. Each of them has
experienced a complex tectonic evolution history. These terranes re-
corded not only the collision between the SCB and ICB, but also Tertiary
tectonic events in Northern Vietnam, which are related to the India-Asia
collision and the subsequent lateral extrusion of the Indochina Block
along the Red River shear zone (Gilley et al., 2003; Leloup et al., 1995,
2001; Tapponnier et al., 1990). Therefore, previous studies on Northern
Vietnam have mostly focused on the tectonic, metamorphic and igneous
activity associated with both collision events (Anczkiewicz et al., 2007,
2012; Chen et al., 2014a; Faure et al., 2016a, 2016b; Halpin et al.,
2016; Leloup et al., 1995; Liu et al., 2012b; Wang et al., 1998; Liu et al.,
2012a), whereas only a small number of studies have examined the
Precambrian basement rocks, such as those in the Phan Si Pan Belt that
lies between the Song Da and Song Chay faults (Fig. 1a; Hoang et al.,
2015; Lan et al., 2001;Nam et al., 2003; Pham et al., 2012; Wang et al.,
2016a).

The Nanwenhe (SW China) - Song Chay (NE Vietnam) area (NSC)
has been attributed to the Yangtze Block (e.g. Wang et al., 2016a; Zhou
et al., 2014), the Cathaysia Block (e.g. Cheng and Mao, 2010; Guo et al.,
2009; Xu et al., 2015), or the ICB (Cai and Zhang, 2009). These un-
certainties are mainly ascribed to the lack of a systematic under-
standing of the Precambrian basement rocks in this area. No Pre-
cambrian basement has been studied in detail in NE Vietnam until now.
In this study, we present a suite of bulk geochemical data of the Neo-
proterozoic-Cambrian meta-sedimentary rocks and U-Pb geochronology

and Hf-isotope compositions of detrital zircons from these rocks in the
NSC area, aiming to decipher the detrital components, provenance
features and depositional environments of these sedimentary rocks, and
to sort out the affinity of the NSC basement with the Yangtze, Cathaysia
or Indochina blocks and the crustal evolution of their provenances. This
will help us to clarify the tectonic attributes of the NSC area and con-
sequently to constrain the boundary between the Yangtze and Cath-
aysia blocks as well as between the South China and Indochina blocks.

2. Regional geology and sample petrography

The Precambrian basement rocks in Northern Vietnam are dom-
inantly distributed in the Song Da Belt between the Song Ma fault and
Song Hong fault, including the Phan Si Pan and Nam Co belts (Fig. 1a).
The Phan Si Pan Belt, which outcrops to the southwest of the Song Hong
fault, mainly consists of middle Archean, Paleoproterozoic and Neo-
proterozoic metamorphic igneous rocks and Paleoproterozoic - Neo-
proterozoic meta-sedimentary rocks (Fan et al., 2010; Lan et al., 2001;
Nam et al., 2003; Pham et al., 2009, 2012; Wang et al., 2011, 2016a).
The Nam Co Belt, exposed to the northeast of the Song Ma fault, is
comprised of Neoproterozoic sedimentary rocks that have undergone
greenschist to lower amphibolite facies metamorphism (Faure et al.,
2014).

Our study area is located on the northeastern side of the Song Chay
fault, southwest of the Dian-Qiong suture and southeast of the Shizong-
Mile fault (Fig. 1a). In the Nanwenhe area of SE Yunnan province,
China, the oldest Precambrian sequences generally have been assigned
to the Paleoproterozoic Mengdong Group, which occurs as large irre-
gular bodies or relicts exposed within the centre of the Nanwenhe
granite (BGMRYN, 1999). However, recent research suggests that it was
probably formed in Neoproterozoic time (Guo, 2006; Liu et al., 2006).
The lower part of the Mengdong Group is mainly composed of two-mica
schist and quartz schist interbedded with amphibolite and gneiss, and
the upper part is dominated by leptynite and quartzite. The Xinzhai
Formation, exposed in the periphery of the Nanwenhe granite, is con-
sidered to be Neoproterozoic, younger than the Mengdong Group
(BGMRYN, 1999), and consists mainly of mica schist, and quartz schist
interbedded with fine-grained impure marble. The Cambrian strata are

Fig. 1. (a) Simplified geological map showing the tectonic outline and distribution of Precambrian basement rocks in South China (modified after Zhao and Cawood, 2012) and Indochina
(modified after Mineral resource map of Vietnam at 1: 1,000,000 scale; Usuki et al., 2009). PSP-Phan Si Pan Belt, NC-Nam Co Belt. (b) Simplified geological map and sample locations in
the Nanwenhe-Song Chay area (modified after Maguan, Bac Quang and Ma Quan Geologic maps at 1:200,000 scale; Roger et al., 2000).
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divided, from the base upward, into the Dazhai, Tianpeng, Longha,
Tangjiaba and Bolaitian formations (Fig. 2). The Dazhai Formation is
not exposed in the study area. The Tianpeng Formation is made up of a
succession of limestone, shale, and silty mudstone. The lithology of the
Longha Formation is dolomite, dolomitic limestone with less siltstone,
and silty mudstone. The Tangjiaba Formation consists mainly of argil-
laceous limestone, intercalated with thin layers of mudstone and silt-
stone. The Bolaitian Formation contains massive limestone and dolo-
mite in its upper part and sandy mudstone and siltstone in its lower part
(Fig. 2; BGMRYN, 1999; Zhang, 1996).

In the Song Chay area, NE Vietnam, the Song Chay Group was de-
fined as Neoproterozoic to early Cambrian strata, which are divided
into the Thac Ba and An Phu formations. The former is dominated by
quartzite, mica schist, epidote-plagioclase-hornblende schist with less
interbedded marble, while the latter is composed mainly of graphite-
bearing marble and two-mica schist. The overlying Cambrian succes-
sions consist of the Cam Duong, Ha Giang and Chang Pung formations.
They are composed mainly of meta-sandstone, black schist and phyllite,
with lesser marble (Fig. 2). The Cambrian strata and the Song Chay
Group are intruded by the early Paleozoic Song Chay granite, which
together with the Nanwenhe granite, constitutes the huge Nanwenhe-

Song Chay complex (NSCC) (Zhou et al., 2017). A series of ductile
detachment fault zones developed between these Neoproterozoic to
Cambrian sedimentary rocks and the NSCC. The late Mesozoic Lao-
junshan granitic pluton intruded the northwestern corner of the NSCC
(Fig. 1b). The NSCC and the circumjacent Neoproterozoic-Cretaceous
sedimentary sequence have been defined as the Laojunshan-Song Chay
metamorphic core complex (Liu et al., 2003; Roger et al., 2000). The
metamorphic grade changes sharply from lower amphibolite facies near
the NSCC to the unmetamorphosed cover sequence further from the
NSCC.

In order to reveal the relationship of the basement rocks in the study
area with those in the Yangtze, Cathaysia or Indochina blocks, fifty-one
samples were collected. Based on their petrologic features and dis-
tribution, eighteen of them in the Nanwenhe area (SW China) and
eleven in the Song Chay area (NE Vietnam) were chosen for further
bulk geochemical analyses, and fourteen samples were chosen for
zircon U-Pb dating. Based on the zircon age spectra and CL images,
eight samples were selected for Lu-Hf isotopic analyses. These samples
mostly show gneissose, schistose or phyllitic structures (Fig. 3a-d). The
samples from the Cambrian Tianpeng and Ha Giang formations are
mainly schists, which contain primarily quartz, biotite and muscovite

Fig. 2. Simplified stratigraphic columns of Late Neoproterozoic to Cambrian strata in the Nanwenhe area, SW South China and Song Chay area, NE Vietnam (after BGMRYN, 1990, 1999;
DGMV, 2000; Zhang, 1996). The columns are not strictly to scale.
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with minor plagioclase (Fig. 3e, g). Gneiss, schist and minor quartzite
from Neoproterozoic Mengdong Group, Xinzhai and Thac Ba formations
are dominated by quartz, plagioclase, biotite, and muscovite. Chlorite,
garnet and tourmaline can be found in many samples (Fig. 3f, h).

3. Analytical techniques

Whole-rock major-element concentrations for the samples collected
from the Nanwenhe area, SW China were determined using an ARL-
9900 X-ray fluorescence spectrometer (XRF) at the State Key
Laboratory for Mineral Deposits Research, Nanjing University, with
analytical precisions better than 1% for Si, Al, Fe, Mg, Ca, Na and Ti,
and better than 3% for Mn and K. The samples collected from NE
Vietnam were analyzed by XRF at ALS Laboratory Group’s Mineral
Division, ALS Chemex (Guangzhou, China) Co., Ltd., following the
methods described by Zhao et al. (2015). For elements with

concentrations> 1wt%, the precision was 1–3%, and for those with
concentrations< 1wt%, the precision was approximately 10%. Trace-
element concentrations were obtained at the State Key Laboratory of
Ore Deposit Geochemistry in Guiyang Institute of Geochemistry, Chi-
nese Academy of Science, using a Quadrupole ICP-MS. The analytical
precisions are generally better than 5% for most elements (e.g. Sc, V,
Cr, Co, Ni, Rb, Sr, Y, Zr, Nb, Ba, U, Th, Hf, Pb and REEs), and better than
10% for Cs and Ge. Detailed sample preparation and analytical proce-
dure have been described by Qi et al. (2000).

Cathodoluminescence (CL) imaging, U-Pb dating and Hf-isotope
analyses of the zircon grains were carried out at the State Key
Laboratory for Mineral Deposits Research, Nanjing University, China.
The zircons were separated using conventional magnetic and heavy-
liquid separation techniques. Then zircon grains were handpicked
under a binocular microscope, mounted in epoxy disks and polished to
expose their cores. In situ zircon U-Pb dating was carried out using an

Fig. 3. (a–d) Outcrop features of the Tianpeng Formation (a), Mengdong Group (b), Ha Giang Formation (c), and Thac Ba Formation (d). Hammer is 28 cm long. (e–h) Photomicrographs
of represented samples in the NSC area: (e) biotite schist of Tianpeng Formation; (f) tourmaline-bearing two-mica gneiss of Mengdong Group; (g) fine-grained muscovite quartzite of Ha
Giang Formation; (h) garnet-bearing biotite quartz schist of Thac Ba Formation. Bt-biotite, Pl-Plagioclase, Grt-Garnet, Mus-Muscovite, Q-Quartz, Tour-Tourmaline.
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Agilent 7500s ICP-MS attached to a New Wave 213 nm laser ablation
system. Each run consists of 4 analyses of GJ standard zircon (at the
beginning and end) and 10–15 analyses of unknown zircon grains and
one analysis of an external standard (Mud Tank zircon). A laser spot
size of 32 μm, repetition rate of 5 Hz and energy of 10–20 J/cm2 were
used for all analyses. Detailed analytical procedures are similar to those
described by Griffin et al. (2004) and Jackson et al. (2004). The results
were reduced using the software GLITTER (ver. 4.4) (Griffin et al.,
2008). All age calculations and plotting of Concordia diagrams were
done using the ISOPLOT/Ex program (ver. 3.0) of Ludwig (2003). The
207U/206Pb ages without common-Pb correction are used for zircons
with 207U/206Pb ages older than 900Ma, and 206U/238Pb ages with
common-Pb correction are accepted for younger zircons in this study
(Yu et al., 2010). Discordant ages with concordance of< 85% were
discarded from average age calculations and the following discussions.

In situ zircon Hf-isotope analyses were carried out using a Neptune
Plus multi-collector ICP-MS, equipped with a 193 nm laser ablation
system. Ablation pits of 44 μm diameter, ablation time of 35 s, a re-
petition rate of 10 Hz, and laser beam energy of 8 J/cm2 were used.
Before analyzing unknown samples, the Mud Tank zircon was analyzed
to check instrument reliability and stability, and mean 176Hf/177Hf ratio
of 0.282489 ± 0.000012 (n= 36) was obtained in our analyses,
comparable with a recommended value for Mud Tank
(0.282497 ± 0.000018, Hawkesworth and Kemp, 2006). The analy-
tical conditions and procedure were similar to those described by Hou
et al. (2007) and isobaric interference correction was made by the
methods of Wu et al. (2006). For calculation of the initial 176Hf/177Hf
ratios, the 176Lu decay constant adopted in this paper is 1.865×10−11

per year (Scherer et al., 2001). A depleted-mantle model
(176Hf/177Hf= 0.283250, 176Lu/177Hf= 0.0384; Griffin et al., 2002)
and a chondritic model (176Hf/177Hf= 0.282772,
176Lu/177Hf= 0.0332; Blichert-Toft and Albarède, 1997) were used to
calculate depleted-mantle model ages (TDM) and epsilon Hf values, re-
spectively. We have adopted a mean crustal composition
(176Lu/177Hf= 0.015; Griffin et al., 2002) to calculate a two-stage
crustal model age (TDM

C) for each zircon.

4. Analytical results

4.1. Whole-rock geochemical results

Major- and trace-element compositions of the samples from the
Nanwenhe – Song Chay (NSC) area are presented in Appendix Table 1.
Most samples have negative DF values (Shaw, 1972; Appendix Table 1),
and plot in the sedimentary rock field in the Niggli index discrimination
diagram (Winkler, 1976; the plot is omitted), suggesting that the pro-
toliths of these metamorphic rocks from the Neoproterozoic to Cam-
brian strata are sedimentary rocks, consistent with their petrographic
features, the presence of abundant phyllosilicate minerals and quartz
(Fig. 3) and the morphology and age spectra of the zircon grains within
them. The Cambrian meta-sedimentary rocks from the NSC area have
similar major-element compositions (Appendix Table 1). They have
relatively low SiO2 (mostly 55.6–66.0 wt%), Na2O (0.14–2.65 wt%),
CaO (0.02–1.98 wt%) and high Al2O3 (11.8–21.3 wt%, mostly >
15.0 wt%), K2O (2.91–5.64 wt%). In contrast, those from Neoproter-
ozoic strata have slightly higher SiO2 (mostly 57.8–73.5 wt%), Na2O
(0.15–5.35 wt%), CaO (mostly 0.71–3.88 wt%) and a little lower Al2O3

(9.6–19.3 wt%), K2O (0.62–4.19 wt%). These sedimentary rocks have
similar SiO2/Al2O3 values (2.72–8.04) with an average of 4.31
(Appendix Table 1; Fig. 4a), similar to the Neoproterozoic sedimentary
rocks from the Fanjingshan-Sibao area (average of 4.84; Wang et al.,
2010a, 2012a; Wang and Zhou, 2012) and the Kunming area (average
of 4.80; Sun et al., 2008; Wang et al., 2010b), southern and western
Yangtze Block (Fig. 1a), but lower than those from the Nanling -Yunkai
area, Cathaysia Block (average of 5.42; Wei et al., 2009; Zhou et al.,
2015). K2O/Na2O and Al2O3/(CaO+Na2O) ratios of sedimentary rocks

may indicate the degree of the weathering and decomposition of feld-
spars in the source. The samples from the Cambrian Tianpeng and Ha
Giang formations show generally higher K2O/Na2O and Al2O3/
(CaO+Na2O) than the Neoproterozoic meta-sedimentary rocks
(Fig. 4b), suggesting stronger weathering and decomposition of feld-
spars in their source.

Most of the samples have Rb, Sr, Nb, Th, U, Ni, Cr contents lower
than the Post- Archean Australian Shale (PAAS) (Fig. 5a). In the upper
continental crust (UCC)-normalized spider diagram (Fig. 5a), they dis-
play roughly similar patterns, except for Ba, U and Ni. Most samples
show strong depletion of Sr, and moderate depletion of Zr, Hf, Ba, U and
Ni. The chondrite-normalized REE patterns of the Cambrian and Neo-
proterozoic samples from the NSC area are characterized by moderate
to strong REE fractionation ((La/Yb)N=5.41–20.9) and moderate ne-
gative Eu anomalies (Eu/Eu∗=0.46–0.78), which are similar to those
of PAAS (Fig. 5b). Detailed comparisons indicate that the samples
collected from the Song Chay area have slightly higher REE contents
than those from the Nanwenhe area (Fig. 5b; Appendix Table 1), and
Neoproterozoic sedimentary rocks from both areas have lower total
REE (averages of 131–184 ppm) and differentiation degrees (average
(La/Yb)N of 8.25–10.3) than the Cambrian sedimentary rocks, which
have average REE contents of 171–218 ppm and (La/Yb)N of 11.2–12.3.

4.2. Zircon U-Pb-Hf isotopic results

4.2.1. Cambrian Tianpeng Formation in Nanwenhe area, SW China
Two schist samples (14WS-34, 14WS-35-2) from the Tianpeng

Formation were chosen for zircon U-Pb-Hf isotope analyses. Zircons in
both samples are small, and translucent to light brown. Rounded
morphology is common, but some grains are euhedral and long-pris-
matic. CL images of most grains show broad compositional zoning or
oscillatory zoning, and some grains have overgrowth rims and inherited
cores (Fig. 6a,b).

208 analyzed detrital zircons from these two samples have Th
contents of 3–850 ppm, U contents of 28–2455 ppm, and 88% of zircons
have Th/U > 0.1 (Appendix Table 2). Most of the zircons give con-
cordant U-Pb ages ranging from 3224 ± 19Ma to 507 ± 7Ma, and
can be divided into four major age populations: ∼585Ma, ∼980Ma,
1700–1900Ma, and ∼2500Ma. Sample 14WS-35-2 contains more
Mesoproterozoic zircons with an age peak at ∼1414Ma (Fig. 7a, b).
Because of Pb loss, some grains in both samples are discordant, but they
roughly form two similar Discordia lines with upper and lower intercept
ages at 2528–2477Ma and 958–898Ma (Fig. 6a, b).

176Hf/177Hf ratios of 34 zircons from these two samples range from
0.28100 to 0.28263 with εHf(t) of −21.1 to +7.6, suggesting complex
sources and origins for the magmas from which these zircons crystal-
lized (Fig. 8a; Appendix Table 3). Eight zircons with U-Pb ages of
∼1.0 Ga have large variation of εHf(t) (−20.3 to +2.8) and TDM

C

(3.07–1.73 Ga). Most Mesoproterozoic zircons have positive εHf(t) va-
lues (+2.3 to+ 6.4), while the Paleoproterozoic zircons are dominated
by negative εHf(t) (Fig. 8a). One 1877 ± 24Ma grain has the lowest
εHf(t) (−21.1) and an Eoarchean model age (TDM

C= 3.8 Ga). Three
Archean (∼2.5 Ga) grains have positive εHf(t) varying between+ 2.4
and+ 5.8.

4.2.2. Neoproterozoic Mengdong Group in the Nanwenhe area, SW China
The detrital zircons separated from three Mengdong Group samples

14WS-23, 14WS-10-1 and 14WS-10-2 are transparent, subhedral to
euhedral, and stubby prismatic or sub-rounded. The zircons from
samples 14WS-23 and 14WS-10-1 are relatively small: 20 μm to 70 μm
long and 20 μm to 45 μm wide. Most zircons have clear oscillatory
zoning, and some have overgrowth rims or underwent metamictization,
resulting in heterogeneous internal structures (Fig. 6c∼e).

Zircons from samples 14WS-23 and 14WS-10-1 show similar age
distributions with a concentration of Phanerozoic ages, different from
sample 14WS-10-2 (Fig. 7c∼e; Appendix Table 2). Thirty-seven
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concordant Phanerozoic zircons from both samples give two age peaks
at ∼426Ma and ∼245Ma (Appendix Table 2). These analyses were
carried out on the dark rims or on grains with planar zoning or fan-
shape zoning, which together with their relatively low Th/U values
(most of them<0.2), suggests a metamorphic origin. The other 146
Precambrian zircons from these three samples have relatively high Th/
U, and give concordant U-Pb ages from 2538Ma to 619Ma. The major
age groups for samples 14WS-23 and 14Ws-10-1 range from 621Ma to
829Ma, with three age peaks at ∼630Ma, 743–709Ma, 820–800Ma
(Fig. 7c, d). However, sample 14WS-10-2 shows a single age peak at
782Ma (Fig. 7e). These Mengdong Group sedimentary rocks all contain
minor Mesoproterozoic to Neoarchean materials, and sample 14WS-10-
1 yields a small age group with a peak at 1838Ma.

54 zircon grains were chosen from samples 14WS-10-1 and 14WS-
10-2 for Hf-isotope analysis (Appendix Table 3; Fig. 8b). Zircons in the
major age population of 829–621Ma show a large range of εHf(t)
(−6.9 to +13.0) with TDM

C ages of 2.1–0.87 Ga, suggesting a diversity
of parental-magma compositions. However, they mostly have positive
εHf(t), similar to those from Neoproterozoic sedimentary rocks in the
southern Yangtze Block (Fig. 8b). Three Paleoproterozoic (2.2–1.8 Ga)
zircons have negative εHf(t) and similar Mesoarchean model ages
(TDM

C= 3.1–2.8 Ga).

4.2.3. Cambrian Ha Giang Formation in the Song Chay area, NE Vietnam
Detrital zircons in samples VN14-46-2 and VN14-49-2 from the

Cambrian Ha Giang Formation are transparent to light brown, anhedral
to euhedral and 40 μm to 140 μm long, with aspect ratios of 1.5:1–2.5:1
(Fig. 6f, g). These zircons generally have oscillatory zoning, typical of a
magmatic origin, but some grains show no or irregular internal struc-
ture.

155 zircon grains in these two samples yield a large range of Th
(15–2518 ppm), U (22–3272 ppm) and Th/U (0.12–5.37) (Appendix
Table 2). The largest population of zircons gives concordant Grenvillian
ages with a peak at ca 983Ma (Fig. 7f, g). Mesoproterozoic to Archean
grains define three small age populations of 1248–1221Ma,
1814–1545Ma, and 2517–2430Ma. Many Archean ages are quite dis-
cordant, but some of them fall along discordia lines with upper inter-
cepts at 2443Ma, 2495Ma and 3055Ma (Fig. 6f, g). The youngest
concordant age of detrital zircons in these two samples is 527 ± 7Ma
and the oldest one is 3054 ± 27Ma.

Hf-isotope compositions were analyzed in 42 grains from sample
VN14-46-2 (Fig. 8a; Appendix Table 3). Grenvillian zircon grains have
εHf(t) values of −17.1 to +3.0 and TDM

C of 2.9–1.6 Ga, showing a
higher proportion of zircons with negative εHf(t) than those from the
Cambrian Tianpeng Formation in the Nanwenhe area. Mesoproterozoic
(1.6–1.1 Ga) detrital zircons all have negative εHf(t) varying from
−14.0 to −0.87. The grain with the lowest εHf(t) (−14.0) has a

Fig. 4. Plots of SiO2/Al2O3 vs K2O/Na2O (a) and Al2O3/(CaO+Na2O) vs K2O/Na2O (b). Pink symbol – Nanwenhe samples, blue symbol – Song Chay samples, open symbols – Cambrian
samples, solid symbols – Neoproterozoic samples. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. (a) Upper continental crust (UCC) – normalized trace-element spider diagrams and (b) Chondrite – normalized rare earth element (REE) patterns for metasedimentary rocks from
the NSC area. The UCC composition is from Rudnick and Gao (2003) and data of chondrite and PAAS are from Taylor and McLennan (1985).
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Fig. 6. Zircon U-Pb Concordia plots and CL images of representative zircons from the metasedimentary rocks in the NSC area. Solid yellow circles are spots for U-Pb isotope analyses. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Age spectra of the detrital zircons from the metasedimentary rocks in the NSC area.
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Mesoarchean TDM
C age (ca 3.1 Ga). Paleoproterozoic zircons show a

large variation in εHf(t), from −7.97 to +4.30. Three zircons with
2.9–2.5 Ga ages all have negative εHf(t) of −5.5 to −0.1 and similar
Mesoarchean TDM

C ages (3.4–3.3 Ga).

4.2.4. Neoproterozoic Thac Ba Formation in Song Chay area, NE Vietnam
Seven metasedimentary rocks from the Thac Ba Formation (VN14-

42, 15VN-67-1, VN14-58-1, 15VN-68-2, 15VN-70-1, 15VN-66, 15VN-
72) were collected from the south part of the NSCC (Fig. 1b) for zircon
U-Pb dating. Zircons in these samples have subrounded-rounded,
stubby or irregular shapes, with a few euhedral prismatic grains. The CL
images of most zircons show oscillatory zoning, and a few have planar
zoning, weak zoning or overgrowth rims (Fig. 6 h∼n). Like those in
sample 14WS-23 from the Nanwenhe area, many zircons from sample
15VN-70-1 have broad dark rims (Fig. 6c, l).

A total of 547 zircon grains from these 7 samples were dated
(Appendix Table 2). They mostly have concordance> 85% and Th/
U>0.3. The most notable feature of these samples is a large population
of Neoproterozoic zircons with concordant ages between 900Ma and
620Ma, and striking age peaks at 836–714Ma (Fig. 7 h∼n). The other
two zircon groups are Paleoproterozoic, with age peaks at
1710–1617Ma and 1884–1807Ma. Concordant Mesoproterozoic zir-
cons make up a small proportion of these samples. Thirteen Archean
detrital zircons in these samples have concordant ages ranging from
3105Ma to 2501Ma without any significant age peak.

Furthermore, the samples from the Thac Ba Formation commonly
contain many early Paleozoic (Caledonian) zircons and five late
Paleozoic (366–240Ma) zircons. These Phanerozoic ages are mostly
obtained from the dark rims, overgrowth rims or zircon grains with
little zoning, planar zoning or heterogeneous internal structures, sug-
gesting a metamorphic origin. However, they have a range of Th/U
(0.12–2.53), and a few grains have euhedral and prismatic morphology
with oscillatory zoning. These features indicate that some of them
probably represent anatectic zircons. Pb loss from older zircons and the
growth of metamorphic zircons probably are the response to wide-
spread Indosinian and Caledonian tectonothermal events in this area.
With the exception of these metamorphic zircons, the youngest con-
cordant age of detrital zircons is 592 ± 8Ma.

129 zircons in three samples 15VN-68-2, 15VN-72 and VN14-58-1
were chosen for Hf-isotope analysis (Fig. 8b; Appendix Table 3). The
results show that most Neoproterozoic zircons with U-Pb ages of<
730Ma have negative εHf(t); only 4 of 24 grains have positive εHf(t).
The main (730–856Ma) zircon group exhibits a broad range of εHf(t),
mostly between −9.8 and +10.0. One ∼745Ma grain has the lowest
εHf(t) of −16.4, corresponding to an Archean TDM

C age (2.67 Ga). All
but three of the Mesoproterozoic zircons have positive εHf(t), and all
early Paleoproterozoic (2.0–2.3 Ga) zircons have negative εHf(t), but
late Paleoproterozoic (1.6–1.9 Ga) grains exhibit variable εHf(t) (−9.5
– +8.1) (Fig. 8b). Archean (3.1–2.5 Ga) grains have εHf(t) near zero
and TDM

C ages of 3.4–2.9 Ga.

5. Discussion

5.1. The depositional and metamorphic ages of meta-sedimentary rocks in
the NSC area

The basement metamorphic rocks around the Nanwenhe-Song Chay
Complex in SE Yunnan and NE Vietnam were poorly studied before, and
their depositional ages constrained loosely, due the degree of meta-
morphism. The results of this study can provide significantly better
constraints on the depositional age of these sequences. The youngest
detrital zircons in two Tianpeng Formation samples are 507Ma and
508Ma, suggesting that the deposition of Tianpeng Formation did not
occur before 507Ma. The Tianpeng Formation is intruded by the
423–436Ma Nanwenhe-Song Chay granitic Complex (Zhou et al.,
2017), and therefore must be deposited between 507 and 436Ma. This
age is consistent with the typical middle Cambrian Trilobita identified
in this formation and the overlying Longha Formation (Zhu et al.,
2011a; Zhang, 1996). The samples from the Ha Giang Formation in the
Song Chay area have an age distribution similar to the Tianpeng For-
mation and yield a maximum depositional age of 527–529Ma, sug-
gesting that they are also Cambrian sedimentary rocks.

The Mengdong Group samples have many young detrital zircons
with ages varying from 652Ma to 619Ma, but lack early Paleozoic
detrital zircons. Seven samples from the Thac Ba Formation also contain
abundant young detrital zircons of 600–700Ma, and the three youngest
concordant ages are 592–607Ma. These ages indicate that the
Mengdong Group in the SW China and the Thac Ba Formation in NE
Vietnam have similar depositional ages, and probably were deposited in
late Neoproterozoic time. Liu et al. (2006) defined a gneiss in the
Mengdong Group as metamorphosed Neoproterozoic igneous rock
formed at ca 761Ma. However, the sample contains numerous Neo-
proterozoic zircons with ages varying from 852Ma to 726Ma, and the
∼761Ma zircons show fragmental shapes and are indistinguishable
from other Neoproterozoic ones. Moreover, this sample has extremely
high Al2O3 (22.9% at SiO2 of 53.3%), showing geochemical features of
sedimentary rocks. Therefore, this sample probably is a meta-sedi-
mentary rock, and the dated zircons are detrital ones, suggesting that it
deposited later than 726Ma, consistent with our data in this study.

As mentioned above, the zircon U-Pb dating results and CL images
indicate that most of the late Neoproterozoic sedimentary rocks ex-
perienced two phases of metamorphism in the early Paleozoic
(Caledonian) and the early Mesozoic (Indosinian) respectively.
Metamorphic zircons are mainly found in the medium-grade meta-
morphic rocks from the Mengdong Group and the Thac Ba Formation,
and are rare in the samples from the Cambrian Tianpeng and Ha Giang
formations (Figs. 6, 7). The peak ages of Caledonian metamorphic zir-
cons in the Mengdong Group and Thac Ba formations are 426Ma and
423Ma, coinciding well with the ages of the magmatism in the Nan-
wenhe-Song Chay complex (Peng et al., 2015; Xu et al., 2015; Zhou
et al., 2017). The peak age of Indosinian metamorphic zircons is ca

Fig. 8. Hf isotope compositions of detrital zircons in the sedimentary rocks from the study area, southern Yangtze Block (Wang and Zhou, 2012; Wang et al., 2010a, 2012a), Cathaysia
Block (Wang et al., 2008d; Xu et al., 2013; Yu et al., 2008, 2010) and Indochina Block (Wang et al., 2016b).
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246Ma, similar to the ages of Indosinian granites in the southern Song
Chay Massif (Chen et al., 2014a; Roger et al., 2012; Tran et al., 2008).
Two angular unconformities between Cambrian and overlying Devo-
nian successions and between early Permian and Triassic sequences in
the study area correspond to these two metamorphism events, sug-
gesting that both tectonothermal events in the area were closely related
to strong orogeny.

5.2. The sources of the sedimentary rocks

5.2.1. Paleoweathering conditions
Whole-rock compositions of the sedimentary rocks can provide

important information on the paleo-weathering conditions and char-
acteristics of sedimentary source. The chemical index of alteration
(CIA) and the index of compositional variability (ICV) are commonly
used to deduce the paleo-weathering processes in the source area of
sediments (Bahlburg and Dobrzinski, 2011; Cox et al., 1995; Fedo et al.,
1995; Nesbitt and Young, 1982). Post-depositional K metasomatism is
common in many sedimentary rocks, and can lead to incorrect CIA and
ICV calculations and influence the evaluation on paleoweathering and
paleoclimate. If the effect of K metasomatism is ignored, the weathering
trend line of sedimentary rocks should be subparallel to the A-CN edge
of the A-CN-K diagram (Fig. 9a; Fedo et al., 1995; Nesbitt and Young,
1984). However, many samples in the study area deviate from the
weathering trend line toward the K apex (Fig. 9a), suggesting various
degrees of K metasomatism. Most of them are parallel to the CN-K join,
indicating that K metasomatism in our samples mainly result in the
replacement of plagioclase by K-feldspar. Because this kind of K me-
tasomatism mainly involves mole for mole substitution of K2 for Ca or
Na2, it does not significantly change the CIA and ICV values of our
samples (Wang and Zhou, 2013; Fedo et al., 1995). Most of the Neo-
proterozoic sedimentary rocks have relatively low CIA values ranging
between 50 and 65, similar to tillite and glacial clay (Nesbitt and
Young, 1982). However, their ICV values are relatively high (most of
them>1.1; Fig. 9b). These geochemical features indicate that the
Neoproterozoic sedimentary rocks are immature, poor in clay minerals,
and were derived from first-cycle source materials in an active tectonic
setting (Kamp and Leake, 1985; Cox et al., 1995). Their source probably
underwent relatively weak weathering in relatively dry or cold condi-
tions. The relatively simple age distributions of the detrital zircons from
these rocks also support this inference (Goodge et al., 2004; Cawood
et al., 2012).

In contrast, most of the sedimentary rocks from the Cambrian
Tianpeng and Ha Giang formations have higher CIA and lower ICV
values than the Neoproterozoic samples and PAAS (Fig. 9b; Appendix
Table 1), suggesting that they contain a high proportion of mature
materials (clay minerals) and were deposited in a tectonically quiescent

environment during the Cambrian; their sources experienced stronger
chemical weathering, probably in a warm-humid environment, (Cox
et al., 1995; Fig. 9b; Appendix Table 1). In the discrimination diagram
of tectonic setting (Fig. 10), most Cambrian samples fall into the field of
passive continental margins, whereas late Neoproterozoic samples
dominantly fall into the field of active continental margins, which is
consistent with their ICV values (e.g. Cox et al., 1995; Kamp and Leake,
1985; Perri, 2014). On the other hand, the detrital zircons in the
Cambrian samples have relatively complicated age distributions, and
many zircons are small and highly rounded (Fig. 6). These character-
istics indicate a higher proportion of recycled materials in their pro-
venance. The variation of the CIA values indicates that the paleoclimate
changed from dry-cold to warm-humid conditions from the late Neo-
proterozoic to Cambrian in the study area (Bahlburg and Dobrzinski,
2011; Nesbitt and Young, 1982). The relatively cold paleoclimatic
conditions in the late Neoproterozoic was probably related to the
Gaskier glaciation, like that found in the Doushantuo Formation in the
southern Yangtze Block based on the stratigraphical and carbon-isotope
studies (Condon et al., 2005; Nie et al., 2006; Zhao and Zheng, 2010;
Zhu et al., 2007).

5.2.2. Source components of the sedimentary rocks
The A-CN-K diagram is also an effective tool to constrain the pri-

mitive compositions of source rocks (Fig. 9a; Fedo et al., 1995). As
shown in this diagram, most of the sedimentary rocks from the late
Neoproterozoic – Cambrian strata plot near the predicted weathering
trend starting from granodiorite, with only a few of the Neoproterozoic

Fig. 9. (a) A-CN-K diagram (after Nesbitt and Young, 1984; Fedo et al., 1995). (b) CIA vs ICV diagram (after Cox et al., 1995; Nesbitt and Young, 1982, 1984). Data for PAAS (post-
Archean Australian average shale) is from Taylor and McLennan (1985).

Fig. 10. K2O/Na2O vs SiO2 discrimination diagram of tectonic setting (after Roser and
Korsch, 1986).
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samples near the weathering trend of basalt-andesite, suggesting that
their sources were dominated by felsic rocks with a few mafic or in-
termediate rocks. In the provenance discrimination diagram based on
major elements (Fig. 11a), the Cambrian samples mainly plot in the

field of quartzose sedimentary provenance, similar to the late Neopro-
terozoic sedimentary rocks in the Cathaysia Block (Wei et al., 2009;
Wang et al., 2012b, 2013), whereas the provenance for late Neopro-
terozoic sedimentary rocks in the study area is more similar to those in
the southern Yangtze Block (Fig. 11a).

These source compositions deduced based on the major elements
can be further supported by some data on immobile trace elements,
such as REE, HFSE (e.g. Zr, Hf, Th, U) and transition metals (e.g. Co, Cr,
Sc, Ni, V). In general, felsic rocks have lower contents of Co, Sc, Cr and
higher Th, Zr, Hf, La than mafic rocks (Condie, 1993; Jahn and Condie,
1995). In the plots of Cr/Th vs Th/Sc and V-Ni-La∗4 (Fig. 11b, 11c), all
Neoproterozoic - Cambrian sedimentary rocks in the NSC area plot near
the mixing field between felsic and mafic end members with higher
proportions of the felsic end member. Moreover, the Neoproterozoic
sedimentary rocks generally have higher proportions of mafic compo-
nents in their source than the Cambrian ones. Fig. 11b and 11c also
show that the sources for the late Neoproterozoic and Cambrian sedi-
mentary rocks in the NSC area may be comparable with Neoproterozoic
sedimentary rocks in the southern Yangtze and Cathaysia blocks, re-
spectively, but different from those in the western Yangtze Block.

5.2.3. Provenance of the sedimentary rocks
Detrital zircons from the Neoproterozoic Mengdong Group in SW

South China and the Thac Ba Formation in NE Vietnam have roughly
similar age distributions (Fig. 7c–e, h–n). They contain abundant
middle-late Neoproterozoic detritus with a major age population at
802–747Ma and a subordinate age population at 700–630Ma. Minor
Mesoproterozoic-Mesoarchean grains with an age peak at 1843Ma are
present in these samples. These age spectra are similar to those of
detrital zircons from Neoproterozoic sedimentary rocks in the southern
Yangtze Block (Fanjingshan-Sibao area) (Fig. 12a, b). On the other
hand, the Neoproterozoic and early Mesoproterozoic - late Paleopro-
terozoic (1.7–1.5 Ga) zircons in the Mengdong Group and Thac Ba
Formation mostly have positive εHf(t) values, resembling the detrital
zircons from the Neoproterozoic-early Paleozoic sedimentary rocks in
the southern Yangtze Block (Fanjingshan-Sibao area) (Fig. 8b), sug-
gesting that they probably have similar provenance.

The NSC area is located at the intersection of the southern extension
of the N-S Panxi-Hannan rifting belt in the western margin of the
Yangtze Block, and the western extension of the NEE-striking Jiangnan
orogenic belt on the southern margin of the Yangtze Block (Zhao and
Cawood, 2012). Neoproterozoic magmatism is extensive in these two
belts, including 864–738Ma basic, intermediate and felsic intrusions in
the Panxi belt (e.g. Huang et al., 2008; Li et al., 2003; Liu et al., 2008;
Zhao and Zhou, 2007a, 2007b; Zhou et al., 2002, 2006), and ca
800–836Ma granites with minor 747–855Ma mafic–ultramafic rocks in
the Jiangnan orogenic belt (e.g. Chen et al., 2017a; Ge et al., 2001;
Wang et al., 2006a, 2007b, 2008c; Yao et al., 2014a; Zhou et al., 2009).
In addition, Neoproterozoic granitic rocks (∼828Ma), diorites
(∼800Ma) and amphibolites (815–800Ma) have been identified in the
southeastern part of the Ailaoshan fault zone (Fig. 1a; Cai et al., 2014,
2015; Li et al., 2012), and 736–824Ma granites have been found in the
northwestern part of the Phan Si Pan Belt, NW Vietnam (Li et al.,
2017a; Tran et al., 2016; Wang et al., 2011). These Neoproterozoic
igneous rocks are dominated by felsic rocks with lesser mafic rocks,
consistent with the provenance components identified above. However,
such rocks are absent in the Indochina and Cathaysia blocks. In the plot
of La/Sc vs Co/Th and Sc/Th (Fig. 13), most samples cluster near the
average compositions of the Neoproterozoic granites and diorite in the
western Jiangnan orogenic belt (southern Yangtze) and granites in the
Phan Si Pan Belt, and are similar to the Neoproterozoic sedimentary
rocks in the southern Yangtze block (Fanjingshan-Sibao area). More-
over, these Neoproterozoic rocks have a large range of zircon Hf-isotope
compositions (Li et al., 2017a; Wang et al., 2006b, 2008c; Zhao et al.,
2008; Zheng et al., 2007; Zhou et al., 2009), as do the Neoproterozoic
detrital zircons in our samples. Thus, these Neoproterozoic

Fig. 11. (a) F1-F2 discrimination diagram of sedimentary provenance (after Roser and
Korsch, 1988). (b) Th/Sc vs Cr/Th diagram (Condie and Wronkiewicz, 1990; Totten et al.,
2000). (b) Is a part (shaded area) of inset. Two-component mixing curves are from
Bracciali et al. (2007). (c) V-Ni-La*4 ternary diagram. Data for late Neoproterozoic- early
Paleozoic sedimentary rocks in Cathaysia and Yangtze Block are from Sun et al. (2008),
Wang and Zhou (2012), Wang et al. (2012a, 2010b), Wei et al. (2009), Zhou et al. (2015).
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Fig. 12. Relative probability plots of detrital zircon ages. Only data with concordance> 85% are shown. Data sources for age comparison are the southern Yangtze Block (Wang et al.,
2012a, 2010a; Wang and Zhou, 2012), Cathaysia Block (Wang et al., 2008d; Xu et al., 2013; Yu et al., 2008, 2010), Indochina Block (Wang et al., 2016b), Qiangtang (Zhu et al., 2011b;
Dong et al., 2011), and Tethyan Himalaya (Mcquarrie et al., 2008; Myrow et al., 2010).
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(830–730Ma) magmatic rocks in the southern Yangtze Block and NW
Vietnam probably provided primary detrital materials for the late
Neoproterozoic Mengdong Group and Thac Ba Formation. Late Paleo-
proterozoic to early Mesoproterozoic (1.7–1.5 Ga) mafic magmatism
occurred in the western part of the Yangtze Block (Fan et al., 2013;
Guan et al., 2011; Zhao et al., 2010), and may have provided minor
volumes of detritus for the Mengdong Group and the Thac Ba forma-
tion. ∼1.85 Ga basement rocks crop out sporadically in the northern
Yangtze Block (Xiong et al., 2009), eastern Cathaysia (Liu et al., 2009,
2014; Yu et al., 2009, 2012; Zhao et al., 2014) and northwestern
Vietnam (Hoang et al., 2015; Wang et al., 2016a). However, the late
Paleoproterozoic (∼1.85 Ga) granites in the northern Yangtze Block
and NW Vietnam have much lower zircon εHf(t) (−16.7 to −26.3;
Hoang et al., 2015; Xiong et al., 2009) than contemporaneous zircons in
our samples, suggesting that these igneous rocks are unlikely to be the
source for the late Neoproterozoic sedimentary rocks analyzed here.
Similarly, it is unlikely that these detrital zircons are derived from
distant eastern Cathaysia, since many are euhedral and unrounded. Ca
1.8 Ga detrital zircons are abundant in the late Paleoproterozoic to
early Neoproterozoic sedimentary rocks in the western Yangtze Block,
e.g. the Yinming Formation, Huili Group and Dongchuan Group
(Greentree and Li, 2008; Sun et al., 2009; Zhao et al., 2010), and show
similar Hf-isotope compositions to those in the late Neoproterozoic
sediments in the NSC area. This suggests that they probably have a
similar provenance, or that the late Neoproterozoic sediments in the
NSC area partially came from the recycling of these older sedimentary
rocks. These older sedimentary rocks also contain numerous early Pa-
leoproterozoic to Mesoarchean detrital zircons (3.2–2.1 Ga). Therefore,
these rocks in the western and southwestern Yangtze and northwestern
Vietnam are the most probable source for the late Neoproterozoic se-
diments in the NSC area.

The Cambrian Tianpeng Formation in SE Yunnan and South China,
and the Ha Giang Formation in NE Vietnam, are characterized by

dominantly Grenvillian detrital zircons with an age peak at ∼980Ma.
Subordinate age peaks are Mesoproterozoic (1.4–1.2 Ga), late
Paleoproterozoic (1.85–1.65 Ga), and early Paleoproterozoic to late
Neoarchean (2.5–2.4 Ga) (Fig. 12c). Minor younger grains constitute
two age peaks at 530Ma and 585Ma. Compared with the sedimentary
rocks of the Ha Giang Formation (Fig. 7f, g), the Tianpeng Formation
contains more 1.85–1.65 Ga and ∼1.4 Ga zircons and fewer ∼1.2 Ga
zircons (Fig. 7a, b). Overall, the age spectra of the detrital zircons from
these Cambrian sedimentary rocks are similar to those of the Neopro-
terozoic to early Paleozoic sedimentary rocks in the Nanling-Yunkai
area, western Cathaysia Block, and the Cambrian-early Devonian se-
dimentary rocks in the Truong Son Belt of the Indochina Block
(Fig. 12c∼e). Furthermore, they have similar Hf-isotope compositions
(Fig. 8a), indicating that they probably have the same provenance. In
particular, the early Neoproterozoic zircons in these sedimentary rocks
are characterized by negative εHf(t), much different from the middle-
Neoproterozoic zircons in the late Neoproterozoic sedimentary rocks in
the study area.

Grenvillian magmatic rocks are sparsely exposed in the northern to
western parts of the Yangtze Block (Chen et al., 2017b; Deng et al.,
2017; Jiang et al., 2016; Li et al., 2002, 2017b; Ling et al., 2003), but
the Neoproterozoic (830–740Ma) magmatism is much more extensive
in these areas. Consequently, it is unlikely that the detritus in the
Cambrian sedimentary rocks is derived from these areas. Although few
Grenvillian rocks are known in the Cathaysia and Indochina blocks, the
Neoproterozoic and later sedimentary rocks in the Cathaysia (Nanling-
Yunkai area) and Indochina blocks (Truong Son Belt) characteristically
carry numerous Grenvillian detrital zircons (Fig. 12d, e).

From the southeast to the northwest of the NSC area (i.e. from NE
Vietnam to SE Yunnan), the grain size of Grenvillian zircons in the
Cambrian sedimentary rocks decreases, the psephicity increases and the
age complexity of the detrital zircon populations increases (Figs. 6, 7),
implying that their provenance probably lay to the south or southeast of
the NSC area. This scenario is consistent with the inference raised
above, that a Grenvillian orogenic belt probably existed along the
southern margin of the Cathaysia Block, or nearby to the south (Wang
et al., 2008d; Yu et al., 2008, 2010). Mesoproterozoic 1.3–1.0 Ga me-
tamorphism and∼1.43 Ga magmatism only occurred on Hainan Island,
in the southwestern part of the Cathaysia Block (Li et al., 2008a, 2008b,
2014). Some studies have proposed that Hainan Island probably was
located between NE Vietnam and the Yunkai area until the opening of
the Cenozoic Beibu Gulf (Chen et al., 2013; Replumaz and Tapponnier,
2003). The old basement in the western part of Hainan Island should be
a potential source. Late Paleoproterozoic (1.9–1.6 Ga) and ∼2.5 Ga
detrital materials are abundant in the sedimentary rocks of Cathaysia
and Indochina blocks (Fig. 12d, e). 1.91–1.83 Ga granitoid rocks ex-
posed in eastern Cathaysia have a range of Hf-isotope compositions
similar to contemporaneous detrital zircons in our Cambrian samples
(Liu et al., 2009, 2014; Yu et al., 2009; Zhao et al., 2014), and conse-
quently are a possible source. In addition, ∼1.65 Ga detrital zircons are
abundant in Neoproterozoic sedimentary rocks in the Yunkai terrane of
southwestern Cathaysia Block. They have similar Hf-isotope composi-
tions to zircons in Cambrian sedimentary rocks in the study area, sug-
gesting a similar provenance. Therefore, the detritus of Cambrian se-
dimentary rocks in the NSC area most probably is derived from the
Cathaysia and/or Indochina blocks, or other nearby continents with
components similar to the Cathaysia and Indochina blocks.

5.3. Crustal evolution of the source area

The U-Pb-Hf isotope characteristics of detrital zircons from the late
Neoproterozoic-Cambrian sediments in the NSC area provide a clearer
picture of the Precambrian crustal evolution in their source area.

Based on zircon U-Pb-Hf isotopic features (Fig. 8b; Fig. 12a), the
tectonothermal events in the provenance of the late Neoproterozoic
sedimentary rocks can be roughly divided into five episodes:

Fig. 13. La/Sc vs Co/Th and La/Sc vs Sc/Th variation diagram. Average compositions of
Neoproterozoic igneous rocks from the western Yangtze (Lai et al., 2015; Ling et al.,
2001; Zhao and Zhou, 2007a, 2007b), southwestern Yangtze (Chen et al., 2014b, 2017a;
Wang et al., 2006a), Phan Si Pan belt (Li et al., 2017a) and Ailaoshan belt (Cai et al.,
2015) are used here for comparison. Data for late Neoproterozoic sedimentary rocks in
southern Yangtze Block (Fanjingshan-Sibao area) are from Wang and Zhou (2012), Wang
et al. (2012a, 2010b).
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2.9–2.47 Ga, 2.3–2.1 Ga, 1.9–1.6 Ga, 1.55–1.2 Ga, and 0.93–0.63 Ga.
Most of the Archean (2.9- ∼2.5 Ga) zircons lie slightly above or close to
the evolution line of the Chondritic Uniform Reservoir (CHUR) with a
TDM

C range of 3.4–3.1 Ga (Fig. 8b; calculated by using
176Lu/177Hf= 0.019), suggesting that all the Neoarchean magmas
probably originated from the reworking of the Paleo- to Mesoarchean
(3.4–3.1 Ga) juvenile crust. All the early Paleoproterozoic (2.3–2.1 Ga)
zircons have negative εHf(t) with TDM

C of 2.9–3.4 Ga, and some of the
late Paleoproterozoic (1.9–1.6 Ga) zircons with relatively low εHf(t)
(−5.6 to −9.5) also have TDM

C of 3.4–3.1 Ga (calculated using
176Lu/177Hf= 0.019), suggesting that their host magmas were derived
from similar Paleo-Mesoarchean crust. A smaller number of the late
Paleoproterozoic zircons have Hf-isotope compositions similar to the
Depleted Mantle (DM) at that time (Fig. 8b), suggesting that this period
of magmatism was also associated with the generation of juvenile crust.
The Mesoproterozoic (1.55–1.2 Ga) zircons mostly have positive εHf(t),
except for one grain with much lower εHf(t) (−14.71, TDMC=3.2 Ga),
suggesting that the Mesoproterozoic magmas also mainly originated
from juvenile crust. The Neoproterozoic magmatism is extremely strong
in the provenance of the late-Neoproterozoic sedimentary rocks. This
episode of magmatism may be subdivided into two stages. Early-stage
(0.93–0.75 Ga) magmatism yielded large volumes of igneous rocks and
was associated with the intrusion of mantle-derived magmas (Fig. 8b).
Late-stage (0.75–0.63 Ga) magmatism mainly involved the reworking of
older (∼2.3–1.6 Ga) crust with little input of mantle-derived material.
The two periods of crustal growth (3.4–3.1 Ga and 1.9–1.6 Ga) in the
provenance of the late Neoproterozoic sedimentary rocks are similar to
the growth history of the eastern Australian segment of the Gondwana
supercontinent (Kemp et al., 2006), implying some affinity.

Four episodes of significant magmatism took place in the prove-
nance of the Cambrian sedimentary rocks (Fig. 8a, 12c): 2.6–2.4 Ga,
2.03–1.76 Ga, 1.72–1.4 Ga and 1.1–0.9 Ga. With the exception of one
late Paleoproterozoic (1.88 Ga) zircon with the lowest εHf(t) (−21.1),
other grains with the lowest εHf(t) in each group scatter about an
evolution line that intercepts the DM growth curve at∼3.4 Ga (Fig. 8a),
implying that the oldest crust in the source regions might have been
formed at ca 3.4 Ga. The ∼2.5 Ga zircons have variable Hf-isotope
compositions, and some grains lie close to the DM, suggesting an im-
portant juvenile contribution. The Paleoproterozoic (2.03–1.75 Ga)
zircons mostly have negative εHf(t), and fall between two evolution
lines with TDM

C of 3.4 Ga and 2.5 Ga, suggesting that their host magmas
originated from the reworking of the 3.4 Ga and 2.5 Ga crust or mix-
tures of them. However, the late Paleoproterozoic to the early Meso-
proterozoic (1.7–1.4 Ga) magmatism involves much more juvenile
components, as indicated by their high εHf(t) (Fig. 8a). Although
Grenville-age zircons also show large variations in Hf-isotope compo-
sition, most of them have negative εHf(t) with TDM

C of 3.4–1.8 Ga
(Fig. 8a), indicating that Grenvillian magmatism also mainly involved
the reworking of ancient crust. This scenario is similar that defined by
coeval zircons in the Nanling-Yunkai area of the Cathaysia Block
(Fig. 8a) and the India segment of Gondwana (Zhu et al., 2011b), de-
monstrating that they have similar provenance and were once linked
with each other (Yu et al., 2008).

5.4. Variations in sedimentary sources and their tectonic implication

The different whole-rock geochemical characteristics, age distribu-
tions and Hf-isotope compositions of detrital zircons suggest that the
late Neoproterozoic and Cambrian sedimentary rocks in the study area
have significantly different provenances. The Neoproterozoic sedi-
mentary rocks have an affinity with the Neoproterozoic sedimentary
rocks in the southern Yangtze Block, and the Cambrian ones have an
affinity with those in the Cathaysia and/or Indochina blocks. These
differences demonstrate that the provenances of sedimentation in the
NSC area changed dramatically from the late Neoproterozoic
(< 592Ma) to Cambrian time (< 527Ma). A similar provenance

change from the late Neoproterozoic to Cambrian time also occurred
along the southern margin of the Yangtze Block (Wang et al., 2010c,
2012b, 2013).

There are two possibilities to account for this change. In one sce-
nario, the NSC area was on the margin of the Yangtze Block and was
close to the Cathaysia Block. It received sediments from the Yangtze
Block in late Neoproterozoic time. A tectonic movement led to the re-
lative subsidence of the sedimentary basin in the NSC area and south-
western Yangtze Block, or the northwestward shift of the basin center
between ∼592Ma and<527Ma. At that time, in the early Paleozoic,
the basin in the NSC area began to receive detritus from the Cathaysia
Block or from further south.

In another scenario, these Cambrian sedimentary sequences, as an
allochthonous nappe, originally belonged to the Cathaysia Block, and
were thrust northwestward onto the Neoproterozoic basement in the
NSC area during the Caledonian or Indosinian orogeny. However, no
large fault has been recognized between the late Neoproterozoic and
Cambrian sequences. Deformation features are uniform in the late
Neoproterozoic and the Cambrian sedimentary rocks, and both were
intruded by the early Paleozoic Nanwenhe – Song Chay granitic com-
plex (Zhou et al., 2017). Moreover, from the central to the southern
parts of the Yangtze Block, the early Paleozoic sedimentary successions
change from carbonate‐dominated to interstratified carbonate-silici-
clastic, whereas a neritic siliciclastic succession is widespread in the
Cathaysia Block (Shu et al., 2014; Wang et al., 2010c; Yao et al.,
2014b). The characteristics of early Paleozoic lithofacies paleogeo-
graphy in the NSC area are similar to those in the southern Yangtze
Block (BGMRYN, 1990, 1999; DGMV, 2000; Lepvrier et al., 2011). The
phosphorite of the early Cambrian Cam Duong Formation in NE
Vietnam corresponds to the important marine phosphorite sedimenta-
tion event in the Meishucun stage of the early Cambrian on the
southern and western margins of the Yangtze Block (DGMV, 2000; Mao
et al., 2015; Yue et al., 2013). In addition, numerous trilobite fossils
have been found in the Cambrian strata from both the study area and
the Yangtze Block, but coeval strata in the Nanling-Yunkai area of the
Cathaysia Block are dominated by fossils of micropalaeophytes and
brachipoda (BGMRGX, 1985; BGMRGD, 1988; Chen et al., 2006; Dzik
and Nguyen, 2016; Lepvrier et al., 2011; Zhang, 1996). All these ob-
servations suggest that the Cambrian strata in the NSC area are auto-
chthonous, rather than allochthonous, on the Yangtze Block, arguing
against the second hypothesis.

Wang et al. (2010c) demonstrated that early Paleozoic sediments in
the southern Yangtze Bock have zircon age spectra similar to those in
the Cathaysia Block, although Neoproterozoic sediments in the
southern Yangtze Bock exhibit different detrital components from those
in the Cathaysia Block (Wang and Zhou, 2012; Wang et al., 2007a,
2010a, 2012a; Yu et al., 2008, 2010). Paleocurrent data also indicate
that early Paleozoic sediments were transported toward the W-NNW
(Shu et al., 2014; Wang et al., 2010c), suggesting that early Paleozoic
sediments on the southern margin of Yangtze Block probably were
derived from the Cathaysia Block or its adjacent plates, in agreement
with our new data in this study.

Therefore, the NSC basement probably is part of the Yangtze Block,
suggesting that the western boundary between the Yangtze and
Cathaysia blocks is located to the south or southeast of the NSC area,
and the boundary between the SCB and ICB should be to the southwest.
These suggestions argue against the designation of the Shizong-Mile
fault (Dong et al., 2002; Guo et al., 2009) and Dian-Qiong suture (Cai
and Zhang, 2009; Wu et al., 1999; Zhong et al., 1998) as plate
boundaries.

This discussion suggests that the dramatic change in the prove-
nances of the study area was more probably caused by a tectonic event
between 592 and 527Ma. However, this period of magmatism and
metamorphism, and any obvious angular unconformity, are lacking in
the whole SCB and the study area, implying that this tectonic event
probably only triggered uplift or depression of the sedimentary basin in
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the SCB.
In the middle Neoproterozoic, the SCB broke away from Rodinia

supercontinent, and then gradually drifted toward Gondwana (Fig. 14a;
Li et al., 2008b, 2013; Li and Powell, 2001). The significant change of
paleoclimate from late Neoproterozoic to Cambrian in the study area, as
discussed above, indicates that the SCB probably drifted into lower
palaeolatitudes during this time, which is consistent with the paleo-
magnetic data (Yang et al., 2004; Zhang et al., 2015). The late-Neo-
proterozoic to early-Cambrian (600–500Ma) Pan-African orogeny that
led to the amalgamation of Gondwana is ubiquitous (Fig. 14b; Cawood,
2005; Cawood et al., 2007; Cawood and Buchan, 2007; Collins and
Pisarevsky, 2005; Fitzsimons, 2003). Although the coeval magmatic
rocks are absent in the SCB, detrital zircons of magmatic origin with
Pan-African ages (with peaks of 530Ma and 585Ma) are common in the
early Paleozoic sedimentary rocks of the NSC area and South China
(Fig. 12c, d; Wu et al., 2010; Wang et al., 2010c, 2013; Xiang and Shu,
2010; Yao et al., 2014b), suggesting that the SCB was connected with
Gondwana after ca 527Ma. The age distributions of detrital zircons
from the Cambrian samples in the NSC area are similar to those of the
Cathaysia (Nanling-Yunkai area), Indochina, Qiangtang and Tethyan
Himalaya blocks (Fig. 12c-g), suggesting that they were probably ad-
jacent to each other along the northern margin of India (East Gond-
wana) during the early Paleozoic (Fig. 14b); this is also consistent with
previous research (Burrett et al., 2014; Li et al., 2014; Usuki et al.,
2013; Wang et al., 2010c, 2016b;Yu et al., 2008; Zhu et al., 2011b,
2013). Therefore, South China, including the study area, was a part of
East Gondwana supercontinent and suffered the influence of the Pan-
African orogeny. However, because South China was far from the
orogenic belt, the orogeny only induced vertical movement of the basin
in South China, and did not lead to extensive magmatism and meta-
morphism in that area.

6. Conclusions

(1) The Mengdong Group (SW China) and the Thac Ba Formation (NE
Vietnam) were deposited on an active continental margin in the late
Neoproterozoic (< 619–592Ma). The Tianpeng Formation (SW
China) and the Ha Giang Formation (NE Vietnam) were deposited
on a passive continental margin in the Cambrian (< 527–507Ma).

(2) The late Neoproterozoic sedimentary rocks in the NSC area have an

affinity with the Neoproterozoic sedimentary rocks in the southern
Yangtze Block (Fanjingshan-Sibao area). Their provenance contains
relatively more mafic materials and had undergone weak weath-
ering in cold and dry conditions. Tectonothermal events in the
provenance mainly occurred at 2.9–2.47 Ga, 2.3–2.1 Ga,
1.9–1.6 Ga, 1.55–1.2 Ga and 0.93–0.63 Ga, and juvenile crust was
mainly generated at 3.4–3.1 Ga, 1.9–1.6 Ga, 1.55–1.45 Ga and
0.93–0.75 Ga.

(3) The Cambrian sedimentary rocks in the NSC area have an affinity
with the Neoproterozoic to early Paleozoic sedimentary rocks in the
Cathaysia Block (Nanling-Yunkai area) and Indochina Block
(Truong Son Belt). Their sources were dominated by felsic rocks,
and had experienced strong chemical weathering in a warm and
humid environment. The source area experienced significant mag-
matic events at 2.6–2.4 Ga, 2.03–1.76 Ga, 1.72–1.4 Ga and
1.1–0.9 Ga, with the main generation of juvenile crust at ∼3.4 Ga,
∼2.5 Ga and ∼1.7–1.4 Ga.

(4) The basement of the NSC area belongs to the Yangtze Block. The
western boundary between the Yangtze and Cathaysia blocks
should be located to the south or southeast of NSC area, and the
boundary between the SCB and ICB should be to the southwest.

(5) The SCB was connected to the northern margin of East Gondwana
supercontinent after ca 527Ma. The Pan-African orogeny caused
the vertical movement of the basin in South China, and resulted in a
dramatic change of the provenance of its sediments.
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