HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY INTERNATIONAL TRAINING INSTITUTE FOR MATERIALS SCIENCE

PROCEEDINGS ICAMN 2019

THE 4TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND NANOTECHNOLOGY

OCTOBER 13-16, 2019

HANOI, VIETNAM

ISBN: 978-604-950-978-0

CONTENTS

No.	Title and Author	Page	
1	Size-dependent electrochemical properties of gold nanoparticles modified on carbon screen- printed electrodes towards biosensing applications Vu Quang Khue, Vu Ngoc Phan, Le Anh Tuan, Tran Quang Huy	1	
2	Magnetic properties and magnetocaloric effect of Fe _{30-x} Co _x Zr ₇ Cu ₁ B ₂ rapidly quenched alloys Nguyen Hai Yen, Nguyen Hoang Ha, Pham Thi Thanh, Nguyen Huy Ngoc, and Nguyen Huy Dan	6	
3	Microstructure, magnetic and electrical properties of (La, Ni) co-doped BiFeO ₃ materials Dao Viet Thang, Nguyen Manh Hung, Le Thi Mai Oanh, Du Thi Xuan Thao, Bui Dinh Tu, Bui Thi Thu, and Nguyen Van Minh		
4	Effects of Fe₃O₄ nanoparticle addition on structural and superconducting properties of Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_{10+δ} system An T. Pham, Thao V. Nguyen, Yen T. Pham, Duc H. Tran, Nguyen K. Man, Dang T. B. Hop	17	
5	Effect of ZnO on magnetic properties of NiFe2O4/ZnO nanocomposites Dinh Khac Huy, To Thanh Loan, Nguyen Kim Thanh, Le Duc Hien, Tran Duc Hoan		
6	Synthesis and magnetic properties of SrFe12O19/Fe3O4 nanocomposites with core-shell structure Tran Thi Viet Nga, Nguyen Ha Thi, Nguyen Thi Lan and Pham The Kien		
7	Influence of additional micro-sized particles on magnetic properties of sintered Nd-Fe-B magnets Pham Thi Thanh, Dinh Thi Kim Oanh, Nguyen Van Duong, Nguyen Huy Ngoc, Nguyen Hai Yen, Nguyen Huy Dan	30	
8	Improvements of flux pinning properties in Bi _{1.6} Pb _{0.4} Sr ₂ Ca ₂ Cu ₂ O _{10+δ} system by Na substitutions An T. Pham, Duc V. Ngo, Duc H. Tran, Nguyen K. Man, Dang T. B. Hop	36	
9	Synthesis and micromagnetic structure of CoNiP magnetic nanowire Do Quang Ngoc, Tran Quang Huy, Vu Thi Huyen Trang, Le Tuan Tu	40	
10	Effect of Ce ⁴⁺ doping on structure and properties of yttrium iron garnet Dao Thi Thuy Nguyet, Nguyen Phuc Duong	44	
11	Negative diffusivity and uphill diffusion of vacancy during boron diffusion in silicon Vu Ba Dung	48	
12	Tetrahedral network structure and dynamics in silica liquid. Nguyen Thi Thanh Ha	52	
13	A-site influence on optical and magnetic responses of Fe based perovskite solid solutions in lead-free ferroelectric Bi0.5Na0.5TiO3 materials Nguyen The Hung, Nguyen Anh Duc, Nguyen Xuan Duong, and Dang Duc Dung		
14	Study of (Al₂O₃-SiO₂)-based Geopolymer materials with different composition using Molecular Dynamics simulation Mai Thi Lan, Nguyen Thu Nhan, Nguyen Thi Trang, Nguyen Van Hong		
15	Effect of Operation Medium on Plasmonic Wave Guiding characteristics of Ag, Au and Al metals Nguyen Thanh Huong, Trinh Thi Ha, Chu Manh Hoang	70	
16	Local structure and diffusion mechanism in network forming liquid Nguyen Van Hong, Hoang Viet Hung, Luyen Thi San	74	

Microstructure, magnetic and electrical properties of (La, Ni) co-doped BiFeO₃ materials

Dao Viet Thang^{1,2*}, Nguyen Manh Hung^{1,2}, Le Thi Mai Oanh², Du Thi Xuan Thao¹, Bui Dinh Tu³, Bui Thi Thu², and Nguyen Van Minh²

¹Department of Physics, Hanoi University of Mining and Geology, North Tuliem District, Hanoi, Vietnam ²Center for Nano Science and Technology, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi, Vietnam

³Faculty of Engineering Physics and Nanotechnology, VNU-University of Engineering and Technology, 144 Xuan Thuy Road, Cau Giav District, Hanoi, Vietnam

*Corresponding author: daovietthang@humg.edu.vn

Abstract: -Multiferroics BiFeO₃ (BFO), Ni doped BiFeO₃ (BFNO), and (La, Ni) co-doped BiFeO₃ (BLFNO) materials were synthesized by sol-gel method. Effects of Ni-doping and (La, Ni) co-doping on structural, magnetic and electrical properties of BFO materials were investigated by different techniques as X-ray diffraction (XRD), energy dispersion X-ray (EDX), Raman scattering, magnetization hysteresis loops (*M*-*H*), and complex impedance spectra measurement. Analysis results of XRD measurement shows that all samples crystallize in the rhombohedral structure with R_{3C} space group. The BFO sample has crystal lattice parameters a = 5.580 Å, c = 13.865 Å and average crystal size $L_{XRD} = 58$ nm. The BFNO sample has a = 5.582 Å, c = 13.868 Å and $L_{XRD} = 55$ nm. However, BLFNO samples have crystal lattice parameters a, c and L_{XRD} decrease when concentration of La increases. Results of Raman scattering spectra shows that the peaks position characterize of Bi-O covalent bonds shifted toward higher frequency when concentration of La increases, which confirms that La substitutes into Bi-site. Magnetization hysteresis loops measurement indicates all samples present weak ferromagnetic behavior. BFO sample presents weak ferromagnetic behavior with saturation magnetization Ms = 0.037 emu/g and remnant magnetization Mr = 0.004 emu/g. The Ms and Mr values of co-doping samples enhance compare to that of BFO. Origin ferromagnetism of materials will be discussed in this report.

Keywords: X-ray, Raman, (La, Ni) co-doped, ferromagnetic, impedance.

I. INTRODUCTION

Multiferroics materials coexist ferromagnetic (antiferromagnetic), ferroelectric, ferroelastic orders, and magneto-electric (ME) effect in the same structure phase, which have been reported by previous studies [1-4]. Therefore, these materials can be used application in electronic device as store information, memory, sensor, ultrasonic broadcast. However, the competition between ferromagnetic and ferroelectric orders lead to the multiferroics materials are very rare in nature.

BiFeO₃ (BFO) is one of multiferroics materials nature coexists both anti-ferromagnetic order ($T_N \sim$ 643 K) and ferroelectric order ($T_C \sim 1100$ K) [3]. However, BFO has small saturation magnetization and polarization electric at room temperature, which limits the applicability of this materials. This problem may be solved by modification magnetic and electric properties of BFO. Previous studies showed that magnetization of BFO was improved by substitution of rare earth ions (Gd³⁺, Ho³⁺, Sm³⁺, Nd³⁺, etc.) into Bi-sites [5-7] or transition metal ions (Ni²⁺, Co²⁺, Mn²⁺, etc.) into Fe-sites [8-10]. Recently, some studied showed that both ferromagnetic and ferroelectric properties enhanced when rare earth and transition metal ions co-doped into BFO host materials [11-13].

In this work, we to choose La and Ni co-doped into BFO. Because La-doped BiFeO₃ presented improved dielectric properties, Ni substitution for Fe-site can affect magnetic properties to greater extent and that may be large ME effect at room temperature [14, 15]. Our results will indicate the change structural, magnetic and electric properties of BFO when La and Ni substitute into Bi-sites and Fe-sites, respectively.

II. EXPERIMENTAL

The pure BiFeO₃, Ni doped BiFeO₃, and (La, Ni) co-doped BiFeO₃ materials were synthesized sol-gel method. The chemicals bv used Bi(NO₃)₃.5H₂O, Fe(NO₃)₃.9H₂O, La(NO₃)₃.6H₂O, $Ni(NO_3)_2.6H_2O$, ethylene glycol solution $C_2H_6O_2$, and citric acid. Firstly, the Bi(NO₃)₃.5H₂O, Fe(NO₃)₃.9H₂O, $La(NO_3)_{3.6}H_2O_{,}$ and Ni(NO₃)₂.6H₂O were soluble in 35 ml citric acid solution. Then, the solution mixed by magnetic stirrer at temperature range 50 ÷ 60 °C in 45 minutes obtained to sol. The next, temperature of the sol was increased up to 100 °C to evaporation water, which obtained to wet gel after 3 hours. The gel was dried at temperature 130 °C in 4 hours. Finally, dry gel was annealed at temperature 800 °C in 7 hours obtained powders materials.

The microstructures, magnetic and electrical properties of all samples were investigated by X-ray diffraction (XRD, Equinox 500), energy dispersion X-ray (EDX, Quanta 450), Raman scattering (LabRAM HR Evolution, $\lambda = 532$ nm), magnetization hysteresis loops (M-H, Lake Shore Cryotronics Westerville, 7404), and complex impedance spectra (LeCroy equipment and LabView 8.0 software).

III. RESULTS AND DISCUSSION

The chemical composition of pure BFO and $Bi_{1-x}La_xFe_{0.97}Ni_{0.03}O_3$ (x = 0.00, 0.05, 0.10 and 0.15) powders investigated by EDX measurement, as are shown in Fig 1. As see in Fig. 1, EDX spectra of BFO sample appears characteristic peaks for Bi, Fe and O elements. The EDX spectra of Ni-doped BiFeO₃ (x = 0.00) appears characteristic peaks for Bi, Fe, O, and Ni elements while that of (La, Ni) co-doped samples appear characteristic peaks for Bi, Fe, O, Ni and La elements. Intensity of characteristic peaks of La increases as concentration of La increases. This is initial information, which is necessary to study physical properties of all the samples.

Figure 1. EDX spectra of BFO and $Bi_{1-x}La_xFe_{0.97}Ni_{0.03}O_3$ (x = 0.00, 0.005, 0.10 and 0.15) powders.

The phase formation and crystal structure of BFO and (La, Ni) co-doped BFO materials are investigated by XRD measurement. Fig. 2a shows X-ray diffraction diagram of BFO and (La, Ni) co-doped BFO powders. The XRD pattern of the all samples exhibit rhombohedral structure of BiFeO₃ crystal structure (JPCDS No. 71-2494). The main peaks can be indexed to the (012), (104), (110),

(006), (202), (024), (116), (122), (018), and (300) reflections, as are shown in Fig. 2a.

Figure 2. XRD patterns of BFO and $Bi_{1-x}La_xFe_{0.97}Ni_{0.03}O_3$ (*x* = 0.00, 0.05, 0.10, and 0.15) powders.

The XRD patterns shows that La^{3+} and Ni^{2+} ions are well dissolved into the BFO crystal lattice. However, the effect of (La, Ni) co-doping into crystal structure of BFO may be observed by comparing the location of (012), (104), and (110) diffraction peaks, as are inserted in Fig 2a. The diffraction peaks of sample with x = 0.00 shifts toward lower 2θ compare to that of BFO.

From data of XRD measurement, crystal lattice parameters and average crystalline size (L_{XRD}) have been determined by using UnitCell software and Sherrer's formula, as are shown in Table 1. As see in Table 1, the BFO sample has crystal lattice parameters a = 5.580 Å, c = 13.865 Å and average crystalline size $L_{XRD} = 58$ nm, the Ni-doped sample has crystal lattice a = 5.582 Å, c = 13.868Å and average crystalline $L_{XRD} = 55$ nm. While the crystal lattice parameters and average crystalline size of (La, Ni) co-doped samples decrease when concentration of La increases. The observation can be easily understood due to the larger ionic radius of Ni²⁺ (0.69 Å) compare to that of Fe³⁺ (0.65 Å). For (La, Ni) co-doped samples, the diffraction peaks position shifts toward higher 2θ compare to that of sample x = 0.00, which could be explained the smaller ionic radius of La³⁺ (1.16 Å) compare to that of Bi³⁺ (1.17 Å) [14].

Table 1. Crystal lattice parameters and average crystalline size of BFO and $Bi_{1-x}La_xFe_{0.97}Ni_{0.03}O_3$ samples.

Samples	a (Å)	<i>c</i> (Å)	$L_{\rm XRD}$ (nm)
BFO	5.580	13.865	58
<i>x</i> = 0.00	5.582	13.868	55
<i>x</i> = 0.05	5.570	13.825	50
<i>x</i> = 0.10	5.562	13.792	47
<i>x</i> = 0.15	5.548	13.788	35

Figure 3. Raman scattering spectra of BFO and $Bi_{1-x}La_xFe_{0.97}Ni_{0.03}O_3$ (x = 0.00, 0.05, 0.10, and 0.15) materials.

Raman scattering spectra of BFO and Bi1- $_{x}La_{x}Fe_{0.97}Ni_{0.03}O_{3}$ samples in the range of 100 \div 800 cm^{-1} at room temperature are shown in Fig. 3. The spectrum of pure BFO has twelfth Raman modes at 139, 173, 225, 252, 262, 285, 336, 433, 474, 521, 555, and 706 cm⁻¹. They are signed as in Fig. 3. The modes frequencies are in good agreement with other reports. Previous studies showed that the modes at low frequency characterize to Bi-O bonds, while the modes at high frequency characterize to Fe-O bonds [16]. For Ni-doped sample (x = 0.00), the position of E-2, E-3, E-4, and E-5 modes shift toward higher frequency, the position of E-8, E-9 modes shift toward lower frequency compare to that of pure BFO. Analysis Raman scattering of (La, Ni) codoped samples indicate that the position of A_1 -1, A1-2, A1-3, A1-4, E-3, E-6, E-7, E-8, and E-9 modes shift toward higher frequency compare to that of Ni-doped sample. Previous studies showed that the A_1 and E modes at lower frequency characterize to Bi-O covalent bonds, other E

14

modes characterize to Fe-O covalent bonds [14, 17]. The change position of Raman modes confirms La^{3+} and Ni^{2+} ions substitute into Bi-sites and Fe-sites, respectively. This result is consistent with XRD result, which shows La^{3+} and Ni^{2+} co-doped into BFO lead to decrease crystal lattice parameters.

Figure 4. Magnetization hysteresis loop of BFO and $Bi_{1-x}La_xFe_{0.97}Ni_{0.03}O_3$ materials.

Fig. 4a shows magnetization hysteresis loops of BiFeO₃ and Bi_{1-x}La_xFe_{0.97}Ni_{0.03}O₃ samples. As see in Fig. 4a, all samples present weak ferromagnetic behavior. Saturation magnetization (Ms) and remnant magnetization (Mr) of BFO are 0.037 emu/g and 0.004 emu/g, respectively. The Ms and *Mr* of Ni doped sample (x = 0.00) increase up to 0.810 emu/g and 0.246 emu/g, respectively. It is understood due to Ni substitutes into Fe-sites to appear double exchange interaction Fe³⁺-O²⁻-Ni²⁺ and oxygen vacancies leading to increase of the magnetization [18, 19]. Analysis magnetization hysteresis loops of (La, Ni) co-doped samples indicates the Ms and Mr of these samples decrease compare to that of x = 0.00 sample when concentration of La increases. However, the Ms and Mr of (La, Ni) co-doped samples is higher than that of BFO sample. As see in Fig. 4b, both Ms and Mr decrease when concentration of La^{3+} increases from x = 0.00 to x = 0.10. When concentration of La^{3+} increases up to x = 0.15 both Ms and Mr slight increases. It can be explained La substituted into Bi-sites lead to decrease double exchange interaction Fe³⁺ - O²⁻ - Ni²⁺ and oxygen vacancy. This can be reason make to decrease magnetization.

Figure 5. Impedance spectra of BiFeO₃ and Bi₁₋ $_xLa_xFe_{0.97}Ni_{0.03}O_3$ materials: (a) BiFeO₃; (b) x = 0.00; (c) x = 0.05; (d) x = 0.15.

Complex impedance spectra of BiFeO₃ and Bi₁₋ _xLa_xFe_{0.97}Ni_{0.03}O₃ materials are shown in Fig. 5. Analysis complex impedance spectra of materials may be known grain internal, grain boundaries, and electrode interface contributions. Previous studies showed that the complex impedance spectra of materials exhibit successive semicircles in the complex plane. A low frequency semicircle is due to ion and electrode, an intermediate frequency semicircle gives information on the grain boundary and/or impurity-phase impedance. While a high frequency semicircle originates from the grain internal. Some previous studies showed all these contributions may be not all detected. Fig. 5a presents impedance spectra of BFO, which include a semicircle at high frequency tend toward zero and a semicircle at intermediate frequency not tend toward zero in the complex plane. These semicircles are determined contribution of grain internal and grain boundary, respectively. The impedance spectra of co-doped samples with x =0.00, 0.05, and 0.10 is similar, which include a semicircle at high frequency tend toward zero in the complex due to contribution of grain internal, as are shown in Fig. 5b, c. When concentration of La^{3+} increases up to x = 0.15, the change crystal lattice lead to change impedance of this sample.

As see in Fig. 5d, the impedance of x = 0.15 sample includes two semicircles contribution by grain internal and grain boundary.

IV. CONCLUSION

In summary, we have synthesized successful BiFeO₃ and (La, Ni) co-doped BiFeO₃ materials by sol-gel method. We have studied effect of La and Ni co-doping on crystal structure, magnetic and electrical properties. Results of XRD and Raman scattering measurement confirmed La3+ and Ni2+ substituted into Bi-sites and Fe-sites, ions respectively. It makes to crystal lattice parameters and crystalline size decrease when concentration of La³⁺ increases. Analysis result of magnetization hysteresis loops shows that all samples present weak ferromagnetic behavior. Pure BiFeO₃ sample presents ferromagnetic behavior with saturation magnetization and remnant magnetization are 0.037 emu/g and 0.004 emu/g, respectively. Magnetic properties of (La, Ni) co-doped samples improved compare to that of pure BiFeO₃.

ACKNOWLEDGMENT

The work has been supported by the Ministry of Education and Training of Vietnam (Code: B2018-MDA-02-CtrVL). The authors also thank the support of Hanoi University of Mining and Geology (Code: T19-04).

REFERENCES

- W. Eerenstein, N.D. Mathur, and J.F. Scott, Multiferroic and magnetoelectric materials, *Nature*, 442 (2006) 759-765.
- [2] C. Ederer and N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, *Phys. Rev. B*, 71 (2005) 060401(R).
- [3] P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson, Theoretical investigation of magnetoelectric behavior in BiFeO₃, *Phys. Rev. B*, 74 (2006) 224412.
- [4] S.W. Cheong and M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity, *nat. mater.*, 6 (2007) 13-20.
- [5] M. Kumarn, P.C. Sati, S. Chhoker, and V. Sajal, Electron spin resonance studies and improved magnetic properties of Gd substituted BiFeO₃ ceramics, *Ceram. Int.*, 41 (2015) 777–786.
- [6] X. Zhang, Y. Sui, X. Wang, Y. Wang, and Z. Wang, Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO₃, *J. Alloy. Compd.*, 507 (2010) 157-161.
- [7] S.K. Pradhan, J. Das, P.P. Rout, V.R. Mohanta, S.K. Das, S. Samantray, D.R. Sahu, J.L. Huang, S. Verma,

and B.K. Roul, Effect of holmium substitution for the improvement of multiferroic properties of BiFeO₃, *J. Phys. Chem. Solids*, 71 (2010) 1557-1564.

- [8] H. Naganuma, J. Miura, and S. Okamura, Ferroelectric, electrical and magnetic properties of Cr, Mn, Co, Ni, Cu added polycrystalline BiFeO₃ films, *Appl. Phys. Lett.*, 93 (2008) 052901.
- [9] Y.R. Dai, Q. Xun, X. Zheng, S. Yuan, Y. Zhai, and M. Xu, Magnetic properties of Ni-substituted BiFeO₃, *Physica B*, 407 (2012) 560–563.
- [10] G. Dong, G. Tan, Y. Luo, W. Liu, H. Ren, and A. Xia, Optimization of the multiferroic BiFeO₃ thin films by divalent ion (Mn, Ni) co-doping at B-sites, *Mater. Lett.*, 118 (2014) 31-33.
- [11] D. Viet Thang, L. Thi Mai Oanh, N. Cao Khang, N. Manh Hung, D. Danh Bich, D. Thi Xuan Thao, and N. Van Minh, Structural, magnetic and electric properties of Nd and Ni co-doped BiFeO₃ materials, *AIMS Mater. Sci.*, 4 (2017) 982-990.
- [12] D.V. Thang, N.M. Hung, D.T.X. Thao, L.T.M. Oanh, D.D. Bich, N.C. Khang, V.Q. Nguyen, and N.V. Minh, Structural, Electrical, and Magnetic Properties of Bi_{0.90}Nd_{0.10}Fe_{0.98}TM_{0.02}O₃ (TM = Mn, Co, Ni, and Cu) Materials, *IEEE Mag. Lett.*, 10 (2019) 2501505.
- [13] X. Yan, G. Tann, W. Liu, H. Ren, and A. Xia, Structural, electric and magnetic properties of Dy and Mn co-doped BiFeO₃ thin film, *Ceram. Int.*, 41 (2015) 3202–3207.

- [14] A. Kumar, P. Sharma, W. Yang, J. Shen, D. Varshney, and Q. Li, Effect of La and Ni substitution on structure, dielectric and ferroelectric properties of BiFeO₃ ceramics, *Ceram. Int.*, (2016).
- [15] S.S. Rajput, R. Katoch, K.K. Sahoo, G.N. Sharma, S.K. Singh, R. Gupta, and A. Garg, Enhanced electrical insulation and ferroelectricity in La and Ni co-doped BiFeO₃ thin film, *J. Alloy.Compd.*, 621 (2015) 339–344.
- [16] M. Cazayous, D. Malka, D. Lebeugle, and D. Colson, Electric field effect on BiFeO₃ single crystal investigated by Raman spectroscopy, *Appl. Phys. Lett.*, 91 (2007) 071910.
- [17] G.L. Yuan, S.W. Or, and H.L. Chan, Raman scattering spectra and ferroelectric properties of $Bi_{1-x}Nd_xFeO_3$ (x = 0-0.2) multiferroic ceramics, *J. Appl. Phys.*, 101 (2007) 064101.
- [18] Y. Gu, J. Zhao, W. Zhang, S. Liu, S. Ge, W. Chen, and Y. Zhang, Improved ferromagnetism and ferroelectricity of La and Co co-doped BiFeO₃ ceramics with Fe vacancies, *Ceram. Int.*, 42 (2016) 8863-8868.
- [19] J.S. Park, Y.J. Yoo, J.S. Hwang, J.H. Kang, B.W. Lee, and Y.P. Lee, Enhanced ferromagnetic properties in Ho and Ni co-doped BiFeO₃ ceramics, *J. Appl. Phys.*, 115 (2014) 013904.