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Abstract 

The common diffusion process is always understood with the passive 
movement of particles from a high concentration area to a low 
concentration (forward diffusion). In this paper, another diffusion 
process (backward diffusion process) is presented. In this diffusion 
type, the diffusion flux is along with the direction of increasing 
concentration. Furthermore, the kinetics, the thermodynamics and the 
equation of the backward diffusion are studied and discussed. The 
results have showed that: although the backward diffusion process is 
opposition to fundamental diffusion laws (Fick’s laws), this process          
is not contradictory with the basic principles of thermodynamics; the 
backward diffusion can be described by equations that are similar to 
the Fick’s equations (with negative diffusion coefficient); the analytic 
solutions of the backward diffusion equation can be found; and the 
divergence of general solution of the backward diffusion equations is 
also solved. 

1. Introduction 

The diffusion is elementary and universal process in natural. The rate law 
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of diffusion had been formulated by Fick that is the diffusion flux is 
proportional to the gradient of the concentration (Fick’s law) [1] 
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where J is the particle flux, C is the concentration and D is the diffusivity 
(diffusion coefficient). The diffusivity is positive constant and the diffusion 
flows in the direction of decreasing concentration. This diffusion is also 
called forward diffusion. Fick’s law describes diffusion of an admixture           
in a medium. The concentration of admixture and the gradient of this 
concentration should be small. Fick’s law showed that the diffusion flux goes 
always from regions of high concentration to regions of low concentration. 

The backward diffusion is a process, in which transport of particles 
(atoms or molecules) is from a lower concentration area to a higher 
concentration area. The backward diffusion and negative diffusivity have 
been studied for a long time [3-7]. However, the main properties of backward 
diffusion have not been explained clearly. Projects (such as diffusivity, 
kinetics, thermodynamics, equation and solution of equation) of backward 
diffusion process should be studied and explained. These projects will be 
presented in the following. 

2. The Kinetics and the Solution of the Backward Diffusion Equation 

The more general definition of mass flux has the form 

 ,uCJ =  (3) 

where J is density of mass flux ( ),smmoles 2  C is molecules concentration 

( ),mmoles 2  u is thermal velocity of molecules. Consider the two thickness 

areas as illustrated in Figure 1: in area A, the concentration of molecules is 

AC  and thermal agitation velocity of molecules is .Au  In area B, the 
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concentration of molecules is BC  and thermal velocity of molecules is .Bu  

The molecule flux from area A to area B is 

 AAA CuJ 6
1=  (4) 

and molecule flux from area B to area A is 

 ,6
1

BBB CuJ =  (5) 

the real molecule flux is 

 ( ).6
1

BBAABA CuCuJJJ −=−=  (6) 

We assume that the concentration of the B area is higher than the 
concentration of A area 

 CCC AB ∆+=  (7) 

but the thermal velocity of molecules in low concentration area is greater 
than the thermal velocity of molecules in high concentration area. 

 

Figure 1. The modeling of the backward diffusion. 

We assume that thermal velocity of an area (A or B) is inversely 
proportional to concentration and they can be expressed by following 
equations: 

 uC
Cnuu

A
B

A +=    and   ,uC
Cnuu

B
A

B +=  (8) 
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where u is velocity and n is a positive natural number and substituting 
equation (8) into (6), we have 

 ( ) ( )ABAB CCnuCCuJ −+−−= 6
1

6
1  (9) 

or 

 ( ) .16
1 CunJ ∆−−=  (10) 

For macroscopic description, we can use the following approximation: 

 x
CC
∂
∂λ−∆ ~  (11) 

in which λ  is characteristic length. Equation (10) becomes 

 x
CDx

CunJ
∂
∂−=

∂
∂λ−−= 6

1  (12) 

in which D is diffusion coefficient (diffusivity) 

 .6
1 λ−= unD  (13) 

Thus, when concentration and thermal velocity of molecules in two slices are 
not equal, there are two transport processes, that are diffusion and advection 
processes. 

Now we study only the diffusion process and equations (12) and (13), 
which show that: 

  (i) If 0=n  (the molecular thermal velocity of the two areas A and B    
is equal), the diffusivity is positive and this diffusion is the kind of diffusive 
Fick. The diffusive flux goes from the high concentration area to the low 
concentration area. 

 (ii) The diffusivity is equal to zero and diffusion process is not occurred 
( )0=J  if 1=n  and the thermal velocity of molecules in A and B area is 

according to the following equation: 
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(iii) If ,1>n  then the diffusivity is negative. So the diffusive flux goes 
from the low concentration area to the high concentration area. This is the 
backward diffusion process and the thermal velocity of molecules in A and B 
area is according to the inequation 

 .
A
B

B
A

C
C

u
u >  (15) 

Substituting equation (12) into the continuity equation 
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we have 
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Equations (12) and (17) with diffusivity (13) are the general equations of 
the diffusion. The Fick’s equations are particular case of the these equations 
with the positive diffusivity ( ).2 if =n  When ,1>n  the diffusivity is 

negative and equations (12) and (17) become the equations of the backward 
diffusion 
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∂−=  (18) 
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where ND  is symbolized for negative diffusivity 

 .06
1 <λ−=≡ unDDN  (20) 

The solution of equation backward diffusion (19) with the boundary 
conditions and initial conditions should be found. To do this, we set up 
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 0DDN −=  (21) 

with 0D  is positive. So equation (19) has the following form: 
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Choosing the boundary and initial conditions 

( ) ,,0 0CtC =  (23) 

( ) ,, 0CtLC α=  (24) 

 ( ) ( ),0, xfxC =  (25) 

where 0C  is a constant of concentrations. The solution of equation (22) 

could be found by form 

 ( ) ( ) ( ) ( ),,, 321 xCxCtxCtxC ++=  (26) 

substituting equation (26) into equation (22), we have 
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The function ( )xC2  is the solution of equation 

 ( ) 02
2

2
0 =

∂

∂

x
xCD  (28) 

with the boundary condition 

 ( ) ,0 02 CC =  (29) 

( ) ,02 =LC  (30) 

the solution of equation (28) is 

 ( ) .102 




 −= L

xCxC  (31) 
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The function ( )xC3  is the solution of equation 

 ( ) 02
3

2
0 =

∂

∂

x
xCD  (32) 

with the boundary condition 

( ) ,003 =C  (33) 

 ( ) ,03 CLC α=  (34) 

the solution of equation (32) is 

 ( ) .03 L
xCxC α=  (35) 

The function ( )txC ,1  is the solution of equation 

  ( ) ( )
2

1
2

0
1 ,,

x
txCDt

txC
∂

∂
−=

∂
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with initial condition 

( ) ( ) ( ) ( ) ( ) ( ) 



 −α+−=−−= L

xCxfxCxCxfxC 110, 0321  (37) 

and boundary condition 

 ( ) ( ) .0,,0 11 == tLCtC  (38) 

The solution of equation (36) with initial and boundary conditions (37) and 
(38) is found by form 

 ( ) ( ) ( ),,1 tTxXtxC =  (39) 

substituting equation (39) into equation (36), we have 

 ( )
( )

( )
( ) ,1

.
1

2

2

0 dx
xXd

xXdt
tdT

tTD =−  (40) 

the left side of equation (40) is a function of t only, and the right is a function 
of x only, and so they must both be constant 
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where γ is a constant, and we have two equations 

( ) ( ) ,0.0
2 =γ− tTDdt

tdT  (42) 

 ( ) ( ) ,0.2
2

2
=γ+ xX

dx
xXd  (43) 

the solutions of equations (42) and (43) are 

( ) ( ),exp 0
2

0 tDTtT γ=  (44) 

 ( ) .sincos 21 xAxAxX γ+γ=  (45) 

Thus, the solution of equation (36) is 

 ( ) ( ) ( ),sincosexp, 210
2

1 xBxBtDtxC γ+γγ=  (46) 

where 101 ATB =  and .202 ATB =  

Using conditions (38), we have 

,01 =B  (47) 

 ,L
kπ=γ  (48) 

the solution (46) becomes 

 ( ) ,sinexp, 02

22
21 xL

ktD
L

kBtxC π







 π=  (49) 

the factor 2B  is determined by [8, 9] 

 ( ) ( )∫ π
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and we have 

( ) ( ) ( )
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Thus, the particular solution is 
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and the general solution of the backward diffusion equation is 

( ) ( ) 
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The particular (52) and the general solution (53) of the backward diffusion 
equation are divergent. However, based on the limited property of the 
backward diffusion process, these solutions are limited. 

The diffusion are limited processes. The transport process of molecules is 
stopped when real molecule flux (6) is equal to zero 

 ( ) 06
1 =−= BBAA CuCuJ  (54) 

so the limited condition of transport processes is 

 0=− BBAA CuCu  (55) 
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for the common diffusion (forward diffusion), because ,uuu AB ==  the 

limited condition is 

 .BA CC =  (56) 

In the backward diffusion ,BA uu >  

 ( ),1>ββ= BA uu  (57) 

the limited condition of transport processes is 

 ,0=−β BBAB CuCu  (58) 

thus the limited condition of the backward diffusion process is 

 .AB CC β=  (59) 

Suppose that the backward diffusion process stops at the time of ,τ  at 

this time, the maximum value of the particular (52) and the general solution 
(53) is not larger than β  times the minimum concentration. So t and k are 

limited, they are determined by the conditions 

 ( ) ( ) ,,, minτβ≤τ xCxC kMaxk  (60) 

( ) ( ) .,, minτβ≤τ xCxC Maxk  (61) 

Solving the inequations (60) and (61), the limited values of the τ=t  and 
Nk =  are found. Thus, the solutions (52) and (53) become 

( ) ( ) 



 −α+=τ< L

xCtxCk 11, 0  

( ) ( )
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( ) ( ) 
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The solutions (62) and (63) have showed that concentration is limited and 
increasing with increasing of the time in the backward diffusion process. 

3. The Thermodynamics of the Backward Diffusion and 
the Negative Diffusivity 

Fick’s law is empirical in that it assumes as the diffusion flux is 
proportional to the concentration gradient. However, according to L. 
Onsager, the diffusion flux is linear homogeneous function of the 
thermodynamic force. The thermodynamic force is gradient of the chemical 
potentials µ  [10] 

 xLJ
∂
µ∂−=  (64) 

in which L is the phenomenological coefficient (Onsager’s coefficient). The 
chemical potential is the function of concentration C and temperature T [11]  

 ( ) ,ln0 CRTC +µ=µ  (65) 

equation (64) can be written as 

,x
C

CLJ
∂
∂

∂
µ∂−=  (66) 

thus the diffusivity is 

 ,CLD
∂
µ∂=  (67) 
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the chemical potentials of A and B are 

 AAA CRT ln0 +µ=µ  (68) 

and 

 BBB CRT ln0 +µ=µ  (69) 

so difference of the chemical potential is 

 ( )AABBAB CTCTR lnln −=µ−µ=µ∆  (70) 

and diffusivity is 

 ( ) .lnln
AB

AABB
CC

CTCTLRCLCLD
−
−=

∆
µ∆=

∂
µ∂=  (71) 

Relation between the temperature T and the thermal velocity u is 

 .~ 2uT  (72) 

Thus, diffusivity (71) becomes 

 ( ) .lnln 22

AB
AABB

CC
CuCuLRD

−
−=  (73) 

In the backward diffusion, Au  and AB uu <  are determined by equations (8) 

with .1>n  So we have 

 .
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If ( ),1>αα= AB CC  then the diffusivity is 

 
[ ( ) ]

( ) .1

222ln 2
2

2

A

A

C

nnnnC
LRuD

−α

α−





α

+α−
α

α
=  (75) 

When 1>n  and ,1>α  the diffusivity is negative and the diffusion is the 
backward diffusion. 
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In short, thermodynamics theory can also show that if the thermal 
velocity of the low concentration area is greater than the thermal velocity of 
the high concentration area, then the diffusivity could be negative and the 
backward diffusion can occur. 

4. The Principle of Increasing Entropy and the Backward Diffusion 

The backward diffusion is a process that is in contrast to Fick’s law. 
However, the backward diffusion is not contradictory with the basic 
principles of the thermodynamics. This subject will be explained clearly by 
the following. 

According to thermodynamics, processes can occur only in the direction 
of increased overall entropy. Thus, we demonstrate the backward diffusion 
process is corresponding to the principle of increasing entropy. 

Consider a system including two parts A and B (Figure 1) that can 
exchange particles. The differential changes of the entropy ds can be 
obtained from Gibbs equation 

 ,T
pd

T
duds ν+=  (76) 

where du and dv are the differential changes of internal energy and volume. 
If the particle of system is similar to the molecule of ideal gas, then the 
changes of entropy can be calculated by 

 T
dRT

duCds v
ν+=  (77) 

and 

 ,lnln
00 P

PRT
TCS p −=∆  (78) 

where vC  is heat capacity, 0T  and 0P  are initial temperature and pressure, T 

and P are temperature and pressure at the time of t. In the model of the 
backward diffusion (Figure 1), the molecular thermal velocity of the areas       
A and B is constant, so the temperature of two areas is constant and the 
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entropic change of the areas A and B is determined as following: 

 .ln
0P

PRS −=∆  (79) 

Assuming that at the time of ,0=t  the concentrations and molecular thermal 
velocities of area A and B are 

 00 CC A =    and   ( ),10 >αα= A
B CC  (80) 

uuB =    and   ( )α>ββ= uu A  (81) 

and at the time of ,τ=t  the backward diffusion process is finished, the 
changed concentrations of area A and B are :Cδ  

,0 CCC A δ−=  (82) 

 CCC B δ+α= 0  (83) 

when finishing of the backward diffusion process, the molecular 
concentration of the area B is 

 ,AB CC β=  (84) 

substituting equations (82) and (83) into (84), we have 

 ( )CCCC δ−β=δ+α 00  (85) 

and Cδ  is determined as following: 

 .1 0CC
+β
α−β=δ  (86) 

According to the molecular kinetic theory, the pressure of ideal gas is 

 2
2

0 ~3 CumunP =  (87) 

in which 0n  is molecular density, m is molecular mass, C is molecular 

concentration and u is thermal velocity of molecules. Applying equation (87) 
to the molecular pressure of area A at 0=t  and ,τ  
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 ( )200 ~ uCPA β    and   ( ) ( )20~ uCCPA βδ−  (88) 

and the molecular pressure of area B at 0=t  and ,τ  

 2
00 ~ uCPB β    and   ( ) ,~ 2

0 uCCPB δ+  (89) 

the entropic change of the area A is 

 ,11lnlnln
0

0

0







+β
α−β−−=

δ−
−=−=∆ RC

CCR
P
PRS A

A
A  (90) 

the entropic change of the area B is 

 






+β
α−β−=

δ+
−=−=∆ 1lnlnln

0
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0
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CCR
P
PRS B

B
B  (91) 

and the entropic change of the backward diffusion process is 





 







+β
α−β−+







+β
α−β+−=∆+∆=∆ 1ln11ln lRSSS BA  

,1111ln 



 







+β
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+β
α−β+−= R  (92) 

equation (92) can be reduced and becomes 

 














+β
α−β−−=∆

2

11lnRS  (93) 

because ,1>α>β  we have 

 .110 <
+β
α−β<  (94) 

Therefore, the entropic change of the backward diffusion process is positive 

 .011ln
2

>














+β
α−β−−=∆ RS  (95) 

Equation (95) showed that the backward diffusion is taken place along              
the same direction of the entropy increasing. Thus, the backward diffusion 
process is corresponding to the principle of increasing entropy. 
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5. Conclusions 

Although the backward diffusion process is contrary to Fick’s law, it       
can be occurred. As the backward diffusion is the difference between the      
thermal velocity of the low concentration and the thermal velocity of the high 
concentration area, the backward diffusion is described by the equation 
similar to Fick’s equations with negative diffusivity. The analytic solution of 
backward diffusion equation can be found. The solution of the backward 
diffusion equation is limited. The backward diffusion process is not 
contradictory with the increasing entropy principle of the thermodynamics. 
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