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Abstract

The common diffusion process is always understood with the passive
movement of particles from a high concentration area to a low
concentration (forward diffusion). In this paper, another diffusion
process (backward diffusion process) is presented. In this diffusion
type, the diffusion flux is along with the direction of increasing
concentration. Furthermore, the kinetics, the thermodynamics and the
equation of the backward diffusion are studied and discussed. The
results have showed that: although the backward diffusion process is
opposition to fundamental diffusion laws (Fick’s laws), this process
is not contradictory with the basic principles of thermodynamics; the
backward diffusion can be described by equations that are similar to
the Fick’s equations (with negative diffusion coefficient); the analytic
solutions of the backward diffusion equation can be found; and the
divergence of general solution of the backward diffusion equations is
also solved.

1. Introduction

The diffusion is elementary and universal process in natural. The rate law
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of diffusion had been formulated by Fick that is the diffusion flux is
proportional to the gradient of the concentration (Fick’s law) [1]

__ac
J=-D%, (1)
o _poc @
ot ol

where J is the particle flux, C is the concentration and D is the diffusivity
(diffusion coefficient). The diffusivity is positive constant and the diffusion
flows in the direction of decreasing concentration. This diffusion is also
called forward diffusion. Fick’s law describes diffusion of an admixture
in a medium. The concentration of admixture and the gradient of this
concentration should be small. Fick’s law showed that the diffusion flux goes
always from regions of high concentration to regions of low concentration.

The backward diffusion is a process, in which transport of particles
(atoms or molecules) is from a lower concentration area to a higher
concentration area. The backward diffusion and negative diffusivity have
been studied for a long time [3-7]. However, the main properties of backward
diffusion have not been explained clearly. Projects (such as diffusivity,
kinetics, thermodynamics, equation and solution of equation) of backward
diffusion process should be studied and explained. These projects will be

presented in the following.
2. The Kinetics and the Solution of the Backward Diffusion Equation

The more general definition of mass flux has the form

J =uC, 3)

where J is density of mass flux (moles/ mzs), C is molecules concentration

(moles/ m? ), u is thermal velocity of molecules. Consider the two thickness

areas as illustrated in Figure 1: in area A, the concentration of molecules is

C, and thermal agitation velocity of molecules is u,. In area B, the
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concentration of molecules is Cp and thermal velocity of molecules is up.

The molecule flux from area A to area B is

1
JA ZEMACA (4)

and molecule flux from area B to area 4 is

1
JB = EUBCB’ (5)
the real molecule flux is
1
J=Jy=Jp =W Cy—upCp). (6)

We assume that the concentration of the B area is higher than the
concentration of 4 area

Cp =Cy+AC 7)

but the thermal velocity of molecules in low concentration area is greater
than the thermal velocity of molecules in high concentration area.
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Figure 1. The modeling of the backward diffusion.

We assume that thermal velocity of an area (4 or B) is inversely
proportional to concentration and they can be expressed by following
equations:

Cp C4

uA=u+nC—Au and u3=u+n§u, ®)
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where u is velocity and n is a positive natural number and substituting

equation (8) into (6), we have
1 1
J:_g“(CB_CA)"‘g”“(CB_CA) (9)
or
1
J = _E(l —n)ulAC. (10)

For macroscopic description, we can use the following approximation:

~, 9C
AC =) — (1)

in which A is characteristic length. Equation (10) becomes

l1-n , 0C oC
J—_TZ/O\.§——D§ (12)

in which D is diffusion coefficient (diffusivity)

UA. (13)

Thus, when concentration and thermal velocity of molecules in two slices are
not equal, there are two transport processes, that are diffusion and advection

processes.

Now we study only the diffusion process and equations (12) and (13),
which show that:

(1) If n =0 (the molecular thermal velocity of the two areas 4 and B
is equal), the diffusivity is positive and this diffusion is the kind of diffusive
Fick. The diffusive flux goes from the high concentration area to the low

concentration area.

(i1) The diffusivity is equal to zero and diffusion process is not occurred

(J =0) if n =1 and the thermal velocity of molecules in 4 and B area is

according to the following equation:
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s _Cp (14)
ug  Cy
(iii) If n > 1, then the diffusivity is negative. So the diffusive flux goes
from the low concentration area to the high concentration area. This is the
backward diffusion process and the thermal velocity of molecules in 4 and B
area is according to the inequation

Cp

Y4 =& (15)
A

up

Substituting equation (12) into the continuity equation

oC oJ
T e (16)
we have
oC  1-n . 0C o’C
E—— 6 u}\,ax—z——Dax—z (17)

Equations (12) and (17) with diffusivity (13) are the general equations of
the diffusion. The Fick’s equations are particular case of the these equations
with the positive diffusivity (if n = 2). When n > 1, the diffusivity is
negative and equations (12) and (17) become the equations of the backward
diffusion

oC
J=-Dy<:, (18)
a D _82C (19)
ot N ol
where Dy is symbolized for negative diffusivity
1—-n
Dy =D= ; uh < 0. (20)

The solution of equation backward diffusion (19) with the boundary

conditions and initial conditions should be found. To do this, we set up
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Dy = =Dy 2

with Dy is positive. So equation (19) has the following form:

S =-Dy = (22)

Choosing the boundary and initial conditions

C(0, 1) = Cy, (23)
C(L, l‘) = aCy, (24)
C(x’ O) = f(x)’ (25)

where C; is a constant of concentrations. The solution of equation (22)

could be found by form
C(x, 1) = Ci(x, 1) + Cy(x) + G5(x), (26)

substituting equation (26) into equation (22), we have

2 2 2
%+Doa€1+DoaC;2+D06C23=O. 27)
ot X ox ox
The function C,(x) is the solution of equation
0°C,(x)
Dy—35==0 (28)
Ox
with the boundary condition
C»(0) = Cy, (29)
C,(L) =0, (30)

the solution of equation (28) is

Cy(x) = Co(l —%) 31)
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The function C3(x) is the solution of equation

2
p, 76 C32(x) =0 (32)
ox
with the boundary condition
G3(0) =0, (33)
C3(L) = OLCO, (34)
the solution of equation (32) is
X
C3(x) = OLCO Z (35)

The function Cj(x, t) is the solution of equation

oC(x. 1) _ Dy 0°Cy(x, 1)

ot o2 (36)

with initial condition
i 0) = 1) = Co) = G50 = W -Gl 1+ @ =D | (7
and boundary condition

(0, 1) = G(L, 1) = 0. (38)

The solution of equation (36) with initial and boundary conditions (37) and
(38) is found by form

Ci(x, 1) = X(x)T(2), (39)
substituting equation (39) into equation (36), we have

1 dT(t) 1 d*X(x)
T DyT(t) dt X(x) g2

(40)

the left side of equation (40) is a function of ¢ only, and the right is a function
of x only, and so they must both be constant
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1 dr() 1 d*xX(x) >
DT dt  X(x) g2

where v is a constant, and we have two equations

ar() 2 _
dt Y DoT(t) = 0,
d*X(x) 2
? + Y X()C) = 0,
X

the solutions of equations (42) and (43) are
T(t) = Ty exp(y”Dot),
X(x) = A4 cosyx + Ay sin yx.
Thus, the solution of equation (36) is
Ci(x, t) = exp(y2Dot) (B cos yx + B, sin yx),
where B) = Ty4; and By = Ty4,.

Using conditions (38), we have

B, =0,
_
y_ L,

the solution (46) becomes

2_2
Ci(x, t) = B, exp(k—;T Dotj sin Lo X,
I L

the factor B, is determined by [8, 9]

B, = %J'OL {f(x) - Co[l (o - 1)%}} sin%xdx

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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and we have

Ci(x, 1) = {% [ OL { 1) - c0[1 (o~ 1)%}} sinkL—nxdx}

k27 . kn
. CXP(7 Dot) SII’ITX. (51)
Thus, the particular solution is

Co(x, 1) = c0[1 (o- 1)%} ' {%j: { I - c0[1 +(o- 1)%}} sin%xdx}

2 2
. exp(k—TzE Dotj sin L X (52)
I L
and the general solution of the backward diffusion equation is

Cx, t) = Co[l + (o — 1)%]

SIPE .k
; %{z Jo {709= o1+ =0 Jpsin % s}
. exp(ki—gz DOtJ sin k_Ln X. (53)

The particular (52) and the general solution (53) of the backward diffusion
equation are divergent. However, based on the limited property of the
backward diffusion process, these solutions are limited.

The diffusion are limited processes. The transport process of molecules is

stopped when real molecule flux (6) is equal to zero
1
JZg(“ACA_”BCB):O (54)
so the limited condition of transport processes is

MACA_MBCB =0 (55)
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for the common diffusion (forward diffusion), because up = uy = u, the

limited condition is
Cy=Cg. (56)
In the backward diffusion u 4 > up,
ug =Bup (B>1), (57)
the limited condition of transport processes is
BugCy —ugCp =0, (58)
thus the limited condition of the backward diffusion process is
Cp =BCy. (59)

Suppose that the backward diffusion process stops at the time of 1, at

this time, the maximum value of the particular (52) and the general solution

(53) is not larger than P times the minimum concentration. So ¢ and & are

limited, they are determined by the conditions

Ck(x7 T)Max < BCk(xa T)mina (60)
Cr (%, O ppr < BC(x, T)pi- (61)

Solving the inequations (60) and (61), the limited values of the # = 1 and
k = N are found. Thus, the solutions (52) and (53) become

Crlx, t <1)= Co[l +(a _1)%}

+ {% L)L {f(x) - Co[l + (o~ 1)%}} Sinkfnxdx}

K*n? . km
- exp| —5— Dyt |sin — x, (62)
[ r j L
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C(x,t<1)= Co[l + (o0 _1)%}
+ g{%,‘.: {f(X) - Co[l + (o — 1)%} sink—Lnxdx}

2.2
-exp(k—;c Dot]sink—Lnx. (63)
L

The solutions (62) and (63) have showed that concentration is limited and

increasing with increasing of the time in the backward diffusion process.

3. The Thermodynamics of the Backward Diffusion and
the Negative Diffusivity

Fick’s law is empirical in that it assumes as the diffusion flux is
proportional to the concentration gradient. However, according to L.
Onsager, the diffusion flux is linear homogeneous function of the
thermodynamic force. The thermodynamic force is gradient of the chemical

potentials p [10]

_ %
J=-LZ (64)

in which L is the phenomenological coefficient (Onsager’s coefficient). The

chemical potential is the function of concentration C and temperature 7 [11]
W(C) =pg + RTInC, (65)

equation (64) can be written as

__pouaoc
J=-L 3C o’ (66)
thus the diffusivity is
p-1 % (67)

oc’
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the chemical potentials of 4 and B are

Mg =Ko+ RTyInCy (68)
and

Hp =uo + RTpInCp (69)
so difference of the chemical potential is

Ap=pp—py =R(TpInCp-TyInCy) (70)

and diffusivity is

_ a_u_ ﬂ_ (TBIHCB—TAIHCA)
D=1Lz5=L%5=LR ¢ . (71)

Relation between the temperature 7 and the thermal velocity u is
T ~u’. (72)

Thus, diffusivity (71) becomes

InCg —uInCy)

N
D=LR e

(73)

In the backward diffusion, u 4 and up < u4 are determined by equations (8)

with n > 1. So we have

2 2
(1+n%) 1nCB—(1+ng—B) InCy
— 2 B A
D = LRu ey (74)
If Cy = aCy (o > 1), then the diffusivity is
n n)?
InaC 42— - 2no + (—j — (2na)?]
D = LRu? ¢ ¢ (75)

(0 -1)Cy

When n >1 and a > 1, the diffusivity is negative and the diffusion is the

backward diffusion.



Kinetics and Thermodynamics of the Backward Diffusion 91

In short, thermodynamics theory can also show that if the thermal
velocity of the low concentration area is greater than the thermal velocity of
the high concentration area, then the diffusivity could be negative and the
backward diffusion can occur.

4. The Principle of Increasing Entropy and the Backward Diffusion

The backward diffusion is a process that is in contrast to Fick’s law.
However, the backward diffusion is not contradictory with the basic
principles of the thermodynamics. This subject will be explained clearly by
the following.

According to thermodynamics, processes can occur only in the direction
of increased overall entropy. Thus, we demonstrate the backward diffusion
process is corresponding to the principle of increasing entropy.

Consider a system including two parts 4 and B (Figure 1) that can
exchange particles. The differential changes of the entropy ds can be
obtained from Gibbs equation

ds = S 4 POV (76)

where du and dv are the differential changes of internal energy and volume.
If the particle of system is similar to the molecule of ideal gas, then the

changes of entropy can be calculated by

ds:Cvd—;lJrR% (77)

and

AS = Cplnt - RinL, (78)

Ty By
where C,, is heat capacity, 7y and F, are initial temperature and pressure, 7'

and P are temperature and pressure at the time of ¢z. In the model of the
backward diffusion (Figure 1), the molecular thermal velocity of the areas
A and B is constant, so the temperature of two areas is constant and the
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entropic change of the areas 4 and B is determined as following:

P
AS = —R 1n70. (79)

Assuming that at the time of ¢ = 0, the concentrations and molecular thermal

velocities of area 4 and B are
ci =C B =
o = (o and CO = (ICA ((1 > 1), (80)
uB =u and u? =Bu (B> a) (81)

and at the time of ¢ = 1, the backward diffusion process is finished, the

changed concentrations of area 4 and B are 0C':
ct=c,-5C, (82)

c? =acy +5C (83)

when finishing of the backward diffusion process, the molecular
concentration of the area B is

cB =pcA, (84)
substituting equations (82) and (83) into (84), we have
aCy + 8C = B(Cy — 8C) (85)

and 6C is determined as following:

8C = %1‘; Cy. (86)

According to the molecular kinetic theory, the pressure of ideal gas is

nomu2

T~ Cu? (87)

P =

in which ny is molecular density, m is molecular mass, C is molecular

concentration and u is thermal velocity of molecules. Applying equation (87)
to the molecular pressure of area 4 at t = 0 and 7,
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B ~ Co(Bu)* and P* ~(Cy - 8C) (Bu)
and the molecular pressure of area Bat ¢t = 0 and 1,
RE ~BCyu? and P8 ~(Cy+8C)u?,

the entropic change of the area 4 is

A —_ —
ASA = —RlnP—A — _pin &0 =9C _ —Rln(l B “),
PO CO B +1
the entropic change of the area B is
B
asB = P _ g1 €0 tOC —Rln(B - 0‘)
PO CO B +1

and the entropic change of the backward diffusion process is

AS = AS, + ASg = —R[ln(l + %_T(f) + 1n(l - %1?)}

e[+ B (18]

equation (92) can be reduced and becomes

AS = -R h{l - (%;‘;ﬂ

because B > o > 1, we have

B-a
0< Bl <1.

93

(88)

(89)

(90)

C2))

92)

(93)

94)

Therefore, the entropic change of the backward diffusion process is positive

AS = -R 1{1 - (%jﬂ > 0.

95)

Equation (95) showed that the backward diffusion is taken place along

the same direction of the entropy increasing. Thus, the backward diffusion

process is corresponding to the principle of increasing entropy.
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5. Conclusions

Although the backward diffusion process is contrary to Fick’s law, it
can be occurred. As the backward diffusion is the difference between the
thermal velocity of the low concentration and the thermal velocity of the high
concentration area, the backward diffusion is described by the equation
similar to Fick’s equations with negative diffusivity. The analytic solution of
backward diffusion equation can be found. The solution of the backward
diffusion equation is limited. The backward diffusion process is not

contradictory with the increasing entropy principle of the thermodynamics.
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