VNU Journal of Science: Mathematics - Physics

Original Article

A Note on Infinite Type Germs of a Real Hypersurface in \mathbb{C}^{2}

Nguyen Thi Kim Son ${ }^{1, *}$, Chu Van Tiep ${ }^{2}$
${ }^{1}$ Department of Mathematics, Hanoi University of Mining and Geology, 18 Pho Vien, Bac Tu Liem, Hanoi ${ }^{2}$ Department of Mathematics, Da Nang University of Education at Da Nang, 459 Ton Duc Thang, Lien Chieu, Da Nang
Received 02 April 2019
Revised 10 April 2019; Accepted 10 April 2019

Abstract

The purpose of this article is to show that there exists a smooth real hypersurface germ (M, p) of D'Angelo infinite type in \mathbb{C}^{2} such that it does not admit any (singular) holomorphic curve that has infinite order contact with M at p. 2010 Mathematics Subject Classification. Primary 32T25; Secondary 32C25. Key words and phrases: Holomorphic vector field, automorphism group, real hypersurface, infinite type point.

1. Introduction

Let (M, p) be a germ at p of a real smooth hypersurface in \mathbb{C}^{n} and let r be a local defining function for M near p. The normalized order of contact of the curve γ with M at p is defined by

$$
\tau(M, \gamma, p):=\frac{v(r \circ \gamma)}{v(\gamma)}
$$

Where $\gamma(0)=p$ and $v(\gamma)$ is the vanishing order of $\gamma(t)-\gamma(0)$ at $t=0, \quad v(r \circ \gamma)$ is the vanishing order of $r \circ \gamma(t)$ at $t=0$. The D'Angelo type of M at p is defined by

[^0]$$
\tau(M, p)=\sup _{\gamma} \tau(M, \gamma, p)=\sup _{\gamma} \frac{v(r \circ \gamma)}{v(\gamma)},
$$
where the supremum is taken over all germs $\gamma: \Delta \rightarrow \mathbb{C}^{n}$ of non-constant holomorphic curves with $\gamma(0)=p$. Here and in what follows, $\Delta_{\varepsilon}=\{z \in \mathbb{C}:|z|<\varepsilon\}(\varepsilon>0)$ and $\Delta:=\Delta_{1}$. We say that p is of D'Angelo finite type if $\tau(M, p)<+\infty$ and of D'Angelo infinite type if otherwise.

Throughout the paper, we assume that (M, p) is of D'Angelo infinite type. Then, there exists a sequence of non-constant holomorphic curves γ_{n} such that $\frac{v\left(r \circ \gamma_{n}\right)}{v\left(\gamma_{n}\right)} \rightarrow+\infty$ as $n \rightarrow \infty$. It is natural to ask whether there exists a variety that has infinite order contact with (M, p). This question pertains to the regularity issue of $\bar{\partial}$-Neumann problems over pseudoconvex domains (see [1, 2, 3, 4], and the references therein).

If (M, p) is real-analytic, then by using the ideal theoretic method L . Lempert and J. P. D'Angelo [5, 6] showed that M contains a nontrivial holomorphic curve γ_{∞} passing through p. For a germ of a real analytic hypersurface in \mathbb{C}^{3}, we refer the interested reader to [7] for a proof of this result by using a geometric construction.

For the case when (M, p) is a real smooth hypersurface in \mathbb{C}^{n}, J. E. Fornæss, L. Lee and Y. Zhang [8] proved that if $\tau(M, p)=+\infty$, then there exists a formal complex curve in the hypersurface M through p. However, Kang-Tae Kim and V. T. Ninh [9, Proposition 4] asserted independently that there is a formal curve $\varphi(t)=\left(-\sum_{j=1}^{\infty} a_{j} j^{j}, t\right)$ which has infinite order contact with M at p for the case $M \subset \mathbb{C}^{2}$.

In [9], Kang-Tae Kim and V. T. Ninh pointed out that in general there is no such a regular holomorphic curve γ_{∞}. We ensure that this result still holds even for singular holomorphic curve γ_{∞}. Namely, our aim is to prove the following theorem.

Theorem 1. There exists a hypersurface germ $(M, 0)$ in \mathbb{C}^{2} with $\tau(M, 0)=+\infty$ that does not admit any (singular) holomorphic curve that has infinite order contact with M at 0 .

We now briefly sketch the idea of proof of Theorem 1. As in the proof of Example 2 in [9], we construct a certain sequence of smooth functions $\left\{f_{n}\right\} \subset C_{0}^{\infty}(\mathbb{C})$ with supp $\left(f_{n}\right)$ tending to $\{0\}$ such that f_{n} is harmonic in a sufficiently small disc in $\operatorname{supp}\left(f_{n}\right)$ for each $n \in \mathbb{N}^{*}$. Moreover, the series $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on \mathbb{C} to a smooth function $f(z)$. Then the desired hypersurface M can be defined by

$$
M=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}: \operatorname{Re}\left(z_{1}\right)+f\left(z_{2}\right)=0\right\},
$$

which finishes the proof of Theorem 1.
In this paper, we only deal with a smooth real hypersurface in \mathbb{C}^{2}. However, the statement of Theorem 1 remains valid even for higher-dimensional hypersurfaces.

2. Proof of Theorem 1

Proof of Theorem 1. The proof of this theorem proceeds along the same lines as that of Example 2 in [9]. For the convenience of the reader, we shall provide some crucial arguments given in [9]. First of all, let $\left\{M_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}$ be a sequence of real numbers such that $\left|M_{n}\right|>2 n^{n \gamma_{n}+2}, n \in \mathbb{N}^{*}$, where $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ is a sequence in \mathbb{R} with $\gamma_{n} \rightarrow+\infty$ as $n \rightarrow \infty$. Let $\left\{\alpha_{n}\right\} \subset \mathbb{R}^{+}$be a strictly decreasing sequence of positive numbers with $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$ such that, for each $n \in \mathbb{N}^{*}$, there exists a holomorphic function g_{n} on $\Delta_{\alpha_{n}}$ satisfying that $v\left(g_{n}\right)=n$ and

$$
g_{n}^{(j)}(0)= \begin{cases}M_{n} & \text { if } j=n, \\ 0 & \text { if } n \nmid j .\end{cases}
$$

For instance, for every $n \in \mathbb{N}^{*}$, we define $g_{n}(z):=\frac{1}{\left(\alpha_{n}\right)^{n}-z^{n}}-\frac{1}{\left(\alpha_{n}\right)^{n}}$, where $\alpha_{n}:=\frac{1}{M_{n}^{\frac{1}{2 n}}}$ and $M_{n}>2 n^{n^{2}+2}$ (see [9, Example 2].

For each $n=1,2, \ldots$, denote by $\tilde{f}_{n}(z)$ the C^{∞}-smooth function on \mathbb{C} such that

$$
\tilde{f}_{n}(z)= \begin{cases}\operatorname{Re}\left(g_{n}(z)\right) & \text { if }|z|<\alpha_{n+1} \\ 0 & \text { if }|z|>\alpha_{n}\end{cases}
$$

Then, one can see that and $v\left(\tilde{f}_{n}\right)=n$ and

$$
\frac{\partial^{j} \tilde{f}_{n}}{\partial z^{j}}(0)= \begin{cases}\frac{M_{n}}{2} & \text { if } j=n, \tag{1}\\ 0 & \text { if } n \nmid j .\end{cases}
$$

Now let $\left\{\lambda_{n}\right\}$ be an increasing sequence of positive numbers such that

$$
\lambda_{n} \geq \max \left\{1,\left\|\frac{\partial^{k+l} \tilde{f}_{n}}{\partial z^{k} \partial z^{l}}\right\|_{\infty}: k, l \in \mathbb{N}, k+l \leq n\right\},
$$

where $\|\cdot\|_{\infty}$ represents the supremum norm. Let us define a function f_{n} by setting $f_{n}(z):=\frac{1}{n^{2} \lambda_{n}^{n}} \tilde{f}_{n}\left(\lambda_{n} z\right)$ for each $n \in \mathbb{N}^{*}$. Then, by the repeated use of the chain rule, we obtain

$$
\frac{\partial^{k} f_{n}}{\partial z^{k}}(z)=\frac{1}{n^{2} \lambda_{n}^{n-k}} \frac{\partial^{k} \tilde{f}_{n}}{\partial z^{k}}\left(\lambda_{n} z\right), \mathrm{k}=0,1, \ldots
$$

This together with (1) implies that

$$
\frac{\partial^{k} f_{n}}{\partial z^{k}}(0)= \begin{cases}\frac{M_{n}}{2 n^{2}} & \text { if } k=n, \\ 0 & \text { if } n \nmid k .\end{cases}
$$

Let us define a function f by setting $f(z):=\sum_{n=1}^{\infty} f_{n}(z)$. Then, for every $k, j \in \mathbb{N}$, a direct computation shows that

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left\|\frac{\partial^{k+l} f_{n}}{\partial z^{k} \partial z^{l}}(z)\right\|_{\infty} & \leq \sum_{n=1}^{k+l} \frac{1}{n^{2} \lambda_{n}^{n-k-l}}\left\|\frac{\partial^{k+l} \tilde{f}_{n}}{\partial z^{k} \partial z^{l}}(z)\right\|_{\infty}+\sum_{n=k+l+1}^{\infty} \frac{1}{n^{2} \lambda_{n}^{n-k-l-1}} \frac{\left\|\frac{\partial^{k+l} \tilde{f}_{n}}{\partial z^{k} \partial \bar{z}^{l}}(z)\right\|_{\infty}}{\lambda_{n}} \\
& \leq \sum_{n=1}^{k+1} \frac{1}{n^{2} \lambda_{n}^{n-k-l}}\left\|\frac{\partial^{k+l} \tilde{f}_{n}}{\partial z^{k} \partial z^{l}}(z)\right\|_{\infty}+\sum_{n=k+l+1}^{\infty} \frac{1}{n^{2}} \\
& <+\infty .
\end{aligned}
$$

Hence, this ensures that $f \in C^{\infty}(\mathbb{C})$.
Next, let us fix a sequence of prime numbers $\left\{p_{n}\right\}_{n=1}^{\infty}$ with $p_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$. Then it is easy to see that

$$
\begin{aligned}
\frac{\partial^{p_{n}}}{\partial z^{p_{n}}} f(0) & =\sum_{k=2}^{\infty} \frac{\partial^{p_{n}}}{\partial z^{p_{n}}} f_{k}(0) \\
& =\sum_{j=2}^{p_{n}-1} \frac{\partial^{p_{n}}}{\partial z^{p_{n}}} f_{j}(0)+\frac{\partial^{p_{n}}}{\partial z^{p_{n}}} f_{p_{n}}(0)+\sum_{j=p_{n}+1}^{\infty} \frac{\partial^{p_{n}}}{\partial z^{p_{n}}} f_{j}(0) \\
& =\frac{M p_{n}}{2 p_{n}^{2}} .
\end{aligned}
$$

We now define a hypersurface germ M at $(0,0)$ by setting

$$
M=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}: \rho=\operatorname{Re} z_{1}+f\left(z_{2}\right)=0\right\}
$$

We shall show that $\tau(M, 0)=+\infty$. To do this, for each $N \geq 2$, consider a holomorphic curve $\gamma_{N}=\left(z_{1}, z_{2}\right)$ defined on $\left\{t \in \mathbb{C}:|t|<\frac{\alpha_{N+1}}{\lambda_{N}}\right\}$ by

$$
z_{1}(t)=-\sum_{n=1}^{N} \frac{1}{n^{2} \lambda_{n}^{n}} g_{n}\left(\lambda_{n} t\right) ; z_{2}(t)=t .
$$

Then, we have $\rho \circ \gamma_{N}(t)=\sum_{n=N+1}^{\infty} f_{n}(t)$. Furthermore, since $v\left(f_{n}\right)=n$ for $n=1,2, \ldots$, it follows that $v\left(\rho \circ \gamma_{N}\right)=N+1$, and hence $\tau(M, 0)=+\infty$.

We finally prove that there does not exist a (singular) holomorphic curve $\gamma_{\infty}:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{2}, 0\right)$, such that $v\left(\rho \circ \gamma_{\infty}\right)=+\infty$. Note that, by a change of variables, we can assume that such a (singular) holomorphic curve γ_{∞} is represented by a parametrization $\gamma_{\infty}(t)=\left(h(t), t^{m}\right)$ for some positive integer m, where h is a holomorphic function on a neighborhood of the origin in \mathbb{C}. Indeed, suppose otherwise that such a holomorphic curve exists. Then $\rho \circ \gamma_{\infty}(t)=\operatorname{Re}\left(h(t)+f\left(t^{m}\right)\right)=o\left(t^{\infty}\right)$ and thus

$$
\begin{aligned}
0=\left.\frac{\partial^{p_{n} m}}{\partial z^{p_{n} m}}\right|_{z=0}\left(\operatorname{Re} h(z)+f\left(z^{m}\right)\right) & =\frac{1}{2} \frac{\partial^{p_{n} m}}{\partial z^{p_{n} m}} h(0)+\left.\frac{\partial^{p_{n} m}}{\partial z^{p_{n} m}}\right|_{z=0} f\left(z^{m}\right) \\
& =\frac{1}{2} \frac{\partial^{p_{n} m}}{\partial z^{p_{n} m}} h(0)+\left.(m!)^{p_{n}} \frac{\partial^{p_{n}}}{\partial z^{p_{n}}}\right|_{z=0} f(z) \\
& =\frac{1}{2} \frac{\partial^{p_{n} m}}{\partial z^{p_{n} m}} h(0)+(m!)^{p_{n}} \frac{M p_{n}}{2 p_{n}^{2}} .
\end{aligned}
$$

Consequently, $\quad h^{\left(p_{n} m\right)}(0)=-(m!)^{p_{n}} \frac{M p_{n}}{2 p_{n}^{2}}$, and moreover, since $\left(\frac{n}{3}\right)^{n} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}$ and $\left|M_{n}\right| \geq 2 n^{n \gamma_{n}+2}$ we have

$$
\sqrt[p_{n} m]{\frac{\left|h^{\left(p_{n} m\right)}(0)\right|}{\left(p_{n} m\right)!}}=\sqrt[p_{n} m]{\frac{(m!)^{p_{n}} M_{p_{n}}}{\left(p_{n} m\right)!2 p_{n}^{2}}} \geq \frac{(m!)^{\frac{1}{m}} p_{n}^{\frac{\gamma p_{n}}{m}}}{\frac{p_{n} m+1}{2}} \geq \frac{2 m p_{n}^{\frac{\gamma p_{n}}{m}}}{3\left(p_{n} m+1\right)} \geq \frac{1}{3} p_{n}^{\frac{\gamma p_{n}-1}{m}} .
$$

Therefore, we obtain

$$
\limsup _{N \rightarrow \infty} \sqrt[N]{\frac{\left|h^{N}(0)\right|}{N!}} \geq \limsup _{p_{n} \rightarrow \infty} \sqrt{p_{n} m} \sqrt{\frac{h^{p_{n} m}(0) \mid}{\left(p_{n} m\right)!}}=\lim _{p_{n} \rightarrow \infty} \frac{1}{3} p_{n}^{\frac{\gamma p_{n}}{m}-1}=+\infty .
$$

This implies that the Taylor series of $h(z)$ at 0 has radius of convergence 0 , which is absurd since h is holomorphic in a neighborhood of the origin. Hence, the proof is complete.

Acknowledgments

It is a pleasure to thank Ninh Van Thu and Nguyen Ngoc Khanh for stimulating discussions on this material.

References

[1] J. P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. 115 (1982) 615-637.
[2] D. Catlin, Necessary conditions for subellipticity of the $\bar{\partial}$-Neumann problem, Ann. of Math. 117 (1) (1983) 147-171.
[3] D. Catlin, Boundary invariants of pseudoconvex domains, Ann. of Math. 120 (3) (1984) 529-586.
[4] D. Catlin, Subelliptic estimates for the $\bar{\partial}$-Neumann problem on pseudoconvex domains, Ann. of Math. 126 (1) (1987) 131-191.
[5] J.P. D'Angelo, Several complex variables and the geometry of real hypersurfaces, CRC Press, Boca Raton, 1993.
[6] L.Lempert, On the boundary regularity of biholomorphic mappings, Contributions to several complex variables, Aspects Math. E9 (1986) 193-215.
[7] J.E. Fornaess, L. Lee, Y. Zhang, Formal complex curves in real smooth hypersurfaces, Illinois J. Math. 58 (1) (2014) 1-10.
[8] J.E. Fornaess, B. Stensones, Infinite type germs of real analytic pseudoconvex domains in \mathbb{C}^{3}, Complex Var. Elliptic Equ. 57 (6) (2012) 705-717.
[9] K.T. Kim, V.T. Ninh, On the tangential holomorphic vector fields vanishing at an infinite type point, Trans. Amer. Math. Soc. 367(2) (2015) 867-885

[^0]: *Corresponding author.
 Email address: kimsonnt.0611@gmail.com
 https//doi.org/ 10.25073/2588-1124/vnumap. 4345

