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Introduction

This talk is about some preliminary work that I’m doing under the
supervision of Nguyen Tien Zung. The aim of this work is to build simple
mathematical models for artificial intelligence problems, in order to study
them and to propose effective solutions.

The method of stochastic gradient flow (of a so-called loss function),
also known as the method of differential learning, is a general method
very often used in machine learning. However, the obtained results are not
always very good. We want to see how to improve the designs of the loss
functions in order to get better results.

To illustrate the problems, let me begin by showing some real-world
examples of machine learning, and pointing out two main kinds of
difficulties in these examples, namely the boundary cases and the
problem of imbalanced data.
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Example 1: Recognition of hand-written numbers

A popular dataset for learning the machine learning is the MNIST
database (Modified National Institute of Standards and Technology
database) of 70000 grayscale images of size 28× 28 pixels of hand-written
digits (60000 images for training and 10000 images for testing, see, e.g.:
https://en.wikipedia.org/wiki/MNIST database). The data in this set are
balanced, that is, each digit (from 0 to 9) occupies 1/10th of the set.

This is considered to be a completely solved problem: the best AI models’
error rate is only 0.2%.

Nevertheless, in the boundary cases, for example a hand written digit
which looks like a 5 and a 3 at the same time, even the best AIs can get it
wrong.
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Some ”boundary cases” of hand-written digits: 3 or 5? 0 or 6? 4 or 9 ? ...

In general, in any classification problem, boundary cases are difficult and
often get a wrong answer, while ”interior” cases are easier to deal with.

One of the main problems in machine learning is how to improve the
accuracy of prediction for boundary cases.
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Example 2: Skin cancer classification

The second example is the problem of classification of cancerous skin
lesions into 7 types: MEL (melanoma - the most deadly type), NV
(melanocytic nevus), BCC (basal cell carcinoma), AKIEC (actinic keratosis
/ Bowen’s disease), BKL (benign keratosis), DF (dermatofibroma) and
VASC (vascular lesion). The database of the International Skin Imaging
Collaboration 2018 Challenge (https://challenge2018.isic-archive.com/) for
this classification task has the following numbers of images for each type:

NV 6705; MEL 1113; BCC 514; AKIEC 327; BKL 1099; DF 115; VASC
142

Here we have very imbalanced data, which can lead to a kind of bias or
discrimination against minority categories in machine learning. For
example, dermatofibroma (DF) occupies just 1% of all data, so even if the
machine cannot detect any dermatofibroma case it can still have an
impressive total accuracy rate of 99%, and this makes the learning of
detection of dermatofibroma difficult.
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An illustration of the 7 types of cancerous skin lesions. Human doctors’
diagnosis is correct only 50% of the times. Best AI’s balanced accuracy

rate is about 88.5% (by a company called MetaOptima, using 50000
labeled images for training. Prof. Zung’s AI group’s balanced accuracy
rate: 87%, using 10000 publicly available labeled images for training.)
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Example 3: Acne segmentation and classification

Prof. Zung’s AI group was also working on an acne AI project with the
following two main tasks: to segment all the acne pimples/lesions on an
image, and to classify these pimples/lesions in to the following six types.
The number of images in a preliminary dataset for each type is as follows:

White head: 1722; Black head: 357; Papule: 2130; Pustule: 277; Nodule:
53; Cystic: 469

Here we are faced with several difficult problems at once: imbalanced
data (very few nodules compared to papules for example); small objects
(acne pimples/lesions occupy just a small part of the picture) which is also
a kind of imbalanced data problem; and also the ill-defined boundary
problem (the boundary of an acne pimple/lesion is not well-defined,which
makes this segmentation probelm even harder than many other
segmentation problems).
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An example of machine learning for acne segmentation and classification.
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A general setting for differential learning (1)

Here will look only at the binary classification problems (other detection
and classification problems are similar). One wants to create (e.g. by a
convolutional neural network) a binary prediction machine (predictor) M̂,
i.e., a calculable binary function M̂ : Ω→ {+1,−1} (or {yes, no}) on a
space Ω of all possible data of some given format (e.g., all pictures of cats
and dogs, M̂ will predict whether it’s a cat or a dog). One wants M̂ to be
as close to the ground truth binary classification function

D : Ω→ {+1,−1}

as possible. The machine learning way of doing it is to construct a binary
map

M : Θ× Ω→ {+1,−1}

which depends not only on Ω but also on a very large space of (learnable,
i.e., modifiable) parameters Θ, and then learn a particular θ̂ ∈ Θ such that
M̂ := Mθ̂ = M(θ̂, .) is as close to the ground truth map D as possible.
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A general setting for differential learning (2)

In differential learning, one may define

Mθ(ω) = −1 if P(θ, ω) < 1/2; Mθ(ω) = +1 if P(θ, ω) ≥ 1/2

where
P : Θ× Ω→ [0, 1]

is a function given by the model. The value Pθ(ω) = P(θ, ω) ∈ [0, 1] may
be interpreted as the likelihood (probability, level of confidence), according
a given parameter θ, that D(ω) will be +1.

One may transform P by an increasing function ψ : [0, 1]→ [−1, 1] (or to
some other interval containing 0 in the middle) such that ψ(0.5) = 0, call
g = ψ ◦ P the indicating function, (or ”gain function”, whose opposite is
called a ”loss function”), and define Mθ(ω) = sign(g(θ, ω)). One then
defines a total loss function L : Θ→ R by the formula

L(θ) = −
∫

Ω
D(ω)g(θ, ω)dµ

where µ is some (empirical) probability measure on Ω
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A general setting for differential learning (3)

The idea is that elements ω ∈ Ω for which the prediction by Mθ is correct,
i.e. Mθ(ω) = D(ω), contribute negatively to the total loss function while
elements ω for which the prediction by Mθ is wrong contribute positively
to the total loss function. Intuitively, the smaller the loss, the better the
predictor, and mimimal losses should correspond to optimal predictors.
The loss function is differentiable with non-trivial differnetial (almost
everywhere) with respect to θ ∈ Θ, and one can use a discretized
stochastic gradient flow of this function on the space Θ of parameters to
find a minimal point. This flow is the iterative learning process:

θ0 7→ θ1 7→ θ2 7→ . . . 7→ θn 7→ . . .

where
θi+1 = θi − α∇L(θi ),

where α is a chosen small positive number, called the learning rate, and
∇L denotes the gradient of L. Hopefully, for some n big enough, Mθn is a
good approximation of D, with a low level of error.
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Problems with the gradient flow (1)

In practice, the above differential learning method works well, modulo
some modifications in order to address the following issues:

1) It’s impossible in practice to compute the loss L and its gradient ∇L
exactly. (In a deep learning model, Θ will have millions of dimensions, and
the exact computation of ∇L would require too many operations).

Solution: Calculate only a random partial gradient, and as a result, we get
a stochastic gradient flow.

2) The gradient flow (starting from some initial value) may get stuck at a
bad local minimum or saddle point instead of going to a global minimum.

Solution: Add momemtum and noise in order to jump out of local minima
and saddle points. So we get a noisy stochastic random gradient flow
with momentum (which is almost the same as a damped noisy stochastic
Hamiltonian flow : gradient means damped, momemtum means
Hamiltonian)
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Problems with the gradient flow (2)

3) The loss function, if not well chosen, may be a bad proxy for the
inaccuracy level: it may happen that minima of the loss functions
correspond to mediocre predictors and not to the accurate ones.

Solution: Choose an appropriate empirical probability measure on Ω to
”rebalance” data, and an appropriate design of the loss function?

Le Bich Phuong (HUMG) Gradient flows of loss functions Dec 19th 2018 13 / 23



A very simple model (1)

In order to understand this issue 3, we will study a very simple toy model:
the space Ω of all possible inputs is just an interval:

Ω = [a, b[

The ground truth binary classification function is piece-wise constant, i.e.,
there is a partition of Ω into a finite number of intervals,
Ω =

⋃n
i=0[ai , ai+1[ with a = a0 < a1 < · · · < an+1 = b, and D is equal to

+1 on Ω+ =
⋃

[a2i , a2i+1[ and to −1 on Ω− =
⋃

[a2i+1, a2i+2[.

The gain function g (opposite to the loss function) has n learnable
parameters θ1, . . . , θn and is of the type

g(θ1, . . . , θn, ω) =
n∏

i=1

φ(ω − θi )

where φ(x) is a decreasing monotonous function on R such that φ(0) = 0,
and limx→−∞ φ(x) = 1, limx→+∞ φ(x) = −1. For example, we can take
φ(x) = −x√

x2+ε
(or φ(x) = − 2

π arctan(x/ε)) for some positive number ε,

which may be called the sharpness coefficient.
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A very simple model (2)

An example of g with θ = (θ1, θ2, θ3) = (0, 1, 3) and φ(x) = −x√
x2+1/4

Notice that the function g(a1, . . . , an, .) is positive on Ω+ and negative on
Ω−. The binary predictor

Mθ(ω) = sign(g(θ, ω)),

where θ = (θ1, . . . , θn). So if θ = (θ1, . . . , θn) = (a1, . . . , an) then the
predictor coincides with the ground truth classification function, and we
get 100% accuracy.
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A very simple model (3)

We do not know the value of a1, . . . , an, and we want to find them by the
differential learning method, i.e. using the stochastic gradient flow of the
gain function

G (θ) =

∫ b

a
(
∏
i

sign(ai − ω))g(θ, ω)dµω

where dµω is some measure on [a, b] (by default, put dµω = dω).

Unfortunately, in general the maximal value of G (θ) is not at the point
θ = (a1, . . . , an) in the parameter space, but at some nearby point at best.

In other words, in general, the differential learning method does not give a
predictor with 100% accuracy even when such a predictor exists.
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A very simple model (4)

For simplicity, consider the case with just one scalar parameter: n = 1,
g(θ, ω) = φ(ω − θ), and dµω = dω. It is easy to see that in this case we
have:

dG (θ)

dθ
= g(θ, b) + g(θ, a)− 2g(θ, a1) = φ(b − θ) + φ(a− θ)− 2φ(a1 − θ)

Balanced situation. (Symmetry between the positive and the negative

parts), when b− a1 = a1 − a, i.e. , a1 = (a + b)/2, we have
dG (θ)

dθ
= 0 at

θ = a1, and a1 is the maximal point for G (θ), and so in principle the
gradient flow will converge to this good value.

Unbalanced situation. When b − a1 > a1 − a (but |b + a− 2a1| is small

enough), then
dG (θ)

dθ
vanishes at a point in the interval [a, a1[ near a1 and

not at a1. Indeed, if b − a1 > a1 − a (more ”no” than ”yes” in the data),

then
dG (θ)

dθ
(a1) < 0, which implies that the argmax of G is on the left of

a1.
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A very simple model (5)

In other words, even if the stochastic gradient flow of G converges to this
argmax point, it does not give the best predictor in the family: this
argmax predictor is biased against the minority ”yes”, and there will be
fewer ”yes” in the prediction than in reality.

Very imbalanced situation rare event situation. If b − a1 >> a1 − a so
that φ(a− b) ≥ 2φ(a− a1), then the derivative of G is always negative on
[a, b], which means that argmax of G on [a, b] is a. In other words, the
gradient flow will converge to a. The corresponding predictor predicts
every situation as a ”no” (i.e. −1), and no situation as a ”yes” (i.e. +1),
the rare cases ”yes” are completely ignored

The case with n ≥ 2 parameters is similar: the argmax does not correspond
to the best predictor, i.e. it does not coincide with (a1, . . . , an) in general.

The above situations really happen in practice: the imbalance of data
makes the learning difficult, and there is a bias/discrimination against the
minorities (unless these minorities can be ”augmented” somehow).
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Fighting the bias (1)

Two main ways of fighting discrimination (bias against minorities, i.e.
small categories in imbalanced data) and improving the accuracy of
prediction:

1) Use sharper gain/loss functions.

2) Augment the minorities.

For example, in the formula

φ(x) =
−x√
x2 + ε

,

when ε is very small, then φ is ”very sharp” and the minimal point of the
gain function G in our simple model is very near the optimal value
(a1, . . . , an) for the predictor, even when the data is imbalanced.

There is, however, a price to pay for the sharpness: the stochastic gradient
flow will become more noisy/stochastic when ε becomes smaller, which
leads to a stochastic equilibrium which is further away from the minimal
point.
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Fighting the bias (2): sharper loss functions

Indeed, ε small means the derivative of φ(x) =
−x√
x2 + ε

is high near

x = 0. The empirical stochastic gradient is computed over a relatively
small sample (called a batch) in general, and so its value can be very far
from the true gradient value. It means that when ε is small then the
variance in the stochastic gradient flow is high.

By general results on stochastic dynamical systems, we know that when
the variance is high then the stochastic equilibrium (to which the flow
converges) is far away from the minimal point of the loss function.

In the limit case, when ε = 0, the emperical loss function becomes
piecewise constant, its deriviative is zero almost everywhere and infinite at
some places, and the gradient descent method does not work at all.

Idea: sharpen the loss function but decrease the learning rate at the same
time.
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Fighting the bias (3): augmentation of minorities

Rebalancing by augmentation: Take a measure distribution on Ω which
gives more weight to each minority element than to a majority element.

Proposition: In our simple toy model with n parameters, for any
a = a0 < a1 < . . . < an+1 = b there exists a (unique probability) measure
dµ = pdω with p positive constant on each interval ]ai , ai+1] such that
the argmax of the gain function G (θ) is exactly (a1, . . . , an).

The ”rebalancing by augmentation” idea works well in practice. But what
weights to choose? Pick them by hand ?!

It is a delicate problem: if the minority is augmented by the ratio equal to
(majority mass / minority mass), then instead of having a discrimination
against the minority we will actually have a discrimination against the
majority!

Automatic rebalancing: The idea is that the best relative weights to give
to the minorities can also be found automatically by machine learning!
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Fighting the bias (4): an example of augmentation

Example: Skin cancer classification. Augmentation coefficients which seem
to work very well:

Type Number of images Coefficient
NV 6705 1
MEL 1113 4
BCC 514 8
AKIEC 327 10
BKL 1099 4
DF 115 25
VASC 142 22

Note that
6705×1 > 1113×4 > 1199×4 > 514×8 > 317×10 > 142×22 > 115×25.
The augmentation coefficients are integers because they are easy to
implement in machine learning. If say the coefficient is 2 then feed the
same thing twice to the data pipe (with some image transformations).
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THANK YOU FOR YOUR ATTENTION!
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