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In this article, we study the relations between the ramifications of the Gauss map 
and the total curvature of a complete minimal surface. More precisely, we introduce 
some conditions on the ramifications of the Gauss map of a complete minimal 
surface M to show that M has finite total curvature.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In 1988, Fujimoto [3] proved Nirenberg’s conjecture that if M is a complete non-flat minimal surface 
in R3, then its Gauss map can omit at most 4 points, and there are a number of examples showing that the 
bound is sharp (see [12, pp. 72–74]). He [4] also extended that result to the Gauss map of complete minimal 
surfaces in Rm. After that, in 1990, Mo–Osserman [10] showed an interesting improvement of Fujimoto’s 
result by proving that a complete minimal surface in R3 whose Gauss map assumes five values only a 
finite number of times has finite total curvature. We note that a complete minimal surface with finite total 
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curvature to be called an algebraic minimal surface. After that, Mo [9] extended that result to the complete 
minimal surface in Rm (m > 3).

On the other hand, in 1993, M. Ru [13] refined the results of Fujimoto by studying the Gauss map of 
minimal surfaces in Rm with ramification. Many results related to this problem were studied (see Jin–Ru [7], 
Kawakami–Kobayashi–Miyaoka [8], Ha [5], Dethloff–Ha [1] and Dethloff–Ha–Thoan [2] for examples).

A natural question is whether we may show a relation between of the ramification of the Gauss map and 
the total curvature of a complete minimal surface. The main purpose of this article is to give an affirmative 
answer for this question. For the purpose of this article, we recall some definitions.

Let x = (x0, · · · , xm−1) : M → Rm be a (smooth, oriented) minimal surface immersed in Rm. Then 
M has the structure of a Riemann surface and any local isothermal coordinate (ξ1, ξ2) of M gives a local 
holomorphic coordinate z = ξ1 +

√
−1ξ2. The (generalized) Gauss map of x is defined to be

g : M → Qm−2(C) ⊂ Pm−1(C), g(z) = (∂x0

∂z
: · · · : ∂xm−1

∂z
),

where

Qm−2(C) = {(w0 : · · · : wm−1)|w2
0 + · · · + w2

m−1 = 0} ⊂ Pm−1(C).

By the assumption of minimality of M , g is a holomorphic map of M into Qm−2(C).
One says that g is ramified over a hyperplane H = {(w0 : · · · : wm−1) ∈ Pm−1(C) : a0w0 + · · · +

am−1wm−1 = 0} with multiplicity at least e if all the zeros of the function (g, H) := a0g0 + · · ·+ am−1gm−1
have orders at least e, where g = (g0 : · · · : gm−1). If the image of g omits H, one will say that g is ramified 
over H with multiplicity ∞.

The main purpose of this article is to prove the following:

Theorem 1. Let M be a complete minimal surface in Rm and K be a compact subset in M . Assume that 
the generalized Gauss map g of M is k-non-degenerate (that is g(M) is contained in a k-dimensional linear 
subspace in Pm−1(C), but none of lower dimension), 1 ≤ k ≤ m − 1. If there are q hyperplanes {Hj}qj=1 in 
N -subgeneral position in Pm−1(C), (N ≥ m − 1) such that g is ramified over Hj with multiplicity at least 
mj on M \K for each j and

q∑
j=1

(1 − k

mj
) > (k + 1)(N − k

2 ) + (N + 1), (1.1)

then M has finite total curvature.
In particular, if {Hj}qj=1 are in general position in Pm−1(C) and

q∑
j=1

(1 − m− 1
mj

) > m(m + 1)
2 , (1.2)

then M must have finite total curvature.

When m = 3, we can identify Q1(C) with P1(C). So we can get a better result as the following:

Theorem 2. Let M be a complete minimal surface in R3 and q distinct points aj , . . . , aq in P1(C). Suppose 
that the Gauss map g of M is ramified over aj with multiplicity at least mj for each j = 1, · · · , q outside a 
compact subset K of M . Then M has finite total curvature if
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q∑
j=1

(
1 − 1

mj

)
> 4. (1.3)

We now give some applications of Theorem 1 and Theorem 2 by using them to prove some previous 
results of Mo–Osserman [10], Mo [9] and Ru [13]:

Theorem 3. ([10, Theorem 1]) Let M be a complete minimal surface in R3. If Gauss map g takes on five 
distinct points in P1(C) only a finite number of times. Then M has finite total curvature.

Proof. Assume that the Gauss map g takes on five distinct points a1, . . . , a5 in P1(C) only a finite number of 
times, we can choose a compact subset K of M which contains g−1(a1), . . . , g−1(a5). So the Gauss map g will 
omit a1, . . . , a5 outside K (i.e. g ramifies over a1, . . . , a5 with multiplicity ∞). We now apply the Theorem 2
to show that M has finite total curvature. Theorem 3 is proved. �
Theorem 4. ([9]) Let M be a complete non-degenerate minimal surface in Rm such that its generalized Gauss 
map g intersects only a finite number of times the hyperplanes {Hj}qj=1 in Pm−1(C) in general position. If 
q > m(m + 1)/2 then M must have finite total curvature.

Proof. Indeed, if we assume that the Gauss map g intersects q hyperplanes H1, . . . , Hq in Pm−1(C) in 
general position only a finite number of times, we can choose a compact subset K of M which contains 
g−1(H1), . . . , g−1(Hq). So the Gauss map g will omit H1, . . . , Hq outside K (i.e. g ramifies over H1, . . . , Hq

with multiplicity ∞). We now apply the Theorem 1 to show that M has finite total curvature. Theorem 4
is proved. �
Theorem 5. ([13, Theorem 2]) Let M be a non-flat complete minimal surface in R3. If there are q (q > 4) 
distinct points a1, . . . , aq ∈ P1(C) such that the Gauss map g of M is ramified over aj with multiplicity at 
least mj for each j, then 

∑q
j=1(1 − 1

mj
) ≤ 4.

Proof. We set K to be an empty set in a non-flat complete minimal surface M . So if (1.3) is correct, by using 
Theorem 2, we show that the minimal surface M has finite total curvature. Now, by the completeness of M
we have M to be an algebraic minimal surface. Thanks to Theorem 3.3 in [8], we obtain 

∑q
j=1(1 − 1

mj
) < 4. 

This gives a contradiction. Thus, Theorem 5 is proved. �
Theorem 6. ([13, Theorem 1]) For any complete minimal surface M immersed in Rm with its Gauss map g. 
Assume that the generalized Gauss map g of M is k-non-degenerate, 1 ≤ k ≤ m −1. If there are q hyperplanes 
{Hj}qj=1 in general position in Pm−1(C) such that g is ramified over Hj with multiplicity at least mj on M
for each j. Then

q∑
j=1

(1 − k

mj
) ≤ (k + 1)(m− k

2 − 1) + m. (1.4)

In particular, Let {Hj}qj=1 be q hyperplanes in general position in Pm−1(C). If g is ramified over Hj with 
multiplicity at least mj for each j and

q∑
j=1

(1 − m− 1
mj

) > m(m + 1)
2

then M is flat, or equivalently, g is constant.
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Proof. Assume M is a non-flat complete minimal surface and K is an empty set. So if (1.4) is not correct, 
by using Theorem 1 for the case N = m −1, we show that the minimal surface M has finite total curvature. 
Now, by the completeness of M we have M to be an algebraic minimal surface. Thanks to the proof of 
Theorem 3.1 in [7], we can obtain

q∑
j=1

(1 − k

mj
) < (k + 1)(m− k

2 − 1) + m.

This gives a contradiction. So M must be flat. Theorem 6 is proved. �
2. Auxiliary lemmas

Let f be a linearly non-degenerate holomorphic map of ΔR := {z ∈ C : |z| < R} into Pk(C), where 
0 < R ≤ +∞. Take a reduced representation f = (f0 : · · · : fk). Then F := (f0, · · · , fk) : ΔR → Ck+1 \ {0}
is a holomorphic map with P(F ) = f . Consider the holomorphic map

Fp = (Fp)z := F (0) ∧ F (1) ∧ · · · ∧ F (p) : ΔR −→ ∧p+1Ck+1

for 0 ≤ p ≤ k, where F (0) := F = (f0, · · · , fk) and F (l) = (F (l))z := (f (l)
0 , · · · , f (l)

k ) for each l = 0, · · · , k, 
and where the l-th derivatives f (l)

i = (f (l)
i )z, i = 0, · · · , k, are taken with respect to z. (Here and for the 

rest of this paper the index |z means that the corresponding term is defined by using differentiation with 
respect to the variable z, and in order to keep notations simple, we usually drop this index if no confusion 
is possible.) The norm of Fp is given by

|Fp| :=
( ∑

0≤i0<···<ip≤k

∣∣W (fi0 , · · · , fip)
∣∣2 ) 1

2

,

where W (fi0 , · · · , fip) = Wz(fi0 , · · · , fip) denotes the Wronskian of fi0 , · · · , fip with respect to z.

Proposition 7. ([4, Proposition 2.1.6]) For two holomorphic local coordinates z and ξ and a holomorphic 
function h : ΔR → C, the following holds:

a) Wξ(f0, · · · , fp) = Wz(f0, · · · , fp) · (dzdξ )p(p+1)/2.
b) Wz(hf0, · · · , hfp) = Wz(f0, · · · , fp) · (h)p+1.

Proposition 8. ([4, Proposition 2.1.7]) For holomorphic functions f0, . . . , fp : ΔR → C the following condi-
tions are equivalent:

(i) f0, . . . , fp are linearly dependent over C.
(ii) Wz(f0, · · · , fp) ≡ 0 for some (or all) holomorphic local coordinate z.

We now take a hyperplane H in Pk(C) given by

H : c0ω0 + · · · + ckωk = 0 ,

with 
∑k

i=0 |ci|2 = 1. We set

F0(H) := F (H) := c0f0 + · · · + ckfk
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and

|Fp(H)| = |(Fp)z(H)| :=
( ∑

0≤i1<···<ip≤k

∣∣∣∣∣∣
∑

l �=i1,...,ip

clW (fl, fi1 , · · · , fip)

∣∣∣∣∣∣
2 ) 1

2

,

for 1 ≤ p ≤ k. We note that by using Proposition 7, |(Fp)z(H)| is multiplied by a factor |dzdξ |p(p+1)/2 if we 
choose another holomorphic local coordinate ξ, and it is multiplied by |h|p+1 if we choose another reduced 
representation f = (hf0 : · · · : hfk) with a nowhere zero holomorphic function h. Finally, for 0 ≤ p ≤ k, set 

the p-th contact function of f for H to be φp(H) := |Fp(H)|2
|Fp|2

= |(Fp)z(H)|2
|(Fp)z|2

.

We next consider q hyperplanes H1, . . . , Hq in Pk(C) given by

Hj : 〈ω,Aj〉 ≡ cj0ω0 + · · · + cjkωk (1 ≤ j ≤ q)

where Aj := (cj0, · · · , cjk) with 
∑k

i=0 |cji|2 = 1.
Assume now N ≥ k and q ≥ N + 1. For R ⊆ Q := {1, 2, · · · , q}, denote by d(R) the dimension of the 

vector subspace of Ck+1 generated by {Aj ; j ∈ R}.
The hyperplanes H1, . . . , Hq are said to be in N -subgeneral position if d(R) = k + 1 for all R ⊆ Q with 

�(R) ≥ N + 1, where �(A) means the number of elements of a set A. In the particular case N = k, these are 
said to be in general position.

Theorem 9. ([4, Theorem 2.4.11]) For given hyperplanes H1, . . . , Hq (q > 2N − k + 1) in Pk(C) located 
in N -subgeneral position, there are some rational numbers ω(1), . . . , ω(q) and θ satisfying the following 
conditions:

(i) 0 < ω(j) ≤ θ ≤ 1 (1 ≤ j ≤ q),
(ii)

∑q
j=1 ω(j) = k + 1 + θ(q − 2N + k − 1),

(iii) k+1
2N−k+1 ≤ θ ≤ k+1

N+1 ,
(iv) If R ⊂ Q and 0 < �(R) ≤ n + 1, then 

∑
j∈R ω(j) ≤ d(R).

Constants ω(j) (1 ≤ j ≤ q) and θ with the properties of Theorem 9 are called Nochka weights and a 
Nochka constant for H1, . . . , Hq respectively. Related to Nochka weights, we have the following.

Proposition 10. ([4, Lemma 3.2.13]) Let f be a non-degenerate holomorphic map of a domain in C into Pk(C)
with reduced representation f = (f0 : · · · : fk) and let H1, . . . , Hq be hyperplanes located in N -subgeneral 
position (q > 2N − k + 1) with Nochka weights ω(1), . . . , ω(q) respectively. Then,

νφ +
q∑

j=1
ω(j) · min(ν(f,Hj), k) ≥ 0,

where φ = |Fk|
Πq

j=1 | F (Hj) |ω(j) and νφ is the divisor of φ.

Lemma 11. ([2, Lemma 9]) Let f = (f0 : · · · : fk) : ΔR → Pk(C) be a non-degenerate holomorphic map, 
H1, . . . , Hq be hyperplanes in Pk(C) in N -subgeneral position (N ≥ k and q > 2N − k + 1), and ω(j) be 
their Nochka weights. If

γ :=
q∑

ω(j)(1 − k

mj
) − (k + 1) > 0
j=1
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and f is ramified over Hj with multiplicity at least mj ≥ k for each j, (1 ≤ j ≤ q), then for any positive ε
with γ > εσk+1 there exists a positive constant C, depending only on ε, Hj, mj , ω(j) (1 ≤ j ≤ q), such that

|F |γ−εσk+1
|Fk|1+ε

∏q
j=1

∏k−1
p=0 |Fp(Hj)|ε/q∏q

j=1 |F (Hj)|
ω(j)(1− k

mj
)

� C( 2R
R2 − |z|2 )σk+ετk ,

where σp = p(p + 1)/2 for 0 ≤ p ≤ k and τk =
∑k

p=0 σp.

In particular, we have the following version for the case one dimension.

Lemma 12. ([1, Lemma 8]). For every δ with q − 2 −
∑q

j=1
1
mj

> qδ > 0 and f which is ramified over 
aj ∈ P1(C) with multiplicity at least mj for each j (1 ≤ j ≤ q), there exists a positive constant C such that

||f ||q−2−
∑q

j=1
1

mj
−qδ|W (f0, f1)|

Πq
j=1|Fj |

1− 1
mj

−δ
≤ C

2R
R2 − |z|2 .

Lemma 13. ([4, Theorem 3.3.15]). Let f : Δs,∞(= C −Δs) → Pn(C) be a nonconstant holomorphic map and 
let H1, . . . , Hq be distinct q hyperplanes in N -subgeneral position. Assume that f has an essential singularity 
at ∞ in the particular case s > 0, and is ramified over Hj (j = 1, · · · , q) with multiplicity at least mj for 
each j. Then

q∑
j=1

(1 − n

mj
) ≤ 2N − n + 1.

We finally will need the following result on completeness of open Riemann surfaces with conformally flat 
metrics due to Fujimoto:

Lemma 14. ([4, Lemma 1.6.7]). Let dσ2 be a conformal flat metric on an open Riemann surface M . Then 
for every point p ∈ M , there is a holomorphic and locally biholomorphic map Φ of a disk (possibly with 
radius ∞) ΔR0 := {w : |w| < R0} (0 < R0 ≤ ∞) onto an open neighborhood of p with Φ(0) = p such that 
Φ is a local isometry, namely the pull-back Φ∗(dσ2) is equal to the standard (flat) metric on ΔR0 , and for 
some point a0 with |a0| = 1, the Φ-image of the curve

La0 : w := a0 · s (0 ≤ s < R0)

is divergent in M (i.e. for any compact set K ⊂ M , there exists an s0 < R0 such that the Φ-image of the 
curve La0 : w := a0 · s (s0 ≤ s < R0) does not intersect K).

3. The proof of Theorem 1

Proof. For the convenience of the reader, we first recall some notations on the Gauss map of minimal surfaces 
in Rm. Let M be a complete immersed minimal surface in Rm. Take an immersion x = (x0, · · · , xm−1) :
M → Rm. Then M has the structure of a Riemann surface and any local isothermal coordinate (ξ1, ξ2) of 
M gives a local holomorphic coordinate z = ξ1 +

√
−1ξ2. The generalized Gauss map of x is defined to 

be

g : M → Pm−1(C), g = P(∂x
∂z

) = (∂x0

∂z
: · · · : ∂xm−1

∂z
).
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Since x : M → Rm is immersed,

G = Gz := (g0, · · · , gm−1) = ((g0)z, · · · , (gm−1)z) = (∂x0

∂z
, · · · , ∂xm−1

∂z
)

is a (local) reduced representation of g, and since for another local holomorphic coordinate ξ on M we have 

Gξ = Gz · (
dz

dξ
), g is well defined (independently of the (local) holomorphic coordinate). Moreover, if ds2 is 

the metric on M induced by the standard metric on Rm, we have

ds2 = 2|Gz|2|dz|2. (3.1)

Finally since M is minimal, g is a holomorphic map.
Since by hypothesis of the Theorem 1, g is k-non-degenerate (1 ≤ k ≤ m − 1) without loss of generality, 

we may assume that g(M) ⊂ Pk(C); then

g : M → Pk(C), g = P(∂x
∂z

) = (∂x0

∂z
: · · · : ∂xk

∂z
)

is linearly non-degenerate in Pk(C) (so in particular g is not constant) and the other facts mentioned above 
still hold.

Now the proof of Theorem 1 will be given in six steps:

Step 1: Let Hj (j = 1, · · · , q) be q(≥ N + 1) hyperplanes in Pm−1(C) in N -subgeneral position (N ≥
m − 1 ≥ k). Then Hj ∩ Pk(C) (j = 1, · · · , q) are q hyperplanes in Pk(C) in N -subgeneral position. Let each 
Hj ∩ Pk(C) be represented as

Hj ∩ Pk(C) : cj0ω0 + · · · + cjkωk = 0

with 
∑k

i=0 |cji|2 = 1.
Set

G(Hj) = Gz(Hj) := cj0g0 + · · · + cjkgk.

We will now, for each contact function φp(Hj) of g for each a hyperplane Hj, choose one of the components 
of the numerator |((Gz)p)z(Hj)| which is not identically zero: More precisely, for each j, p (1 ≤ j ≤ q, 1 ≤
p ≤ k), we can choose i1, . . . , ip with 0 ≤ i1 < · · · < ip ≤ k such that

ψ(G)jp = (ψ(Gz)jp)z :=
∑

l �=i1,...,ip

cjlWz(gl, gi1 , · · · , gip) �≡ 0,

(indeed, otherwise, we have 
∑

l �=i1,...,ip
cjlW (gl, gi1 , · · · , gip) ≡ 0 for all i1, . . . , ip, so W (

∑
l �=i1,...,ip

cjlgl, gi1 ,

· · · , gip) ≡ 0 for all i1, . . . , ip, which contradicts the non-degeneracy of g in Pk(C). Alternatively we simply 
can observe that in our situation none of the contact functions vanishes identically). We still set ψ(G)j0 =
ψ(Gz)j0 := G(Hj)(�≡ 0), and we also note that ψ(G)jk = ((Gz)k)z. Since the ψ(G)jp are holomorphic, so 
they have only isolated zeros.

Finally we put for later use the transformation formulas for all the terms defined above, which are 
obtained by using Proposition 7: For local holomorphic coordinates z and ξ on M we have:
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Gξ = Gz · (
dz

dξ
) , (3.2)

Gξ(H) = Gz(H) · (dz
dξ

) , (3.3)

((Gξ)k)ξ = ((Gz)k)z · (
dz

dξ
)k+1+ k(k+1)

2 = ((Gz)k)z(
dz

dξ
)σk+1 , (3.4)

(ψ(Gξ)jp)ξ = (ψ(Gz)jp)z · (
dz

dξ
)p+1+ p(p+1)

2 = (ψ(Gz)jp)z · (
dz

dξ
)σp+1 , (0 ≤ p ≤ k) . (3.5)

Moreover, we also will need the following transformation formulas for mixed variables:

((Gξ)k)ξ = ((Gξ)k)z · (
dz

dξ
)

k(k+1)
2 = ((Gξ)k)z(

dz

dξ
)σk , (3.6)

(ψ(Gξ)jp)ξ = (ψ(Gξ)jp)z · (
dz

dξ
)

p(p+1)
2 = (ψ(Gξ)jp)z · (

dz

dξ
)σp , (0 ≤ p ≤ k) . (3.7)

We next observe that we may also assume

mj > k , j = 1, · · · , q . (3.8)

In fact, if this does not hold for all j = 1, . . . , q, we just drop the Hj for which it does not hold, and remain 
with q̃ < q such hyperplanes. By hypothesis (1.1), q̃ ≥ N + 1 and the q̃ hyperplanes thus obtained are still 
in N -subgeneral position in Pm−1(C). Therefore, we prove our Main Theorem for q̃ instead of q.

Step 2: It follows from hypothesis (1.1) that

(
q∑

j=1
(1 − k

mj
)) − 2N + k − 1 >

(2N − k + 1)k
2 > 0 (3.9)

holds and by (3.8) this implies in particular

q > 2N − k + 1 ≥ N + 1 ≥ k + 1 .

By Theorem 9, we have

(q − 2N + k − 1)θ =
q∑

j=1
ω(j) − k − 1 ; θ ≥ ω(j) > 0 and θ ≥ k + 1

2N − k + 1 . (3.10)

So, using (3.10), we get

2
(

(
q∑

j=1
ω(j)(1 − k

mj
)) − k − 1

)
=

2((
∑q

j=1 ω(j)) − k − 1)θ
θ

− 2
q∑

j=1

kω(j)θ
θmj

= 2(q − 2N + k − 1)θ − 2
q∑

j=1

kω(j)θ
θmj

≥ 2(q − 2N + k − 1)θ − 2
q∑

j=1

kθ

mj

= 2θ
(

(
q∑

(1 − k

mj
)) − 2N + k − 1

)

j=1
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≥ 2
(k + 1)

(
(
∑q

j=1(1 − k

mj
)) − 2N + k − 1

)
2N − k + 1 .

Thus, we now can conclude with (3.9) that

2
(

(
q∑

j=1
ω(j)(1 − k

mj
)) − k − 1

)
> k(k + 1)

⇒ (
q∑

j=1
ω(j)(1 − k

mj
)) − k − 1 − k(k + 1)

2 > 0. (3.11)

By (3.11), we can choose a number ε(> 0) ∈ Q such that
∑q

j=1 ω(j)(1 − k
mj

) − (k + 1) − k(k+1)
2

τk+1
> ε >

>

∑q
j=1 ω(j)(1 − k

mj
) − (k + 1) − k(k+1)

2
1
q + τk+1

.

So

h := (
q∑

j=1
ω(j)(1 − k

mj
)) − (k + 1) − εσk+1 >

k(k + 1)
2 + ετk (3.12)

and

ε

q
> (

q∑
j=1

ω(j)(1 − k

mj
)) − (k + 1) − k(k + 1)

2 − ετk+1. (3.13)

We now consider the number

ρ := 1
h

(
k(k + 1)

2 + ετk

)
= 1

h

(
σk + ετk

)
. (3.14)

Then, by (3.12), we have

0 < ρ < 1. (3.15)

Set

ρ∗ := 1
(1 − ρ)h = 1

(
∑q

j=1 ω(j)(1 − k
mj

)) − (k + 1) − k(k+1)
2 − ετk+1

. (3.16)

Using (3.13) we get

ερ∗

q
> 1. (3.17)

Now, we put A = M \K and

A1 = {z ∈ M \K : ψ(G)jp(z) �= 0 for all j = 1, · · · , q and p = 0, · · · , k}.
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We define a new pseudo metric

dτ2 =
( Πq

j=1|Gz(Hj)|
ω(j)(1− k

mj
)

|((Gz)k)z|1+εΠk−1
p=0Πq

j=1|(ψ(Gz)jp)z|ε/q

)2ρ∗

|dz|2 (3.18)

on A1. We note that by the transformation formulas (3.2) to (3.5) for a local holomorphic coordinate ξ we 
have

( Πq
j=1|Gz(Hj)|

ω(j)(1− k
mj

)

|((Gz)k)z|1+εΠk−1
p=0Πq

j=1|(ψ(Gz)jp)z|ε/q

)2ρ∗

|dz|2

=
( Πq

j=1|Gξ(Hj)|
ω(j)(1− k

mj
)

|((Gξ)k)ξ|1+εΠk−1
p=0Πq

j=1|(ψ(Gξ)jp)ξ|ε/q

)2ρ∗

|dξ|2 (3.19)

so the pseudo metric dτ is in fact defined independently of the choice of the coordinate.
Next we observe that for any point z ∈ A, we have

(νGk
−

q∑
j=1

ω(j)νG(Hj)(1 − k

mj
))(z) ≥ 0 . (3.20)

In fact, put φ := |Gk|∏q
j=1 |G(Hj)|ω(j) . Observing that by (3.8) for all j = 1, · · · , q and all z ∈ A we have either 

νG(Hj)(z) = 0 or νG(Hj)(z) ≥ mj > k, we get

k

mj
νG(Hj) ≥ min{νG(Hj), k} .

So by Proposition 10 we have

νGk
−

q∑
j=1

ω(j)νG(Hj)(1 − k

mj
)

= νφ +
q∑

j=1
ω(j) k

mj
νG(Hj)

≥ νφ +
q∑

j=1
ω(j) min{νG(Hj), k} ≥ 0 .

Now it is easy to see that dτ is continuous and nowhere vanishing on A1. Indeed, for z0 ∈ A1 with 
Πq

j=1G(Hj)(z0) �= 0, dτ is continuous and not vanishing at z0. Now assume that there exists z0 ∈ A1 such 
that G(Hi)(z0) = 0 for some i. But by (3.20) and (3.8) we then get that νGk

(z0) > 0 which contradicts to 
z0 ∈ A1.

It is easy to see that dτ is flat. It can be smoothly extended over K. Thus, we have a metric, still call it 
dτ , on

A′
1 = A1 ∪K.

Note that dτ is flat outside the compact set K. The key point is to prove that A′
1 is complete in that 

metric.
Step 3: We proceed by contradiction. If A′

1 isn’t complete, there is a divergent curve γ(t) on A′
1 with finite 

length. We may assume that there is a positive distance d between curve γ and the compact K. Therefore 
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γ : [0, 1) → A1 and γ divergent on A′
1, with finite length. It implies that from the point of view of M , there 

are two cases: either γ(t) tends to a point z0 with

Πk
p=0Π

q
j=1|ψ(G)jp|(z0) = 0.

(γ(t) tends to the boundary of A′
1 as t → 1) or else γ(t) tends to the boundary of M as t → 1.

For the former case, then using (3.20) we get

νdτ (z0) = −
(

(νGk
(z0) −

q∑
j=1

ω(j)νG(Hj)(z0)(1 − k

mj
)) + (ενGk

(z0)

+ ε

q

q∑
j=1

k−1∑
p=0

νψ(G)jp(z0))
)
ρ∗

≤ −ερ∗νGk
(z0) −

ερ∗

q

q∑
j=1

k−1∑
p=0

νψ(G)jp(z0) ≤ −ερ∗

q
.

Thus we can find a positive constant C such that

|dτ | ≥ C

|z − z0|
ερ∗
q

|dz|

in a neighborhood of z0 and then, combining with (3.17), we thus have

1∫
0

dτ = ∞

contradicting the finite length of γ. Therefore the last case occur, that is γ(t) tends to the boundary of M
as t → 1.

Step 4: Choose t0 such that

1∫
t0

dτ < d/3.

We consider a small disk Δ with center at γ(t0). Since dτ is flat, by Lemma 14, Δ is isometric to an ordinary 
disk in the plane. Let Φ : {|w| < η} → Δ be this isometry. Extend Φ, as a local isometry into A1, to the 
largest disk {|w| < R} = ΔR possible. Then R ≤ d/3. Hence, the image under Φ be bounded away from 
K by distance at least 2d/3. The reason that Φ cannot be extended to a larger disk is that the image goes 
to the outside boundary A′

1 (it cannot go to points of A′
1 with Πk

p=0Π
q
j=1|ψ(G)jp|(z0) = 0 since we have 

shown already to be infinitely far away in the metric with respect to these points). More precisely, by again 
Lemma 14, there exists a point w0 with |w0| = R so that Φ(0, w0) = Γ0 is a divergent curve on M .

Our goal is to show that Γ0 has finite length in the original ds2 on M , contradicting the completeness of 
the M .

Step 5: Since we want to use Lemma 11 to finish up step 2, for the rest of the proof of step 2 we 
consider Gz = ((g0)z, . . . , (gk)z) as a fixed globally defined reduced representation of g by means of the 
global coordinate z of A ⊃ A1. (We remark that then we loose of course the invariance of dτ2 under 
coordinate changes (3.19), but since z is a global coordinate this will be no problem and we will not need 
this invariance for the application of Lemma 11.) If again Φ : {w : |w| < R} → A1 is our maximal local 
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isometry, it is in particular holomorphic and locally biholomorphic. So f := g ◦ Φ : {w : |w| < R} → Pk(C)
is a linearly non-degenerate holomorphic map with fixed global reduced representation

F := Gz ◦ Φ = ((g0)z ◦ Φ, · · · , (gk)z ◦ Φ) = (f0, · · · , fk) .

Since Φ is locally biholomorphic, the metric on ΔR induced from ds2 (cf. (3.1)) through Φ is given by

Φ∗ds2 = 2|Gz ◦ Φ|2|Φ∗dz|2 = 2|F |2| dz
dw

|2|dw|2 . (3.21)

On the other hand, Φ is locally isometric, so we have

|dw| = |Φ∗dτ | =
( Πq

j=1|Gz(Hj) ◦ Φ|ω(j)(1− k
mj

)

|((Gz)k)z ◦ Φ|1+εΠk−1
p=0Πq

j=1|(ψ(Gz)jp)z ◦ Φ|ε/q

)ρ∗

| dz
dw

||dw| .

By (3.6) and (3.7) we have

((Gz)k)z ◦ Φ = ((Gz ◦ Φ)k)w(dw
dz

)σk = (Fk)w(dw
dz

)σk ,

(ψ(Gz)jp)z ◦ Φ = (ψ(Gz ◦ Φ)jp)w · (dw
dz

)σp = (ψ(F )jp)w · (dw
dz

)σp , (0 ≤ p ≤ k) .

Hence, by definition of ρ in (3.14), we have

|dw
dz

| =
( Πq

j=1|Gz(Hj) ◦ Φ|ω(j)(1− k
mj

)

|((Gz)k)z ◦ Φ|1+εΠk−1
p=0Πq

j=1|(ψ(Gz)jp)z ◦ Φ|ε/q

)ρ∗

=
( Πq

j=1|F (Hj)|
ω(j)(1− k

mj
)

|(Fk)w|1+εΠk−1
p=0Πq

j=1|(ψ(F )jp)w|ε/q

)ρ∗
1

|dwdz |hρρ
∗ .

So by the definition of ρ∗ in (3.16), we get

| dz
dw

| =
( |(Fk)w|1+εΠk−1

p=0Πq
j=1|(ψ(F )jp)w|ε/q

Πq
j=1|F (Hj)|

ω(j)(1− k
mj

)

) ρ∗
1+hρρ∗

=
( |(Fk)w|1+εΠk−1

p=0Πq
j=1|(ψ(F )jp)w|ε/q

Πq
j=1|F (Hj)|

ω(j)(1− k
mj

)

) 1
h

.

Moreover, |(ψ(F )jp)w| ≤ |(Fp)w(Hj)| by the definitions, so we obtain

| dz
dw

| ≤
( |(Fk)w|1+εΠk−1

p=0Πq
j=1|(Fp)w(Hj)|ε/q

Πq
j=1|F (Hj)|

ω(j)(1− k
mj

)

) 1
h

. (3.22)

By (3.21) and (3.22), we have

Φ∗ds �
√

2|F |
( |(Fk)w|1+εΠk−1

p=0Πq
j=1|(Fp)w(Hj)|ε/q

Πq
j=1|F (Hj)|

ω(j)(1− k
mj

)

) 1
h

|dw|.
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By (3.10) and (3.12) all the conditions of Lemma 11 are satisfied. So we obtain by Lemma 11:

Φ∗ds � C( 2R
R2 − |w|2 )ρ|dw| .

Since by (3.15) we have 0 < ρ < 1, it then follows that

dΓ0 �
∫
Γ0

ds =
∫

0,w0

Φ∗ds � C ·
R∫

0

( 2R
R2 − |w|2 )ρ|dw| < +∞,

where dΓ0 denotes the length of the divergent curve Γ0 in M , contradicting the assumption of completeness 
of M . Thus, we conclude that A′

1 is complete.
Step 6: Since the metric on A′

1 is flat outside of a compact set K, by a theorem of Huber [6, Theorem 13, 
p. 61] the fact that A′

1 has finite total curvature implies that A′
1 is finitely connected. This means that there 

is a compact subregion of A′
1 whose complement is the union of a finite number of doubly-connected regions. 

Thus, we can first conclude that Πk
p=0Π

q
j=1|ψ(G)jp|(z) can have only a finite number of zeros, and second, 

that the original surface M is finitely connected. Furthermore, by Osserman [11, Theorem 2.1] each annular 
ends of A′

1, hence of M , is conformally equivalent to a punctured disk. Thus, the Riemann surface M must 
be conformally equivalent to a compact Riemann surface M with a finite number of points removed. In a 
neighborhood of each of those points the Gauss map G be ramified over Hj with multiplicity at least mj

such that

q∑
j=1

(1 − k

mj
) > (k + 1)(N − k

2 ) + (N + 1) > 2N − k + 1.

By a generalized Picard theorem (Lemma 13), the Gauss map G is not essential at those points. Therefore 
G can be extended to a holomorphic map from M to Pk(C). If the homology class represented by the image 
of G : M → Pk(C) is m times the fundamental homology class of Pk(C), then we have

∫∫
KdA = −2πm

as the total curvature of M . This proves the Theorem 1. �
4. The proof of Theorem 2

Proof. For convenience of the reader, we first recall some notations on the Gauss map of minimal surfaces 
in R3. Let x = (x1, x2, x3) : M → R3 be a non-flat complete minimal surface and g : M → P1(C) its Gauss 
map. Let z be a local holomorphic coordinate. Set φi := ∂xi/∂z (i = 1, 2, 3) and φ := φ1 −

√
−1φ2. Then, 

the (classical) Gauss map g : M → P1(C) is given by

g = φ3

φ1 −
√
−1φ2

,

and the metric on M induced from R3 is given by

ds2 = |φ|2(1 + |g|2)2|dz|2 (see Fujimoto [4]).

We remark that although the φi, (i = 1, 2, 3) and φ depend on z, g and ds2 do not. Next we take a reduced 
representation g = (g0 : g1) on M and set ||g|| = (|g0|2 + |g1|2)1/2. Then we can rewrite
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ds2 = |h|2||g||4|dz|2 , (4.1)

where h := φ/g2
0 . In particular, h is a holomorphic map without zeros. We remark that h depends on z, 

however, the reduced representation g = (g0 : g1) is globally defined on M and independent of z. Finally 
we observe that by the assumption that M is not flat, g is not constant.

Now the proof of Theorem 2 will be completely analogue to the proof of Theorem 1.
Step 1: For each aj (1 ≤ j ≤ q) be distinct points in P1(C), we may assume aj = (aj0 : aj1) with 

|aj0|2 + |aj1|2 = 1 (1 ≤ j ≤ q). We set Gj := aj0g1 − aj1g0 (1 ≤ j ≤ q) for the reduced representation 
g = (g0 : g1) of the Gauss map. By the same argument in the step 1 of the proof of Theorem 1, we also can 
assume that mj ≥ 2 for all j = 1, · · · , q.

Step 2: It follows from the hypothesis of theorem

q∑
j=1

(
1 − 1

mj

)
> 4

that we can take δ with

q − 4 −
∑q

j=1
1
mj

q
> δ >

q − 4 −
∑q

j=1
1
mj

q + 2 ,

and set p = 2/(q − 2 −
∑q

j=1
1
mj

− qδ). Then

0 < p < 1, p

1 − p
>

δp

1 − p
> 1 . (4.2)

For convenience, we will use again some notations as in the proof of Theorem 1.
Put A = M \K and

A1 = {z ∈ M \K : W (g0, g1)(z) �= 0 for all j = 1, · · · , q}.

We define a new metric

dτ2 = |h| 2
1−p

(Πq
j=1|Gj |

1− 1
mj

−δ

|W (g0, g1)|

) 2p
1−p

|dz|2

on A1 (where again Gj := aj0g1 − aj1g0 and h is defined with respect to the coordinate z on A1 and 
W (g0, g1) = Wz(g0, g1)).

First we observe that dτ is continuous and nowhere vanishing on A1. Indeed, h is without zeros on A1
and for each z0 ∈ A1 with Gj(z0) �= 0 for all j = 1, · · · , q, dτ is continuous at z0.

Now, suppose there exists a point z0 ∈ A1 with Gj(z0) = 0 for some j. Then Gi(z0) �= 0 for all i �= j and 
νGj

(z0) ≥ mj ≥ 2. Changing the indices if necessary, we may assume that g0(z0) �= 0, so also aj0 �= 0. So, 
we get

νW (g0,g1)(z0) = ν (aj0
g1
g0

− aj1)′

aj0

(z0) = ν (Gj/g0)′

aj0

(z0) = νGj
(z0) − 1 > 0. (4.3)

This is in contradiction with z0 ∈ A1. Thus, dτ is continuous and nowhere vanishing on A1. By Proposi-
tion 7 a) and the dependence of h on z and the independence of the Gj of z, we also easily see that dτ is 
independent of the choice of the coordinate z.
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It is easy to see that dτ is flat. It can be smoothly extended over K. Thus, we have a metric, still call it 
dτ , on

A′
1 = A1 ∪K.

Note that dτ is flat outside the compact set K. The key point is to prove that A′
1 is complete in that 

metric.
Step 3: We proceed by contradiction. If A′

1 isn’t complete, there is a divergent curve γ(t) on A′
1 with finite 

length. We may assume that there is a positive distance d between curve γ and the compact K. Therefore 
γ : [0, 1) → A1 and γ divergent on A′

1, with finite length. It implies that from the point of view of M , there 
are two cases: either γ(t) tends to a point z0 with

W (g0, g1)(z0) = 0

(γ(t) tends to the boundary of A′
1 as t → 1) or else γ(t) tends to the boundary of M as t → 1. For the 

former case, if Gj(z0) = 0 for some j ∈ {1, · · · , q} then we have Gi(z0) �= 0 for all i �= j and νGj
(z0) ≥ mj . 

By the same argument as in (4.3) we get that

νW (g0,g1)(z0) = νGj
(z0) − 1.

Thus, since mj ≥ 2 we have

νdτ (z0) = p

1 − p
((1 − 1

mj
− δ)νGj

(z0) − νW (g0,g1)(z0))

= p

1 − p
(1 − ( 1

mj
+ δ)νGj

(z0)) ≤
p

1 − p
(1 − ( 1

mj
+ δ)mj)

≤ − 2δp
1 − p

.

If Gj(z0) �= 0 for all 1 ≤ j ≤ q, it is easily to see that νdτ (z0) ≤ − p

1 − p
. So, since 0 < δ < 1, we can find a 

positive constant C such that

|dτ | ≥ C

|z − z0|δp/(1−p) |dz|

in a neighborhood of z0. Combining with (4.2), we thus have

1∫
0

dτ = ∞

contradicting the finite length of γ. Therefore the last case occur, that is γ(t) tends to the boundary of M
as t → 1.

Step 4: By the analogue arguments as in the step 4 of the proof of Theorem 1, that we get the local 
isometric Φ such that Φ(0, w0) = Γ0 is a divergent curve on M . We also show that Γ0 has finite length in 
the original ds2 on M , contradicting the completeness of the M .

Step 5: The map Φ(w) is locally biholomorphic, and the metric on ΔR induced from ds2 through Φ is 
given by

Φ∗ds2 = |h ◦ Φ|2||g ◦ Φ||4| dz |2|dw|2 . (4.4)

dw
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On the other hand, Φ is isometric, so we have

|dw| = |dτ | =
( |h|Πq

j=1|Gj |
(1− 1

mj
−δ)p

|W (g0, g1)|p
) 1

1−p

|dz|

⇒ |dw
dz

|1−p =
|h|Πq

j=1|Gj |
(1− 1

mj
−δ)p

|W (g0, g1)|p
.

Set f := g(Φ), f0 := g0(Φ), f1 := g1(Φ), Fj := Gj(Φ). Since

Ww(f0, f1) = (Wz(g0, g1) ◦ Φ) dz
dw

,

we obtain

| dz
dw

| = |W (f0, f1)|p

|h(Φ)|Πq
j=1|Fj |

(1− 1
mj

−δ)p (4.5)

By (4.4) and (4.5) and by definition of p, therefore, we get

Φ∗ds2 =
(

||f ||2|W (f0, f1)|p

Πq
j=1|Fj |

(1− 1
mj

−δ)p

)2

|dw|2

=
(
||f ||q−2−

∑q
j=1( 1

mj
−1)−qδ|W (f0, f1)|

Πq
j=1|Fj |

1− 1
mj

−δ

)2p

|dw|2.

Using the Lemma 12, we obtain

Φ∗ds2 � C2p.( 2R
R2 − |w|2 )2p|dw|2.

Since 0 < p < 1, it then follows that

dΓ0 �
∫
Γ0

ds =
∫

0,w0

Φ∗ds � Cp.

R∫
0

( 2R
R2 − |w|2 )p|dw| < +∞,

where dΓ0 denotes the length of the divergent curve Γ0 in M , contradicting the assumption of completeness 
of M . Thus, we conclude that A′

1 is complete.
Step 6: We argue similarly to step 6 of the proof of Theorem 1, we completed the Theorem 2. �
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