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ABSTRACT 

In this study, enhancing of some characterizations of water-based coating, i.e. physic-

mechanical properties, thermal resistance and weathering durability by adding nanosilica were 

investigated. Nanocomposite coating formulas were filled by 2 wt.% nanosilica particles which 

were used in this study, namely: nanosilica from Sigma (10-20 nm), nansilica from rice husk 

(RHA) (~50-200 nm) and nanosilica from Arosil – Belgium (7-12 nm). The obtained results 

showed that in presence of nanosilica, coating properties were improved in comparison with neat 

coating. However, coating filled by nanosilica from rice husk indicated the best properties in 

studied coating formulas. It may be explained that nanosilica from rice husk was in hard 

spherical shape while other kinds of nanosilica were in porous shape.  

Keywords: nanosilica, physic-mechanical properties, weathering durability, thermal stability, 

acrylic emulsion. 

1. INTRODUCTION 

Organic coatings have been using in various applications with protecting and decorating all 

kinds of materials surface purpose. Coatings can be divided two categories: water and solvent-

based coating. In there, solvent-based coatings have been become popular in a huge range of 

applications due to their precisely advanced properties, such strong adhesion and chemical 

resistance. In spite of these advantages, a common drawback of solvent-based coatings is to 

cause environmental pollution. With the rise environmental awareness, many countries around 

the world applied law to restrict solvent based binder. As a result, coating on the base of 

waterborne binders have recently become more popular, especially, about 85% architectural 

paints are made from waterborne binder [1-4]. In comparison with solvent-based binder, 

waterborne binders are low negative effects on the human health.  
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In recent decades, using nanoparticles enhancing polymer properties is an advanced 

research. In there, nanosilica has been attracted of scientists as its superior properties. Hence, 

nanosilica has been studied and applied in a lot of hi-tech manufacturing industries such as 

chromatography column packing materials, adsorbents, corrosion inhibitors, photocatalysts, 

catalyst supports, and medicine [1, 5-8]. In presence of nanosilica, some properties of materials 

were significantly improved such as mechanical, electrical, thermal properties and weathering 

characterization [9-10]. Moreover, nanosilica is also used as corrosion inhibitor due to self-

healing characterization of nano SiO2 [6]. However, dispersion, shape, size and content of 

particles affect to characterizations of nanocomposite.  

Influence of nano-SiO2 on nanocomposite properties with various substrates was published 

in some literatures but there isn’t information about the effect of nanosilia kinds on properties of 

the coating based on acrylic emulsion, especially reinforcing by nano- SiO2 made from RHA. In 

effort of enhancing the properties of acrylic coating using architectural paint, nanosilica was 

added in coating formula. This work would present effect of 3 kinds of silica nanoparticles (from 

Sigma, Arosil and made from RHA) on physic-mechanical, thermal properties and weathering 

resistance of coating base on acrylic emulsion resin Plextol R4132. 

2. MATERIALS AND METHODS 

2.1. Materials 

- Water-based acrylic resin Plextol R 4152 having 49 ± 1 % of solid content, pH at 7 – 8.5 

was supplied by Symthomer Company. Coalescing agent: using Texanol was purchased by Dow 

Chemical Company. 

- Nanosilica: (1) Nanosilica provided from Arosil (Belgium) has 7-12 nm of particles size; 

(2) Nanosilica obtained from Sigma which has 10-20 nm particle size; (3) Nanosilica which was 

made from rice husk ash and has 50-200 nm particles size, was supplied from Vietnam Institute 

of Industrial Chemistry. 

2.2. Sample preparation 

Ratio of constituents in studied formulas were presented on Table 1. First, nano SiO2 was 

dispersed into deionized water (A component) and Texanol was dispersed into waterborne 

binder (B component) by using a supersonic equipment TPC-25 (Switzerland) in one hour. After 

that, the A and B mixture were mixed together and vibrated in 2 h. 

Table 1. Compositions of coating formulas. 

 
Sample’s 

name 

Constituents 

Plextol 

R4152 
Texanol 

Nanosilica Deionized 

water Rice husk ash Sigma Aerosil 

11 R4152 8 0.12 0 0 0 0 

22 RHA-SiO2 8 0.12 0.08 0 0 0.8 

33 Sig-SiO2 8 0.12 0 0.08 0 0.8 

44 Aro-SiO2 8 0.12 0 0 0.08 0.8 

The paint coatings were applied by using a sprayer (6 kg/cm
2 

of pressure). The volume of 

paint on each substrate was calculated as the formula: 
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where: V: the volume of paint (L); d: the dry paint coating ( m); S: the square of paint coating 

(m
2
); X: the solid content (%). 

Coatings with 25 ± 1.25 µm-thickness for IR, weight loss and morphology analyses were 

fabricated on glass sheets. Films for IR measurement after 7 days of dying at room temperature, 
were separated from the sheets and attached on an aluminum window. Samples for abrasion 

resistance and adhesion measurements were prepared on steel substrate and on concretes 

substrate, respectively, in accordance of test standards for each test. 

2.3. Accelerated aging test 

Coating formulas were exposed in accelerated weathering chamber - Atlas UVCON UC - 

327 - 2 (USA). A cycle of aging process consisted of 4 h of dark water condensation (CON) at 

50 
o
C and 8 h UVB exposure at 60 

o
C according to the standard ASTM G154. All coatings were 

dried during 24 h at 60 
o
C in vacuum oven. 

2.4. Analysis 

2.4.1. IR analysis 

IR spectrum of unaged and aged coatings were recorded by NEXUS 670 (Nicolet, USA) in 

Institute for Tropical Technology, VAST. Changes of functional groups during aging exposure 

process were monitored quantitatively. Remaining functional groups was determined by formula 

[2]:  

Remaining group (%) = Dt/D0×100. 

where: Do: Optical density of functional groups in unaged coating; Dt: Optical density of 

functional groups in aged coating. 

2.4.2. Weight loss 

Weight loss ( mt) of aged coatings was calculated as follows [2]: 

Δmt (%) = [(m0-mt)/m0] × 100 

where: Δmt: the weight loss (%); m0: the weight of unaged sample (g); mt: the weight of aged 

sample (g). 

2.4.3. Physico-mechanical properties 

- Abrasion Resistance: the abrasion resistance of studied formula coatings were measured 

in accordance with standard ASTM D 968.  

- Adhesion: The adhesion of the coatings to concrete substrate was determined by cutting 

test method in accordance with ISO 2409 standard. 

2.4.4. SEM and TEM analysis 
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Surface morphology of samples was analyzed by S-4800 FE-SEM (Hitachi, Japan). 

Samples surface was coated with a very thin carbon layer to avoid the charging effect caused by 

the nonconductive nature of coatings. 

Morphology of nano-SiO2 was studied by HR-TEM - JEM 2100 (Jeol, Japan). 

2.4.5. Thermo Gravimetric Analysis (TGA) 

Thermo-gravimetry experiments used TGA- 50 (Shimadzu, Japan). Samples were heated 

from ambient temperature to 600
o
C with 10

o
C.min

−1
 rate, in an argon atmosphere with 50 

cm
3
.min

−1 
flow rate. 

3. RESULTS AND DISCUSSION 

3.1. Morphology of nanosilica and nanocomposite coatings  

Morphology of nanosilica particles were obtained by Transmission Electron Microscopy 

(TEM). TEM images of silica nanoparticles were displayed on Fig.1. 

As can be seen from Fig. 1 nanosilica made from rice husk ash has size from 50 – 200 nm, 

in spherical shape and unequal distribution. Silica particles tend to combine/aggregate with each 

other to a huge cluster of particles. While nanosilica supplied by Sigma and Arosil exhibited 

unique particles, having size of 10-20 nm and in porous shape. These nanoparticles were not 

scattered but clustered together into spongy granules of relatively dense density. 

FE-SEM image of coatings surfaces containing 2 wt % nanosilica were illustrated on Fig. 2. 

As can be seen from Fig. 2, neat coatings (without nanosilica) had smooth surface but surface of 

coating became rougher in presence of nanosilica. Depend on nanosilica type, the rough surface 

were presented in difference ways.  

Figure 1. TEM images of nanosilica particles. 

For coating containing nanosilica made from rice husk ash, the nanoparticles had nearly 50-

200 nm size equaling nanoparticles diameter. It means nanosilica from rice husk ash illustrated 

good dispersion in acrylic polymer substrate. In contrast, surface coatings containing nanosilica 

from Sigma and Arosil aggregated to cluster of silica particles. Up to a point, nanosilica was not 

well dispersed into R4512 and thus aggregating to huge cluster of silica particles. However, 

coatings containing nanosilica made from rice husk ash, more or less, dispersed better than 

other. Nanosilica made from rice husk ash on coating observed fairly unique while coating 

containing nanosilica form Sigma and Arosil displayed some cluster of silica particles due to 
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nanosilica tending to sink. It can be explained that nanosilica made from rice husk ash has larger 

size in comparison with other nanosilica which studied in this work. Thus, dispersion of 

nanosilica made from rice husk ash may be easier than those. In addition, nanosilica from Arosil 

which has 7-12 nm of size and amorphous form, can easily react with water producing silicic 

acid [11]. As a result, creating more and stronger hydro bond to lead increasing flow viscosity 

and easily agglomerating nanosilica. 

 

Figure 2. FE-SEM images of coatings with and without 2 wt.% nanosilica. 

Dispersion and shape of nanosilica into coating formulas would affect to some properties of 

coating such mechanical, thermal properties and weathering durability. Effect of nanosilica 

would be presented on next section. 

3.3. Effect of nanosilica on physico-mechanical properties of coating  

Physico-mechanical properties, namely adhesion and abrasion resistance were studied. The 

physico-mechanical of coating filled and unfilled nanosilia were showed in Table 2. 

As results in table 2, adhesion of coating was not affected by nanosilica, leveling off 1 

level. However, their abrasion resistance increased if coating was filled by nanosilica. Abrasion 

resistance of neat coating was 47.25 litres/mil, in presence of nanosilica abrasion resistance of 

coating increased to 86.24 – 104.37 litres/mil depending on type of nanosilica. As can be seen, 

coating containing nanosilica from Sigma just reached 86.24 while coating filled nanosilica from 

rice husk plateaued at 104.37 litres/mil. 
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Table 2. Physico-mechanical properties of coating filled and unfilled nanosilia. 

No Properties R4152 RHA-SiO2 Sig-SiO2 Aro-SiO2 

1 Adhesion, level 1 1 1 1 

2 Abrasion Resistance, litres/mil 47,25 104,37 86,24 94,42 

It can be explained that nanosilica enhanced physico-mechanical properties of coating and 

it plays as role of reinforce agent [10] and thus raising abrasion resistance of coating. Depend on 

of dispersion and shape of nanosilica into coating formula, abrasion resistance growth of 

coatings are various. As mentioned above, nanosilica made from rice husk ash saw a fairly 

unique distribution. In addition, rice husk ash based nanosilica was in hard spherical shape while 

other kinds of nanosilica in this work were in porous shape. Thus, physico-mechanical of RHA-

SiO2 was highest.   

3.4. Effect of nanosilica on weathering durability of coating 

The chemical changes and weight loss of coatings were monitored to assess on their 

weathering durability. IR spectrums of unaged and 42 cycles aged coating unfilled and filled 2 

wt.% nanosilica were presented in Figure 3. Quantitative change of absorption were showed in 

Figure 4. 

    
Figure 3.  IR spectrums of coating unfilled and filled 2 wt.% nanosilica initial and after 42-cycle aging. 

Figures 4&5 indicated that absoption intensity at 2946 cm-1 coresponding to C-H 

stretching reduced while optical intensity at 3520 -3400 cm
-1

 coresponding to OH group 

increased. The presence of SiO2 nanoparticles prevented coating from aging process. In other 

word, this investigated that the decrease of alkane C-H band in the SiO2 embedded coatings was 

less pronounced than that in unfilled coating during the accelerated aging process. Especially, 

the decrease of alkane C-H band retarded the most in the RHA-SiO2 filled coating. This can be 

explained that RHA-SiO2 nanoparticles absorbed UV radiation better than others, consequently, 

RHA-SiO2 enhanced photostability of coatings.  
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Coating samples in aging process was not only monitored the chemical modifications but 

also assed their weight loss. Remaining weight of coating unfilled and filled 2 wt.% nanosilica 

during artificial weathering process were showed on Fig. 5.  

 

Figure 4. Effect of SiO2 nanoparticles on the loss 
of alkane CH groups of coatings. 

 

Figure 5. Remaining weight of coating unfilled 
and filled 2 wt. %nanosilica during artificial 

weathering process. 

After 42 cycles testing, remaining weight of coatings containing RHA-SiO2, Sig-SiO2 and 

Aro-SiO2 were 85 % - 87 %. Neat coating (R4152) having remaining weight was 83 % - reached 

lowest point in the studied samples. It can investigate that nanosilica enhances weathering 

durability of coating. However, this effect also depends on dispersion and UV absorbing ability 

of nanosilica into coatings formula. 

3.2. Influence of nano-SiO2 on the thermal durability of coating  

Figure 6 shows TGA graphs of unfilled coating and its nanocomposites with 2 wt.% 

content of nano-SiO2. Thermal degradation parameters of neat coating and nanocomposite 

coatings were presented in Table 3.  

 

Figure 6. TGA curves of the neat and nanocomposite coatings. 

Figure 6 indicated that weight loss of samples proceeds via three stages. First stage is from 

30 to nearly 330 
o
C. It can be assumed that initial thermal degradation temperature was assigned 

with temperature at 5 % loss in mass (T5%). For that temperature, it could be attributed to the 
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release of adsorbed water and low molecular organic compound in the coatings, occurred at 

324.14, 339.14, 334.14 and 328.14 
o
C for the neat and the RHA-SiO2, Sig-SiO2 and Aro-SiO2 

filled coatings, respectively. Thermal stability of these coatings was relatively strong, compared 

to those previously reported with the onset degradation temperature of around 240-300 
o
C [1]. 

Table 3. Values of T5%, T50%, T75% for the neat and nanocomposite coatings. 

Coatings 
T5% (

o
C) 

(5% loss in mass) 

T50% (
o
C) 

(50% loss in mass) 

T75% (
o
C) 

(75% loss in mass) 

R4152 324.14 386.14 401.14 

RHA-SiO2 339.14 393.14 406.14 

Sig-SiO2 334.14 388.14 402.14 

Aro-SiO2 328.14 390.14 405.14 

The thermal decomposition with the majority of weight loss occurred at temperature                   

> 340 
o
C and it was probably caused by scission of backbone chain in the acrylic polymer [1]. It 

can be assumed that the temperature at 50 % loss in mass (T50%) is this thermal degradation 

temperature. For that temperature, it occurred at 386.14 
o
C and 393.14, 388.14 and 390.14 

o
C for 

the control and the nanocomposites, respectively. As can be seen in figure 6 the 75 % reduction 

of the initial weight of the samples cured at 401.14 
o
C and 406.14, 402.14 and 405.14 

o
C for 

unfilled and filled coating, respectively. At higher temperature, the char yields of coating 

without and with nanosilica were found to be 3.08, 5.45, 5.16 and 3.1 % at 600 
o
C, respectively.  

4. CONCLUSION 

Nanocomposite formula on the base of silica nanoparticles and waterborne acrylic binder 

were successfully prepared by using ultrasonication. Morphology of nanosilica and of 

nanocomposite coatings as well as influence of nanosilica on thermal stability, weathering 

durability and physico-mechanical characterizations of coatings were assessed. Obtained results 

showed that nanosilica made from rice husk ash had size from 50 – 200 nm and in spherical 

shape while kinds of nanosilica from Sigma, Arosil had size of 10-20 nm and in porous shape. 

All three kinds of studied silica nanoparticles were able to enhance the physico-mechanical 

properties, thermal resistance and weathering durability of the coating. The coatings containing 2 

wt.% content of nanosilica from rice husk ash expressed highest improvement of properties. 
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