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Abstract—Over the last decade, a large number of methods
have been proposed for human fall detection. Most existing meth-
ods were evaluated based on trimmed datasets. More importantly,
these datasets lack variety of falls, subjects, views and modalities.
This paper makes two contributions in the topic of automatic
human fall detection. Firstly, to address the above issues, we
introduce a large continuous multimodal multivew dataset of hu-
man fall, namely CMDFALL. Our CMDFALL dataset was built
by capturing activities from 50 subjects, with seven overlapped
Kinect sensors and two wearable accelerometers. Each subject
performs 20 activities including 8 falls of different styles and 12
daily activities. All multi-modal multi-view data (RGB, depth,
skeleton, acceleration) are time-synchronized and annotated for
evaluating performance of recognition algorithms of human
activities or human fall in indoor environment. Secondly, based
on the multimodal property of the dataset, we investigate the
role of each modality to get the best results in the context
of human activity recognition. To this end, we adopt existing
baseline techniques which have been shown to be very efficient for
each data modality such as C3D convnet on RGB; DMM-KDES
on depth; Res-TCN on skeleton and 2D convnet on acceleration
data. We analyze to show which modalities and their combination
give the best performance.

I. INTRODUCTION

Falls happen frequently to patients and elderly people who
stay at home alone. As a result, the demand for developing
intelligent monitoring systems being able to detect falls has
increased significantly in the health-care community. In the
last few years, a large number of methods have been proposed.
However there still remain some issues that strongly impact
the performance of fall detection. Firstly, most of existing
methods work on single modality of data observed by either
ambient or wearable sensor such as camera or accelerometer.
It still lacks of works which answer to the questions: Which
modality gives the best performance ? Could the combination
of them improve detection results ? Secondly, to answer to
these questions, it needs to use a multi-modal dataset of fall
which should be large in term of views, subjects and fall
styles. This paper makes two main contributions in the topic of
automatic fall detection. First, we introduce a large continuous
multi-modal multi-view benchmark dataset for evaluating the
automatic fall detection algorithms. Second, we investigate the
role of modalities and their combination to obtain the best
performance.

Related to human fall datasets, there are many fall datasets
of single or multi-modality, captured by one or several sensors

at different views [1]. However, these datasets are limited to a
particular modality, fall styles, views, subjects and data con-
tinuity. To address these issues, we design and collect a new
continuous and multi-modal multi-view fall dataset targeted at
real-world applications. The new dataset is constructed using
seven Kinects sensors and two accelerometers which are setup
at different places and different views in a simulated home
environment. Totally, this dataset contains 1000 samples of
activities (400 fall and 600 daily activities) acquired from
50 subjects, each sample has four modalities (RGB, Depth,
Skeleton, accelerometer). RGB, Depth and Skeleton have been
collected from seven different view angles, acceleration data
have been collected from two positions on subject body. All
data are continuous, synchronized and annotated for research
purpose. Falls are conducted in different orientations (back-
ward, forward, left, right) and styles (fall when subject is lying
on the bed, sitting on the chair or walking).

Our proposed dataset enables analysis on the role of modal-
ity and view. In this paper, we focus on investigating the role
of modality on human fall detection. The analysis on the role
of multiple views will be further work in the future. Single
modality action recognition has been extensively explored
[2], [3], [4]. It is obvious that each modality has different
strength and limitations then analysis of different modality
will help us to understand the complementary properties for
a better performance of human activity recognition. In this
work, we first select data from one view among seven available
views for analyzing. For this view, we adopt the state-of-
the-art techniques to analyze each modality. Specifically, 3D
convolutional network is used on RGB data [5]; depth motion
map (DMM) with improved kernel descriptor (KDES) is
applied on depth data [6]; Res-TCN for skeleton data [7]
and 2D convnet for acceleration data [8]. As multimodal data
are time-synchronized, the detection results of all modalities
are compared. Then different combinations of modalities are
studied and the best is reported.

II. EXISTING FALL DATASETS AND FALL DETECTION
METHODS

A. Existing fall datasets

Fall can be considered as an human activity and some
types of fall activities were included in other human activity
datasets [16]. However, in those works, the authors did not
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TABLE I
COMPARISON BETWEEN CMDFALL DATASET WITH SOME OF THE OTHER PUBLICLY AVAILABLE DATASETS FOR FALL DETECTION

Dataset #Falls #ADL #FallStyles #Subjects #Views Modalities Continuous Year
UR [9] 22 24 na 1 8 RGB No 2010
Le2i [10] 192 58 3 ∼ 8 1 RGB No 2012
SDUFall [11] 300 1500 na 10 1 RGB + D + Skeleton No 2014
OCCU [12] 30 80 2 5 2 RGB + D + Skeleton No 2014
Cogent Lab [13] 448 1520 6 42 na Acc. + Gyroscope Yes 2015
EDF 160 100 8 10 2 RGB + D + Skeleton No 2017
UF[14] na 229-na 2 6 1 RGB + D + Skeleton No 2017
SisFall[15] 1798 2707 15 38 na Acc. + Gyroscope Yes 2017
CMDFALL - Our dataset 400 600 8 50 7 RGB + D + Skeleton + 2 Acc. Yes 2017

pay attention on designing the fall activity in order to evaluate
the performance of fall detection. This paper focuses on fall
detection so we will present only fall focused datasets in
this section. Fall can be captured by using either wearable
sensors (e.g. accelerometer) or ambient sensors (e.g. camera)
or combining both of them. Collecting a fall dataset from
wearable sensors is view and location independent while that
from ambient sensors such as cameras is view and location
dependent. Table I summarizes some fall focused datasets that
have been recently published in the literature. The limitations
of those datasets are described as follows.
• Limited modalities: Most of datasets have single modal-

ity [9], [10] or captured by either wearable (accelerom-
eter) or ambient (RGB, D, Skeleton) sensors [11], [12],
[14]. There are no fall dataset capturing RGB, D, skeleton
and accelerometer data at the same time.

• Limited fall styles: In most of datasets, subjects perform
fall by standing at one position then falling down the floor
at the center of scene. There are no fall from bed and only
one dataset has falls from chair [10]. However, according
to 1, falls from beds accounting for a high rate after only
falls from tripping, slipping or stumbling.

• Trimmed videos: All fall videos have been trimmed
that are very suitable for fall classification from differ-
ent activities. However, those data not allow evaluating
continuous fall detection.

• Limited number of views: The number of views ob-
serving the scene is usually limited from 1 to 2 views
(OCCU [12], EDF2). In [9], the number of views are eight
but only RGB data were captured. The view could be
overlapped or non-overlapped then difficult for applying
truly a multi-view approach.

• Limited number of subjects: Most of multi-modal
datasets have been captured by a small number of subjects
(ranging from 1 to 10). There are 300 fall and 1500
non-fall samples in [11]. However, that dataset has poor
variation of fall styles by different subjects.

This motivated us to design and build a new dataset that
addresses such issues to provide researchers a testbed to
develop and evaluate their new algorithms.

B. Methods of fall detection
Fall detection using unimodal features: The first and the

most widely used features are extracted from color images

1Fall Injuries among Older Adults in Oregon, 2008
2https://sites.google.com/site/kinectfalldetection/

of RGB camera since RGB camera is inexpensive and easy
to install. Color-based features can be computed from one
sole camera or multiple cameras. Most color-based approaches
based on shape features extracted from human region candi-
dates [4]. Besides color images, RGB-D sensors provide depth
and skeleton information which is independent of lighting
condition. Therefore background subtraction becomes easier
and more reliable. In [17], the authors proposed a method for
fall detection from depth images. The skeleton-based works
do not need to perform person detection because the skeleton
is available whenever the person is detected. Then there are
many works for fall detection based on skeleton using simple
rules or machine learning techniques [18], [19]. Related fall
detection using wearable sensors, a large number of methods
have been proposed in [20].

Fall detection using multimodal features: As each uni-
modal feature has its own advantages and disadvantages, some
works try to combine/fuse more than one modality for fall
detection. In [21], Mastorakis et al. exploited color and depth
information to build 3D (height, width, depth) bounding box
of the subject. Kwolek et al. [22] combined depth information
from Kinect with accelerometer mounted on the human for
fall detection. In our previous work [23], an efficient method
that combines RGB and skeleton for fall detection has been
proposed. To the best of our knowledge, there is no work that
investigates the role of each modality and combines modalities
to improve fall detection performance. Although several multi-
modal fall focused datasets have been constructed as described
previously, it lacks methods that combines different modalities.
In [24], the authors have also addressed similar questions to
evaluate the importance of different modalities. However, that
work has been done for general human activities, not for fall
activity in particular.

III. THE PROPOSED DATASET: CMDFALL

A. Environmental and equipment setup

In this section we describe the main components of our
acquisition system for collecting the multi-modal multi-view
dataset of human fall. The system consists of seven Microsoft
Kinect v1 and two WAX3 wireless accelerometers. Figure 1
shows the layout of our acquisition system. Six Kinects are
installed at height of 1.8m surrounding a space of 3.6mx6.8m
to simulate home environment. The 7th Kinect is installed
on the ceiling at height of 3m to observe the top-view of
the scene. Two accelerometers are mounted on the subject’s
body, one on the left wrist and one on the left hip of the
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TABLE II
LIST OF ACTIVITIES AND CATEGORIZATION

S1 S2: 6 groups ID S3: 20 activities

Fall

Fall while walking

1 Front fall
2 Back fall
3 Left fall
4 Right fall

Fall while lying
on the bed

5 Lie on bed then fall left
6 Lie on bed then fall right

Fall while sitting
on the chair

7 Sit on chair then fall left
8 Sit on chair then fall right

Non
Fall

Horizontal
movement

of the whole
body

9 Walk
10 Run slowly
11 Stagger
12 Crawl
13 Move chair

Hands and legs
movement

14 Move hand and leg
15 Left hand pick up
16 Right hand pick up

Vertical
movement

of the whole
body

17 Jump in place
18 Sit on chair then stand up
19 Sit on bed then stand up
20 Lie on bed then sit up

subject. With this setup, every location in the space could
be observed by all Kinects sensors. Microsoft Kinects collect
three major modalities (RGB frames, Depth maps, 3D joints of
Skeleton) at resolution of 640x480, 20fps. Skeleton consists of
3-dimensional locations of 20 major body joints for detected
and tracked human bodies in the scene. Accelerations are
collected at rate of 50 samples per second.

Fig. 1. Illustration of environment and material setup

B. List of activities

Twenty activities will be recorded among which eight are
falls of different styles and twelve are daily and fall like
activities. For the task of fall detection, we consider two main
classes: fall and non-fall. In the group of falls, we have three
types of fall, each has different styles and directions. In the
group of non-fall activities, we categorize in term of movement
of the whole body or only some body parts and direction of
movement. Table II lists the twenty activities (S3), six groups
(S2) and two main classes (S1).

C. Subjects

To collect data, we invite 50 persons (30 males and 20
females in the range 21-40 years of age). The subjects wear
their daily clothes without markers. Before a recording section,
the subject is explained about activities to perform. The order
of activities could be different from person to person but
the transition between activities are smooth. That means the
person can not make a fall then immediately run fast to sit
on the chair. He/she will recover first, then stand up and walk
slow to sit on the bed etc.

D. Data acquisition and annotation

Each person performed all 20 activities in about 7.5 minutes,
yielding 375 minutes recording time in total. There are 1000
samples including 400 falls and 600 normal activities. Each
sample has multi-modal data: RGB, Depth, Skeleton at 7
views and two acceleration values. Fig.2 shows a snapshot
of synchronized multimodal data from 7 Kinects and two
accelerometers. Totally, the size of dataset is around 350Giga
bytes. All data are time synchronized. Starting and ending time
of each action in all sequences are annotated for human activ-
ities classification and fall detection evaluation. This dataset
is challenging due to the large number of subject styles and
viewpoints. In addition, some activities are very confused that
challenges the recognition. Specifically, many daily activities
are similar for example fall-likes activities hand left pick up
and hand right pick up, sitting on the chair then stand up, sit
on the bed and stand up. The dataset is publicly available
for research purpose at http://www.mica.edu.vn/perso/Tran-
Thi-Thanh-Hai/CMDFALL.html.

Fig. 2. Illustration of multi-modal data taken from 7 views and 2 accelerom-
eters

E. Evaluation protocol

In a multi-modal multi-view system, one can evaluate a
method using cross view or cross subject validation. In the
context of modality evaluation, we evaluate human activity
recognition and human fall detection in particular using cross
subject validation on one view. We split the 50 subjects with
ID from 1 to 50 into three sets. One set containing 25 subjects
with odd IDs is used for training. One set containing 5 subjects
randomly taken from 25 remaining subjects with even ID is
used for validation. The remaining data containing 20 subjects
is used for testing. According to the grouping of data (as
shown in the Tab.II), three evaluations will be carried out:
i) classification of 20 activities; ii) classification of 6 groups
of activities; iii) classification of fall and non-fall.

IV. MODALITY ANALYSIS FOR ACTIVITY CLASSIFICATION
AND FALL DETECTION

A. Baseline methods for activity classification and fall detec-
tion

One of objectives of this work is to evaluate the use of
various modalities in the dataset. Therefore, we will take data
from one view (the 3rd view in this work) to investigate
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the role of modality. In this section, we summarize methods
that we use as baselines for evaluation of single modality.
Continuous spotting and recognition from video stream is out
of focus of this work.

1) C3D: 3D Convolutional Neural Network for RGB modal-
ity: In this work, we utilize the technique C3D (3D convolu-
tional neural network) [5] due to its simplicity and efficiency
compared to 2D ConvNets. The main idea of C3D is to
use 3D convolutional operators to capture both temporal and
spatial features of an activity. In our experiment, we use
the same architecture of C3D network as described in [5].
Specifically, the network composes of 8 convolutions, 5 max-
pooling and 2 fully connected layers. The number of filters
for 5 convolutional layers from 1 to 5 are 64, 128, 256, 512,
512. All 3D convolution kernels are 3x3x3 with stride 1x1x1.
We used the pre-trained network with I380K and fine tune
on Sport1M dataset then finetune on our dataset with 4000
iterations. Each video of an activity will be divided into non-
overlapped clips of 16 frames. These clips will pass through
the C3D convnet and a feature vector will be extracted at FC6
layer. Finally, a video of an activity is represented by a feature
vector which is average of all feature vectors extracted from
clips of 16 frames. These feature vectors will be served for
training and testing a multi-class SVM.

2) DMM-KDES: Depth Motion Map and Kernel Descriptor
for Depth modality: In our previous works [6], [23], we have
shown that motion map with improved kernel descriptor is a
good combination for action representation. In this paper, we
would like to investigate the role of depth map on a more
challenging dataset. The main idea of the proposed methods
is following. Firstly, the video sequence of an activity is
represented by a motion map as follow. Given a sequence
of N depth maps D1, D2, ..., DN , the depth motion map is
defined by:

DMM =

N−1∑
i=1

(|Di+1 −Di| > ε) (1)

where ε is a threshold to make binary the difference between
two consecutive maps Di+1 and Di. The binary map of motion
energy indicates motion regions or where movement happens
in each temporal interval. So the DMM represents sum of
motions through entire video sequence. Then gradient based
kernel descriptor [6] is computed on the DMM. After that, we
utilize the bag of word technique to quantize kernel descriptors
into 1000 codewords and perform the classification by a simple
MPL neural network. The network contains two hidden layers
with 100 neurons for each layers. We use neuron with ReLU
activation function, train the network over 200 iterations with
log-loss function using stochastic gradient descent.

3) Res-TCN: a convnet for skeleton data: To evaluate the
activity recognition using skeleton data, we employ Temporal
Convolutional Neural Networks with Residual units (Res-
TCN) presented in [7]. This network provides spatial-temporal
representation of sequential skeleton frame and achieves state-
of-the-art results on NTU-RGBD - the largest dataset on 3D

human activity. The input of network is sequence of skeleton
frame where in each frame, all the x, y, z coordinates of each
joint will be concatenated into 150-D vector (2 subjects x 25
joints x3). The network is a stack of convolutional layers with
residual unit. Each layer consists of temporal convolutions, a
non-linear activation function, and max pooling across time.
We train Res-TCN networks from scratch with our skeleton
dataset over 200 epochs, batch size = 32, learning rate = 0.01,
using SGD optimizer with momentum = 0.99.

4) 2D convolutional neural network for acceleration modal-
ity: Inherited from our previous work [8], the acceleration
signals are segmented into 2 second-sliding windows with 50%
overlapped between two consecutive windows. Each sliding
window roughly contains 100 samples as our WAX sensors
operate at the sampling frequency of 50 Hz. With two ac-
celerometers worn on right-hand and hip, each accelerometer
has 3 X,Y,Z signals and therefore we have 6 signals streaming
in total. In order to analyze accelerometer data, the CNN
model used in this experiment is a stack of convolutional,
max-pooling, fully-connected and softmax layers. The input of
the CNN model are 6 channels for X-axis, Y-axis, and Z-axis
acceleration signals from two accelerometers. Each channel
accepts 1-D arrays consisting of frames of 100 samples as
inputs. We use 60 filters for convolutional layer 1 and 128
filters for the next convolutional layer. The dimension of
the fully-connected layer is set to 1000. At the training
phase, mini-batches of 128 frames are used and the negative
log likelihood is minimized using stochastic gradient descent
optimizer provided in TensorFlow. The fully-connected layer
directly connects to the softmax layer to produce the output
probabilities of the activity classes.

B. Late fusion of modalities

To understand the complementary properties of modalities,
we evaluate the performance of all possible combinations of
modalities using a simple late fusion technique. Specifically,
for each activity, each single modality based classifier gives N
scores {P i

1, P
i
1, ..., P

i
N} where N is the number of classes in

each split (N = 20 for S1, N = 6 for S2, N = 2 for S3), i ∈ [1, 4]
is the single ith modality classifier. In this work, we have four
classifiers which are RGB based; Depth based; Skeleton based
and Acceleration based. We take the biggest score among all
scores provided by every classifier to produce the final scores
for a given video. Then a label will be assigned to a test sample
if it has the maximal score from the final scores. From this
result, the classifier which gives the best classification is also
indicated (eq.2).

{Classifier, ClassLabel} = argmax
i∈[1,4],j∈[1,N ]

{P i
j} (2)

According to this equation, only the best modality will con-
tribute to the classification. In reality, one modality could be
more important than others. In this work, we also employed
weighted scores fusion technique by searching for the best
weight for each modality from validation test. For example,
suppose that we would like to combine M classifiers. We
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search M non negative weights λ1, λ2, ..., λM−1, λM = 1 −∑M−1
i=1 λi so that the performance of the combined classifier

is the best on the validation data. Specifically:

{ClassLabel} = argmax
i∈[1,4],j∈[1,N ]

{
∑

λi ∗ P i
j} (3)

The experimental results will show performance of combi-
nation of modalities on the test set following these two fusions
techniques.

V. EXPERIMENTAL RESULTS

A. Evaluation on RGB modality

The table III shows the experimental results obtained by
each baseline method on the single modality. In overall, C3D
on RGB data achieved the best recognition performance on
all splits of data (20 activities, 6 groups or 2 classes). The
F1-score on 20 activities is only 68.35%. This is a reasonable
result due to many activities having similar movement and
appearance. Most confusion appears at activities left hand
pick up and right hand pick up. Besides, the method can not
distinguish fall activities from different sides during walking
(left fall, right fall, back fall, front fall). This is interesting to
notice that the C3D convnet represents motion and appearance
of activity, but it is difficult to capture difference of movement
orientation. This conclusion is confirmed again when the F1-
score has increased significantly to 95.98% in case of classi-
fication of 6 groups. This time, the C3D can not discriminate
some activities with hands and legs movement with activities
performed by horizontal movement of the whole body. In case
of fall and non-fall classification, C3D produces the highest
F1-score up to 96.82%. It shows that C3D could distinguish
very well fall and non-fall activities, even there are many fall
styles or fall-like activities.

B. Evaluation on Depth modality

Using depth modality, the F-1 score is about 47.03% (20
activities), 75.94% (6 groups) and 87.07% (fall detection).
Compared to C3D on the RGB modality, the technique DMM-
KDES-MLP has lower performance although it can obtain the
good performance on other datasets such as MSRAction3D,
MSRGesture3D [6]. The reasons are multiple. Firstly, depth
captured by Kinect sensor v1 is quite noise. Secondly, some of
activities were not performed at space center but surrounding,
leading to the noise and missing of depth data. Finally, as
the movement of activities is quite complex and confused, the
motion map can not capture small variation of the motion.
Motion map is only suitable for the observation of movement
in one direction with one style of fall.

C. Evaluation on Skeleton modality

Similar to depth, performance of activity classification based
on skeleton is much lower than that of RGB and still lower
than depth. The F1-score obtained for 20 activities is 39.38%,
for 6 groups is 58.43% and 2 main groups is 76.06%. It
is worth to note that ResTCN outperforms state of the art
methods on NTU RGB+D dataset. Our dataset is more chal-
lenging than NTU-RGBD dataset since it contains a number

TABLE III
COMPARISON OF F1-SCORE USING SINGLE MODALITY

Modality 20 Activities 6 groups Fall and Non-Fall
RGB 0.6835 0.9598 0.9682
Depth 0.4703 0.7594 0.8707
Acc. 0.3897 0.6403 0.8916

Skeleton 0.3938 0.5843 0.7606

of activities with ”non-standing” postures where skeleton is
not always well estimated such as lying, bending, sitting.
Moreover, the duration of activity varies largely from one
subject to the other. Another reason is that the network was
trained from scratch which is still a small dataset for training
deep neural networks. Data augmentation should be done for
a better performance.

D. Evaluation on Acceleration modality

The situation for acceleration data is slightly worse. Overall,
F1 scores for 20 activities are approximately 38.97%, whose
is reasonable as the set of activities addressed in this study
composes of extremely fine grained and complex activities,
in which the motions of several activities are highly similar.
For example, lie on bed and sit up, sit on bed and stand up
etc. Therefore, based only on movement without utilizing the
appearance data is highly confused. This makes our dataset
highly challenging for fall detection using a single modality
such as accelerometer only. Consequently, F1-score for fall
detection is 89.16%. However, acceleration based classification
is better than skeleton based in case of 6 groups. It is better
than both depth and skeleton based methods in case of fall
and non-fall detection.

E. Evaluation on fusion of modalities

Tab.IV shows the results obtained using multiple modalities
data. It is interesting to see that using multiple modalities
could help to increase the performance compared to the use of
single modality. For example, for the weak modalities such as
Acceleration, Skeleton, Depth, the combination of two or three
modalities improved performance compared to using single
modality. However, for the late fusion method based only on
max score of all classifiers, the combination of two, three
or four modalities does not improve recognition performance
comparing to the use of single RGB data.

In case of weighted scores and average scores based fusion,
a set of weights which gives the best performance on the
validation set is used to determine the performance on the
test set. We observe that on the column weighted score,
classification performance using multiple modalities has been
improved significantly comparing to max score fusion or av-
erage score fusion. In case of 20 activities, F1-score increases
from 65.54% to 73.53%, from 91.47% to 97.13% for 6 groups
classification and from 95.27% to 98.29% for fall and non-
fall classification. This shows that even with the combination
of modality, the role of modality is different and could be
carefully taken into account.
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TABLE IV
COMPARISON OF F1-SCORE USING MULTIPLE MODALITIES

Multiple Modalities 20 activities 6 groups Fall and Non-Fall
Max score Average Score Weighted Score Max score Average Score Weighted Score Max score Average Score Weighted Score

RGB+Depth 0.6639 0.6754 0.6815 0.9562 0.9672 0.9635 0.9659 0.9776 0.9789
RGB+Skeleton 0.6466 0.6386 0.7096 0.9138 0.9229 0.9608 0.9407 0.9436 0.9829

RGB+Acc 0.6554 0.6503 0.6977 0.9574 0.9645 0.9674 0.9714 0.9776 0.9776
Depth + Skeleton 0.4578 0.4848 0.5348 0.7236 0.7356 0.7943 0.8584 0.8707 0.9125

Depth + Acc 0.5214 0.5338 0.5935 0.8187 0.8564 0.8462 0.9304 0.9362 0.9104
Skeleton + Acc 0.5017 0.4932 0.4875 0.6833 0.6945 0.7188 0.8766 0.8666 0.9017

RGB+Depth+Acc 0.6495 0.6875 0.6897 0.9572 0.9684 0.9711 0.9691 0.971 0.9776
RGB+Skeleton + Acc 0.6554 0.6848 0.7353 0.9147 0.9188 0.9713 0.9538 0.9606 0.9763
RGB+Depth+Skeleton 0.6319 0.6693 0.7096 0.9135 0.9335 0.9581 0.9384 0.9603 0.9829
Depth+Skeleton+Acc 0.5253 0.5726 0.6234 0.7628 0.8275 0.86 0.9111 0.9404 0.9433

RGB+Depth+Skeleton+Acc 0.6452 0.7035 0.7273 0.9146 0.9589 0.962 0.9527 0.9697 0.9829

VI. CONCLUSION

We have presented a unique multi-modal multi-view dataset
of human fall which is, to the best of our knowledge, biggest
fall focused dataset in term of number of human subjects,
fall styles, viewpoints and modalities. We have investigated
the role of each modality in the task of human activity
classification from one camera view. The experiments show
that each modality has strength for best recognizing some
of activities. In overall, C3D on RGB achieved the best
performance in all splits. As depth is quite noisy, skeleton
is unreliable due to the complex and various human poses,
leading to lower performance when using depth or skeleton.
Acceleration is good for quickly detecting a fall candidate for
further verification by another modality. Itself, the acceleration
can not distinguish a fall from many other fall-like activities.
The late fusion experiment confirmed that combination of
modalities could improve performance of classification.
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