УДК 553.4.05.07

МИНЕРАЛОГО-ГЕОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ СВИНЦОВО-ЦИНКОВЫХ МЕСТОРОЖДЕНИЙ РАЙОНА ЧОДОН-ЧОДЬЕН СЕВЕРНОГО ВЬЕТНАМА

З.Х. НГУЕН¹, П.А. ИГНАТОВ¹, Ч.Т. НГУЕН¹, Д.Н. ТАНГ²

¹ФГБОУ ВО «Российский государственный геологоразведочный университет имени Серго Орджоникидзе» 23, Миклухо-Маклая ул., г. Москва 117997, Россия e-mail: nguyenduyhung@humg.edu.vn, petrignatov@gmail.com, nguyentrungthanh@humg.edu.vn

> ²Вьетнамский институт геонаук и минеральных ресурсов 67, Чьен Тханг ул., г. Ханой, Вьетнам e-mail: tdm2000@gmail.com

В районе Чодон-Чодьен локализованы свинцово-цинковые месторождения, включающие около 40% всех запасов этих руд Вьетнама. Большая часть месторождений скрытые. Свинцово-цинковое оруденение сосредоточено в терригенно-карбонатных породах нижнего девона и связано с позднепермско-триасовым комплексом гранитов Фья Биок. Выделены парагенетические ассоциации руд и составлена схема последовательности минералообразования. Помимо главных компонентов свинцово-цинковые руды включают сопутствующие элементы Mn, Fe, Cu, Cd, Bi, As, Ag, Sn, W, Sb. Установлена высокая положительная корреляция свинца с сурьмой, цинка с кадмием. Положительная корреляция отмечена для свинца с серебром, цинка с вольфрамом и молибденом. Слабая положительная корреляция отмечена для свинца с оловом и вольфрамом, цинка с медью. Представленные данные целесообразно использовать при прогнозирования скрытых свинцово-цинковых месторождений в рудном районе Чодон-Чодьен.

Ключевые слова: свинцово-цинковые скрытые месторождения; геологические строение; оруденение; геохимия; Чодон-Чодьен.

DOI:10.32454/0016-7762-2018-5-31-38

MINERALOGICAL-GEOCHEMICAL CHARACTERISTICS OF LEAD-ZINC DEPOSITS IN CHODON-CHODIEN AREA, NORTH-EASTERN VIETNAM

NGUYEN DUY HUNG¹, P.A. IGNATOV¹, NGUYEN TRUNG THANH¹, TANG DINH NAM²

¹Russian State Geological Prospecting University, 23, Miklouho-Maklay street, 117997 Moscow, Russia e-mail: nguyenduyhung@humg.edu.vn, petrignatov@gmail.com, nguyentrungthanh@humg.edu.vn

> ²Vietnam Institute of Geosciences and Mineral Resources
> 67, Chien Thang st., Ha Noi, Viet Nam; e-mail: tdm2000@gmail.com

Cho Don-Cho Dien is a potential area for lead-zinc deposits with reserves of about 40% of Vietnam's total lead-zinc ores. Most of the deposits are hidden. The results of geological structural analysis have shown that the lead-zinc mineralization here is mainly concentrated in terrigenous-carbonate sediments of Devonian age and closely related to late Permian-Triassic granite Phia Bioc complex. The paragenetic ores assosiations have been distinguished and a scheme of minerals formation has been designed. By the geochemical composition, lead-zinc ore consist of principal elements (Pb, Zn) and the accompanying elements (Mn, Fe, Cu, Cd, Bi, As, Ag, Sn, W, Sb). Statistical analysis has indicated that Pb has a strong positive correlation with Sb, a moderate correlation with Ag and a weak correlation with Sn and W. While Zn has strong, moderate and weak correlations with Cd, W and Cu, respectively. The presented data should be used for finding the hidden lead-zinc ore deposits in the Cho Don — Cho Dien area.

K e y w o r d s: hidden lead-zinc deposits; geological structure; mineralization; geochemistry; Cho Don - Cho Dien.

Район Чодон-Чодьен расположен на северовостоке Вьетнама, в 180 км севернее Ханоя. В геологическом строении района принимают участие терригенные и терригенно-карбонатные осадочные породы палеозойского возраста [3—5, 7, 10]. К настоящему времени многие свинцово-цинковые месторождения района детально изучены: Ба-Бо, На-Тум, Лунг-Ванг, На-Боп, Пу-Шап. В них со-

средоточено около 40% всех запасов таких руд Вьетнама. В последних отмечается большой набор элементов-примесей, часть из которых может иметь промышленное значение в качестве попутных полезных компонентов.

Целью работы являлось изучение минералогогеохимических характеристик руд, которые следует использовать при оценке их качества и типизации месторождений. Полученные данные необходимо учитывать при прогнозировании аналогичных месторождений в районе работ. Для достижения этой цели необходимо решить следующие задачи: изучить геологические условия локализации свинцово-цинковых рудных тел; диагностировать минеральный состав руд; выявить стадийность рудообразования; проанализировать элементный состав руд; определить корреляционные связи основных и примесных компонентов.

Фактический материал и методы исследования

В основу работы положены материалы разведки нескольких месторождений, входящих в рудные поля Чодон и Чодьен, и данные, полученные авторами в ходе полевых и лабораторных работ в период 2010-2015 гг. Изучение штуфов и шлифов из шести месторождений (55 шт.) проведено в лаборатории Горно-геологического университета и лаборатории Вьетнамского института геонаук и минеральных ресурсов (г. Ханой). Определение химического состава руд по 136 пробам выполнено во Вьетнамском центре геолого-экспериментального анализа методом масс-спектрометрии с индуктивно связанной плазмы (ICP MS). Геохимические связи рудных компонентов установлены методом многомерного статистического корреляционного анализа.

Геологическое строение свинцово-цинковых месторождений в районе Чодон-Чодьен

Рудоносные палеозойские толщи сложены кварцсерицитовыми и глинистыми сланцами ордовика и силура, известковыми аргиллитами, алевролитами, известняками, пачками переслаивания известняков с кварцитами, амфиболовыми туфами и туфопесчаниками нижнего девона (рис. 1). Пласты смяты в брахиформные складки и разбиты разломами. Абсолютное большинство свинцово-цинковых месторождений и рудопроявлений в рассматриваемом районе локализовано в терригенно-карбонатных породах нижнего девона. Лишь одно рудопроявление, находящееся вблизи границы с девонской карбонатной толщей, приурочено к верхнеордовикским-нижнесилурийским терригенным породам. Большая часть свинцово-цинковых месторождений сосредоточена в узлах пересечения меридиональных и северо-восточных разломов. В этих объектах

Рис 1. Геологическая карта района Чодон-Чодьен [7]: 1-2- верхнеордовиковские-нижнесилурийские отложения Фу Нгу свиты (O₃-S₁pn): 1- кварцево-серицитовые сланцы, кварцевые песчаники; 2- кварцево-серицитовые сланцы, контактовые роговики; 3-6- нижнедевоснкие отложения: 3- черные глинисто-серицитовые и серицитовые сланцы (D₁¹); 4- кварцево-серицитовые сланцы, сланцы (D₁²); 5- глинистые песчаники, мергельные сланцы, сланцы (D₁²); 5- кварцевые песчаники глинисто-серицитовые и серицитовые сланцы, битуминозные алевролиты, филлиты и известняки (D₁⁴); 7-8- нижне-среднедевонские отложения Хао Лок свиты (D₁₋₂kl): 7- четвертичные отложения; 10-11- пермотриасовые интрузивные образования: 10- граниты комплекса Фья Биок ($\gamma \alpha P_3$ -T₁pb); 11- габбро комплекса Чо Дон ($\upsilon \delta \gamma \xi P_3$ -T₂cd); 12- разломы

Рис 2. Геологический разрез района Чодон-Чодьен [7]: *1* – песчаники; *2* – кварциты; *3* – глинисто-серицитовые сланцы; *4* – серицитовые сланцы; *5* – мрамора; *6* – известковые сланцы; *7* – контактовые роговики; *8* – граниты; *9* – залежи сульфидных руд; *10* – залежи окисленных руд; *11* – разломы разных порядков

преобладают секущие жильные рудные тела. Остальные месторождения представлены субсогласными стратоидными залежами (рис. 2). Рудоносные зоны сосредоточены в пачках серых известняков, в которых отмечаются слои аргиллитов, алевролитов и туфопесчаников.

Распространены пластообразные, линзообразные, в том числе чётковидные, жильные и пламеневидные рудные тела. Элементы их залегания существенно варьируют: на разных месторождениях отмечаются залежи от пологозалегающих до крутопадающих.

В районе Чодон-Чодьен известны позднепермско-триасовые интрузивные комплексы гранитов Фья Биок ($\gamma a P_3$ - $T_1 pb$) и габбро Чо-Дон ($\upsilon \delta \gamma \xi P_3$ - $T_2 cd$). Комплекс Фья Биок включает порфировидные гранодиориты и граниты, лейкократовые мелкозернистые граниты и кварцевые диориты.

Спектральный анализ 25 проб гранитов комплекса Фья Биок показал, что они обогащены свинцом и цинком. В этих гранитах кларки-концентраций рассчитаны по отношению содержаний к кларкам в изверженных породах [1], кларки-концетраций в гранитах комплекса Фья Биок составили для свинца 2—8, цинка 3—4.

Модельный геологический возраст комплекса гранитов определён уран-свинцовым методом по цирконам — 200—280 млн. лет [6]. Также получен возраст свинцово-цинковых сульфидных руд района Чодон — 215—265 млн. лет [6]. В последние годы Д.Н. Тангом тем же методом установлены следующие возраста свинцово-цинковых руд района: месторождений Деоан и Биньчаи — 259±40 и 264±40 млн. лет, месторождений Лунгванг и Кхуоизанг — 300±40 и 329±40 млн. лет.

Эти факты указывают на геохимическую, временную и, по-видимому, генетическую связи гранитного магматизма и многих полиметаллических месторождений, а также на полихронность и вероятную полигенетичность рудообразования.

Минеральный состав руд и стадийность рудообразования

Минеральный состав руд всех месторождений практически одинаковый: сфалерит, галенит, пирротин, пирит, арсенопирит, халькопирит, более редкие тетраэдрит, станнин, касситерит и монацит. Жильные минералы представлены кварцем, серицитом, хлоритом, эпидотом, биотитом, мусковитом, кальцитом и доломитом. Текстуры руд этих месторождений прожилково-вкрапленные, вкрапленные и реже массивные. Главными рудными минералами являются сфалерит, галенит и пирит.

Сфалерит диагностирован в большинстве изученных рудных образцов вышеназванных месторождений, его содержания в руде колеблется от 2 до 60%, в среднем 29,1%. Он имеет коричневую и серо-коричневую окраски, обогащен железом (9,2%) и представлен двумя генерациями. Сфалерит I сложен агрегатами неправильных зёрен, которые образуют полоски и линзы мощностью от 0,1 до 1 мм. Под микроскопом в агрегатах сфалерита установлены эмульсионные вкрапления галенита, халькопирита и пирротина, которые концентрируются в микрополосках вдоль поперечного сечения сфалерита (рис. 3, a, δ). Сфалерит I корродируется и замещается галенитом II и халькопиритом II. Сфалерит II представлен мелкими неправильными зёрнами, образующими парагенезисы с галенитом I, халькопиритом и пиритом. Минеральный комплекс сфалерит-галенит-халькопирит часто корродирует и замещает пирит, пирротин и арсенопирит.

Содержания галенита установлены в пределах от нескольких долей до 40%, в среднем 8,4%. Выделяются две генерации галенита. Галенит I слагает неправильные и пластинчатые агрегаты в парагенезисе со сфалеритом II, пиритом, халькопиритом, пирротином и арсенопиритом. Наиболее час-

Рис. 3. Текстурно-структурные характеристики руд: *a*-*e* – микрофото аншлифов: *a* – контакт сфалерита (Spl) с галенит том (Gal); *б* – сфалерит (Spl) замещает микропрожилки пирита (Py); *e* – галенит (Gal) в прожилке кварца; *e* – галенит (Gal) замещает микропрожилки пирита (Py); *д*-*e* – фото образцов: *д* – сфалеритовый прожил в известняке, *e* – галенит-сфалеритовый прожил руд в известняке: *1* – сфалеритовый прожилок; *2* – кальцитовый прожилок; *3* – известняке; *4* – галенит-сфалеритовый прожилок

то отмечается срастание галенит I с пирротином. К относительно крупным выделениям галенита II приурочены круглые, цилиндрические или пластинчатые включения пирротина (рис. 3, *в*, *г*). Выделения галенита II образуют аллотриоморфнозернистую структуру (искривлённые микропластинки сфалерита II и микрочастицы халькопирита).

Пирит является наиболее распространённым минералом руд, его концентрации иногда достигают 17,6%. В исследованном районе распростране-

ны четыре генерации пирита. Пирит I чередуется с полосками сфалерита, содержащими вкрапления пирротина, халькопирита и галенита, мощностью от 0,01 до 0,5 мм. Он также слагает цемент брекчий с обломками вмещающих пород. Он замещается агрегатами сфалерита II и галенита II. Пирит II представлен относительно крупными (от 0,05 до 2 мм) выделениями в парагенезисе с пирротином и арсенопиритом. В агрегатах часто встречаются смятые и механически нарушенные с микротрещинами частицы. Они корродированы и замещены галенитом. Пирит III находится в парагенезисе с арсенопиритом, пирротином, сфалеритом, галенитом и халькопиритом, образуя паналлотриоморфнозернистые и идиоморфнозернистые структуры. Пирит IV представлен мелкими кубическими зёрнами и их агрегатами размером от 0,05 до 0,2 мм. Он практически равномерно распределён в рудах и вмещающих породах.

Присутствие в свинцово-цинковых рудах графита, арсенопирита, пирротина, спекулярита, рутила, станнина, касситерита, монацита, галеновисмутина и самородного висмута указывает на высокотемпературные (> 250—300°C) условия минералообразования.

В рудах исследованного района наиболее распространены полосчатые и микролинзовидные структуры, в которых в мелкозернистых доломитах и известняках чередуются мономинеральные агрегаты сфалерита, пирита и пирротина. Также типич-

Этапы и сталии		Этап выветривания								
	I	II	III	IV	V					
Минеральные парагенезисы	Касситерит + магнетит	Арсенопирит + пирит I	Галенит I + сфалерит I + халькопирит + пирит II	Галенит II + сфалерит II + пирит III	Пирит IV	Гётит + англезит + скородит + церуссит + лимонит				
Жильные минералы Рудные минералы	Кварц, биотит, мусковит	Кварц, серицит, клорит, эпидот	Кварц, кальцит, доломит	Кварц, каљцит, доломит	Кварц					
Магнетит										
Спекулярит										
Касситерит										
Рутил										
Станнин										
Пирит										
Пиротин										
Халькопирит										
Монацит										
Арсенопирит										
Сфалерит										
Галенит										
Висмут		10								
самородный										
1 рафит										
Леикоксен										
Скородит										
Ковеллин										
Англезит										
Церуссит										
Гетит										
Лимонит										
Тектуры	Полосчатая,	Полосчатая,	Полосчатая,	Вкрапленная,						
и структуры руд	вкрапленная,	вкрапленная,	вкрапленная,	прожилковая,	Прожилковая	Vorwoowog				
	прожилково-	прожилково-	прожилково-	массивная		пористая,				
	вкрапленная.	вкрапленная.	вкрапленная.			пористая				
	массивная	массивная	массивная							
				1						

Рис. 4. Схема последовательности минералообразования свинцово-цинковых руд месторождений района Чодон-Чодьен: 1 – главные минералы; 2 – сопутствующие минералы; 3 – редкие минералы

	•		•••	• • •			
Элемент	Число проб		Содержания	Кларк концентрации (по А.П. Виноградову,	Коэффициент вариации V %		
		минимальное	максимальное	среднее	1962)	Suphulin 7, 70	
Ag	122	2,0	3220	77,89	0,07	147,01	
As	97	20,2	9909	363,43	1,7	243,04	
В	136	13,2	74,3	36,04	12	27,10	
Ba	119	4,8	496,4	65,98	650	121,40	
Be	20	5,0	7,8	6,09	3,8	13,49	
Bi	35	10,2	114	38,91	0,09	72,09	
Cd	120	2,4	1988	260,67	0,13	96,36	
Ce	103	5,8	281,7	38,89	70	104,89	
Со	117	2,0	106,8	8,76	18	118,38	
Cr	135	9,6	137,4	37,57	83	63,50	
Cu	117	10,8	3625,2	313,91	47	85,58	
La	67	5,0	202	20,37	29	137,80	
Li	77	5,1	66,9	11,14	32	84,23	
Мо	56	5,6	18,1	9,47	1,1	34,36	
Nb	15	5,1	13,4	8,57	20	35,17	
Ni	126	5,3	130,8	18,41	58	97,54	
Pb	129	70,7	95367,4	14838,55	16	160,22	
Sb	83	11,6	2185	104,87	0,5	238,61	
Sc	33	5,1	137,2	40,46	10	103,55	
Sn	106	13,6	6711	113,12	2,5	96,17	
Sr	132	6,8	1522	164,21	340	130,67	
V	127	2,2	77,3	20,36	90	76,29	
W	17	23,0	1026,1	260,58	1,3	134,27	
Y	42	5,1	71,9	13,29	29	91,71	
Zn	136	392,0	262750,2	71817,37	83	99,58	

Содержания элементов (г/т) в свинцово-цинковых рудах месторождений района Чодон-Чодьен по ICP MS

ными являются массивные, пятнистые, прожилковые и вкрапленно-прожилковые текстуры руд (рис. 3 *д*, *е*).

На гипергенном этапе формировалась ассоциация окисленных руд: гётит, англезит, скородит, церуссит, ковеллин и лимонит.

Схема последовательности минералообразования приведена на рис. 4.

Распределение основных и попутных элементов в свинцово-цинковых рудах

Результаты ICP MS анализов 136 проб первичных сульфидных руд показали, что помимо главных элементов Zn и Pb, в рудах концентрируются Mn, Fe, Cu, Cd, Bi, As, Ag, Sn, W и Sb (табл. 1). По соотношению свинца и цинка намечается ряд месторождений, в которых резко преобладает тот или иной компонент до примерно равных количеств (табл. 2). Для объектов северного рудного поля Чодьен характерны высокие содержания цинка, для расположенных южнее месторождений рудного поля Чодон — свинца.

Содержания цинка колеблются в широких пределах от 0,04 до 26,28%, в среднем 7,18%, коэффициент вариации содержаний 99,58%. Наибольшая неравномерность распределения цинка отмечается для нижних частей рудных тел. С цинком тесно связаны концентрации кадмия, который главным образом сосредоточен в сфалерите.

Таблица 1

Колебания содержаний свинца составляют от 0,001 до 9,54%, среднее 1,48%, коэффициент вариации 160,22%, что отражает большую его изменчивость по сравнению с цинком. Наиболее неравномерное распределение свинца характерно для верхних частей рудных тел.

Серебро довольно часто присутствует в рудах в повышенных концентрациях и колеблется от 2 до 3320 г/т, среднее 77,89 г/т, коэффициент вариации содержаний 147%. Распределение серебра в рудах прямо связано со свинцом (коэффициент корреляции 0,63), поскольку оно главным образом сосре-

		Таблица 2						
Соотношение свинца и цинка в рудах месторождений района Чодон-Чодьен по коэффициенту $K = Pb/(Pb + Zn)$								
Месторождение	K	Район						
Лунг Хоай	0,01	Чодьен						
Фья Хао	0,04							
Бин Чай	0,26							
Део Ан	0,44							
На Боп	0,60	Чодон						
На Тум	0,66							
Лунг Ванг	0,73							
Пу Шап	0,79							
Ба Бо	0,88							

Таблица

Матрица коэффициентов корреляции элементов свинцово-цинковых руд месторождений района Чодон-Чодьен Мо Ni W Ag As Ba Bi Cd Co Cr Cu Pb Sb Sn Zn Ag 1,00

As	0,20	1,00													
Ba	-0,04	-0,01	1,00												
Bi	0,13	-0,06	0,33	1,00											
Cd	0,08	-0,05	-0,34	0,03	1,00										
Со	0,11	0,08	0,03	0,11	0,13	1,00									
Cr	0,18	0,18	0,44	0,08	-0,15	0,17	1,00								
Cu	0,13	0,07	-0,26	-0,16	0,46	0,01	-0,08	1,00							
Mo	-0,03	0,18	-0,22	0,09	0,48	0,07	-0,37	0,17	1,00						
Ni	-0,11	-0,06	0,24	0,12	-0,09	0,16	0,21	-0,07	-0,24	1,00					
Pb	0,63	0,02	-0,02	-0,08	0,08	0,14	0,29	0,15	-0,01	-0,07	1,00				
Sb	0,68	0,07	0,03	-0,21	-0,14	-0,05	0,06	0,04	-0,13	-0,03	0,76	1,00			
Sn	0,17	0,07	-0,06	-0,21	-0,06	-0,06	0,04	0,21	0,04	-0,08	0,32	0,04	1,00		
W	0,30	-0,23	-0,25	0,03	0,80	-0,46	-0,11	0,05	0,04	-0,15	0,45	0,25	0,46	1,00	
Zn	0,09	-0,09	-0,33	-0,08	0,89	0,08	-0,11	0,46	0,51	-0,08	0,04	-0,11	0,08	0,56	1,00

Примечание. Жирным шрифтом выделены значимые коэффициенты корреляции свинца и цинка.

доточено в галените. Высокие концентрации серебра (175 г/т) характерны для руд месторождений Натум и Кванкбаче, расположенных на севере рудного поля Чодон. В них серебро главным образом сосредоточено в пираргирите и в меньшей степени — в галените.

Содержания меди составляют от 10,8 до 3625,2 г/т, среднее 313,91 г/т, коэффициент вариации 85,58%. Медь сконцентрирована в халькопирите и маркирует нижние части рудных тел.

Концентрация сурьмы от 11,6 до 2185 г/т, в среднем 104,87 г/т, коэффициент вариации 238,61%. Содержания сурьмы прямо пропорциональны количеству свинца, коэффициент корреляции 0,76. Относительно высокие концентрации сурьмы встречены на месторождениях На Туме и Кванг Баче в рудном поле Чодон в верхних частях рудных тел.

Содержания кадмия колеблются от 2,4 до 1988 г/т, коэффициент вариации 96,36%. Он тесно связан с цинком и концентрируется в сфалерите со средним содержанием 0,37% по 120 пробам монофракций. Концентрации кадмия отмечены в нижних частях рудных тел месторождений Фья Хао и Део Ане в рудном поле Чодьен.

Мышьяк (от 20,2 до 9909 г/т, среднее 363,43 г/т, коэффициент вариации 243,04%) в основном сконцентрирован в арсенопирите, в меньшей мере — в пирротине и пирите. Его концентрации характерны для нижних частей рудных тел.

Количество олова колеблются от 13,60 до 6711 г/т, среднее 13,12 г/т, коэффициент вариации 96,17%. Оно сосредоточено в касситерите и станнине. Аномальные концентрации олова зафиксированы на месторождениях Лунгванге на юге поля Чодон.

Содержания вольфрама варьируют от 23 до 1026,1 г/т, коэффициент вариации 134,27%. Воль-

фрам главным образом сосредоточен в касситерите, среднее содержание 1,36% (17 проб монофракций). Концентрационные аномалии вольфрама находятся на месторождениях Лунгванге в Южном Чодоне.

Корреляционный анализ показал высокую положительную связь свинца с сурьмой (коэффициент корреляции 0,76), цинка с кадмием (коэффициент корреляции 0,89) (табл. 3), Невысокая положительная корреляция отмечена у свинца с серебром (коэффициент корреляции 0,63), у цинка с вольфрамом и молибденом — 0,56 и 0,51. Установлена слабая положительная корреляция свинца с оловом (0,32) и вольфрамом (0,45), цинка с медью (0,46).

В целом распределение свинца, цинка и попутных компонентов отражают существенные отличия месторождений рудных полей Чодон и Чодьен.

Выводы

Проведённые исследования позволяют сделать выводы, которые следует использовать при разработке поисковых критериев и признаков полиметаллических месторождений в районе Чодон-Чодьен и других районах Северного Вьетнама.

1. В свинцово-цинковых рудах концентрируются многие ценные компоненты: Ag, Cu, Cd, Sb, Sn и W, что увеличивает промышленную ценность руд.

2. Распределение свинца, цинка и попутных элементов в рудных телах неравномерное. В их верхних частях сосредоточены цинк, медь, кадмий и мышьяк, в нижних — свинец, серебро и сурьма, что следует учитывать при оценке качества руд на отдельных месторождениях.

3. Существует различие между рудами месторождений рудных полей Чодон и Чодьен. В северном поле Чодьен галенит преобладает над сфалеритом, в южном поле Чодон их содержания сопоставимы или цинк преобладает. Для месторождений рудного поля Чодон характерны повышенные концентрации серебра, олова и вольфрама. 4. Свинцовые руды в районе Чодон-Чодьен содержат монацит, в котором присутствует изоморфная примесь урана и тория. Поэтому для проведения эффективных поисков скрытых месторождений, авторы предлагают использовать гаммаспектрометрический метод в наземном или аэроварианте.

ЛИТЕРАТУРА

- 1. Виноградов А.П. Среднее содержание химических элементов в главных типах изверженных горных пород земной коры // Геохимия. 1962, № 7. С. 535–571.
- Добровольская М.Г. Свинцово-цинковое оруденение (рудные формации, минеральные парагенезисы, особенности рудоотложения). М.: Наука, 1989. 216 с.
- Довжиков А.Е., Буй Фу Ми, Василевская Е.Д. Геология Северного Вьетнама // Наука и техника. 1965. 668 с. (Вьетнам).
- Н гуен З.Х. Геологическая структура и характеристики свинцово-цинкового месторождения Чодон — Северного Вьетнама // Доклад на XIII Международной научно-практической конференции «Новые идеи в науках о Земле. М., 2017. С. 284–285.
- Н гуен З.Х, И г н а т о в П.А, Н гуен Ч.Тх. Минералогические характеристики свинцово-цинковых месторождения района Чодон, северного Вьетнама // Доклад на Международной научно-практической конференции «Стратегия развития геологического исследования недр: настоящее и будущее». М., 2018. С. 337–338.
- 6. Нгуен Кхак Винь. Радиоактивный возраст и биохимическая характеристика сложных гранитов Фья Биок на

основе геохимических и свинцовых изотопов // Геология, 1982. № 154. (Вьетнам).

- 7. Нгуен Ч. Тх., Нгуен К.З., ВуЛеТу. Рудные характеристики и генезис свинцово-цинковых руд на месторождении На-Тум, Чо Дон, Бак-Кан // Журнал природных ресурсов и окружающей среды. 2014. №4. С. 82–88. (Вьетнам).
- 8. Чан Чонг Хоа. Внутриплитный магматизм Северного Вьетнама и её металлогения. Дис. ... докт. геол.-мин. наук. Новосибирск, 2007. 200 с.
- 9. Чан Чонг Хоа, Изох А.Э., Поляков Г.В., Борисенко А.С., Чан Туан Ань, Балыкин П.А., Нго Тхи Фыонг, Руднев С.Н., Ву Ван Ван, Буй Ан Ньен, Пермотриасовый магматизм и металлогения Северного Вьетнама в связи с эмейшаньским плюмом // Геология и геофизика. 2008. Т. 49. №. 7. С. 637–651.
- 10. Чан Туан Ань, Гаськов И.В., Чан Чонг Хоа, Неволько П.А., Фам Тхи Зунг, Фам Нгок Кан // Геология и геофизика. 2012. Т. 53. № 7. С. 817–833.
- 11. Чан Ван Зыонг. Геологическое строение и условия формирования полиметаллических рудных полей Северо-Восточного Вьетнама. Автореф. дис. ... канд. геол.-мин. наук. Баку, 1990. 37 с.

REFERENCES

- 1. Vinogradov A.P. Srednee soderzhanie khimicheskikh ehlementov v glavnykh tipakh izverzhennykh gornykh porod zemnoj kory [The average content of chemical elements in the main types of igneous rocks of the earth's crust]. *Geokhimiya* [*Geochemical*] 1962, no 7, pp. 535–571. (In Russian)
- Dobrovol'skaya M.G. Svincovo-cinkovoe orudenenie (rudnye formacii, mineral'nye paragenezisy, osobennosti rudootlozheniya) [Lead-zinc mineralization (ore formations, mineral parageneses, features of ore deposition)], M., Nauka Publ., 1989, 216 p. (In Russian)
- 3. Dovjikov A.E., Bui Phu My, E.D. Vashilevshkaya. Geology of North Vietnam. *Science and Technology*. 1965, 668 c. (In Vietnam).
- Nguyen D.H. Geologicheskaya struktura i harakteristiki svincovo-cinkovogo mestorozhdeniya Chodon — Severnogo Vietnama [Geological structure and characteristics of the lead zinc deposit Chodon- North Vietnam]. XIII Mezhdunarodnaya nauchno-prakticheskaya konferenciya «Novye idei v naukah o Zemle» [XIII international conference «New ideas in Earth sciences»], 2017, pp. 284–285. (In Russian).
- Nguyen D.H, Ignatov P.A, Nguyen T.Th. Mineralogicheskie harakteristiki svincovo – cinkovyh mestorozhdeniya rajona Chodon, severnogo Vietnama [Mineralogical characteristics of the lead-zinc deposits of the Chodon district, northern Vietnam]. Mezhdunarodnaya nauchno-prakticheskaya konferenciya «Strategiya razvitiya geologicheskogo issledovaniya nedr: Nastoyashchee i Budushchee». [International Scientific and Practical Conference «Strategy of development of geological research nedr: Present and future»], 2018, pp. 337–338. (In Russian).

- 6. Nguyen Khac Vinh. Radioactivite age and biochemical characterization of the complex granites Phia Bioc on the basis of geochemical and lead isotopes. *Journal Geology*, 1982, no 154. (In Vietnam).
- 7. Nguyen Trung Thanh, Nguyen Khac Giang, Vu Le Tu. Ore characteristics and genesis of lead-zinc ores at the Na-Tum deposit, Cho Don, Bac Kan. *Journal of Natural resources and Environment*, 2014, no 4, pp. 82–88. (in Vietnam).
- 8. Tran Trong Hoa. Vnutriplitnyj magmatizm Severnogo V'etnama i eyo metallogeniya. Diss. Dokt. geol-min. nauk. [In-plate magmatism of North Vietnam and its metallogeny. Dr. geo. and min. diss.], Novosibirsk, 2007, 200 p. (In Russian).
- Tran Trong Hoa, A.E. Izokh, G.V. Polyakov, A.S. Borisenko, Ngo Thi Phuong, P.A. Balykin, Tran Tuan Anh, S.N. Rudnev, Vu Van Van, Bui An Nien, 2008: Permi-Triassic magmatism and metallogeny of North Vietnam in relation to Emeishan's Plume. *Russian, Geology and Geophysics*, T. 49, no 7, pp. 480–491. (In Russian).
- Tran Tuan Anh, I.V. Gaskov, Tran Trong Hoa, P.A. Nevolko, Pham Thi Dung, Pham Ngoc Can. Complex deposits in the Lo Gam structure, northeastern Vietnam: mineralogy, geochemistry, and formation conditions. *Russian Geology and Geophysics*, 2012, T. 53, no 7, pp. 623–635. (In Russian).
- 11. Tran Van Duong. Geologicheskoe stroenie i usloviya formirovaniya polimetallicheskih rudnyh polej Severo-Vostochnogo Vietnama. Diss. Dokt. geol.-min. nauk. [Geological structure and conditions for the formation of polymetallic ore fields in Northeast Vietnam. Dr. geo. and min. diss.], Baku, 1990, 37 p. (In Russian).