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Abstract: In this paper we present a new method combining interior and exterior approaches to solve linear programming problems. 
With the assumption that a feasible interior solution to the input system is known, this algorithm uses it and appropriate constraints of 
the system to construct a sequence of the so called station cones whose vertices tend very fast to the solution to be found. The 
computational experiments show that the number of iterations of the new algorithm is significantly smaller than that of the second 
phase of the simplex method. Additionally, when the number of variables and constraints of the problem increase, the number of 
iterations of the new algorithm increase in a slower manner than that of the simplex method. 
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1. Introduction  

After its discovery by Dantzig in 1947 [ 6 ] the 
simplex method was unrivaled, until the late 1980s, 
for its utility in solving practical linear programming 
problems. The computational experiments show that 
the simplex method is quite efficient in practice 
[2,3,6,7]. Nevertheless, there exists a class of linear 
programming problems for which the simplex method 
takes an exponential number of steps [10].  

In 1979 [9] Khachian introduced the ellipsoid 
method which gives a bound of 𝑂𝑂(𝑛𝑛5𝐿𝐿) arithmetic 
operations on number with 𝑂𝑂(𝑛𝑛𝑛𝑛) digits. Khachian's 
algorithm was of landmark importance for 
establishing the polynomial time solvability of linear 
programs. Despite its major theoretical advance, the 
ellipsoid method had little practical impact as the 
simplex method is more efficient for many classes of 
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linear programming problems [1,14].  
In 1984 [8] Kamarkar proposed a new projective 

method for linear programming problems which not 
only improved Khachian's theoretical worst-case 
polynomial bound but in fact promised dramatically 
practical performance improvement over simplex 
method. Karmarkar's algorithm requires  𝑂𝑂(𝑛𝑛3.5𝐿𝐿) 
operations on th 𝑂𝑂(𝐿𝐿) digit numbers as compared f 
𝑂𝑂(𝑛𝑛6𝐿𝐿) such operations for the Khachian's ellipsoid 
method. Karmarkar's algorithm falls within the class 
of interior point methods. In contrast to the simplex 
method, which finds the optimal solution among the 
vertices of the feasible set, the interior point method 
moves through the interior of the feasible region and 
reaches the optimal solution only asymptotically. 
Stimulated by Karmarker’s algorithm a variety of 
interior point methods were developed for linear 
programming [12,16]. 

There are several important open problems in the 
theory of linear programming, the solution of which 
would represent fundamental breakthrough in 
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mathematics. In the survey on linear programming [15] 
M.J. Todd has mentioned some unsolved problems: Is 
there a polynomial pivot rule for the simplex method? 
Does the bounded Hirsch conjecture hold? The 
immense efficiency of the simplex method in practice, 
despite its exponential time theoretical performance, 
hints that there may be variations of simplex 
algorithm that run in polynomial time. 

In this paper we present a new interior exterior 
algorithm for solving linear programming problems. 
We assume that the linear programming problem has a 
initial strict interior point O. Then using this point O 
we construct a sequence of the so called station cones 
whose vertices will allow a very fast optimal solution 
to be found.The new interior exterior algorithm has 
been tested, using MatLab, on a set of randomly 
generated linear problems. The computational 
experiments show that the number of iterations of the 
interior exterior approach is significantly smaller than 
that of the second phase of the simplex method.  

The paper is organized as follows. In section 2 we 
introduce some results which are necessary for the 
construction of the algorithm. In section 3, we 
describe the criterion of selecting the leaving variables. 
The section 4 presents the main idea of the algorithm 
and proposes the selecting rule for entering vectors. 
The algorithm is presented in section 5. A numerical 
example has been illustrative in section 6. The section 
7 presents the computational experiments for some 
classes of small and medium size problems. Finally, 
some conclusions have been made in section 8. 

2. Station Cone 

We consider a linear programming problem in the 
matrix form 

{ }
max  ,

: ,  0 ,
c x

x P x Ax b x∈ = ≤ ≥
      (2.1) 

where xn m n m nc ,A A ,b , x .∈ ∈ ∈∈ ∀ ∈  
Let 

1 2 mA ,A ,...,A  denote the row vectors.Through this 
paper we suppose that (2.1) and its dual problem are 

nondegenerated .We also suggest the feasible region 
𝑃𝑃 of (2.1) has strict interior points. For simplicity of 
argument, we assume that the matrix A has full 
column rank n and n < m. 

Let { } { }1 2, ,..., 1,2,...,n nI i i i m= ⊂  such that the 
vectors ,  i nA i I∈  are linear independent. This 
means the vector ,  i nA i I∈  establish a basis of 𝑅𝑅𝑛𝑛 . 
Therefore any vector n

lA ∈  can be expressed as a 
linear combination of the vectors i nA ,i I .∈  Let 

kliλ  be the linear coefficient of the vector lA in the 
basis ,  

ki k nA i I∈ , then 

1
,   1,2,..., ,  1,2,..., .

k k

n

lj li i j
k

a a j n l mλ
=

= = =∑  

Consider the system of homogeneous linear 
inequalities 

0,   . 
ki k nA x i I≤ ∈          (2.2) 

We indeed need to introduce the following 
definition. 

Definition 1. The linear inequality 

0       lA x ≤            (2.3) 

is called the consequent linear inequality of the system 
(2.2) if and only if all the solutions of the system (2.2) 
satisfy the linear inequality (2.3). 

We need the following well known result in theory 
of linear inequalities.  

Theorem 2.1 The linear inequality (2.3) is a 
consequent linear inequality of the system (2.2) if and 
only if 

  
k k k

n

l li i li k n
k 1

A A , 0, i Iλ λ
=

= ≥ ∈∑  

Definition 2. Let polyhedral cone M be defined by 
system  

1 1 2 2
,  , ...., ,

n ni i i i i iA x b A x b A x b≤ ≤ ≤  

where 1 2
, ,...,

ni i iA A A  are linear independent. Then 
M is called a station cone if the vector c is a 
nonnegative linear combination of the vectors 

1 2
, ,..., .

ni i iA A A  The vertex x  is called a station 
solution and the vectors 1 2

, ,...,
ni i iA A A  is called a 
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basis of a station cone. 
Therefore, geometrically it can be seen that all the 

station cones lie on one side of the objective function 
(c,x) at their vertices (see fig. 1:

1 2 3 4 5M ,M ,M ,M ,M are station cones and 
6 7 8 9M ,M ,M ,M are not station cones). In other 

words, the solutions of the system of linear 
inequalities that create the station cones satisfy the 

inequality 
*, ,c x c x≤ , whereas x* is the vertex 

of the station cones. This is equal to the fact that the 

inequality *, ,c x c x≤  is the consequent 

inequality of the system of the linear inequalities, 
which formulate the station cone. This also means that 
the vector c is the nonnegative linear combination of 
the basic vectors of the station cone.  

We have the following theorem 
Theorem 2.2 If the station solution x satisfies all 

the constraints of the problem (2.1) then x  is an 
optimal solution.  

Proof. From the fact that x  is a vertex of the 
station cone M, we have 

1 1 2 2
, , ...., .

n ni i i i i iA x b A x b A x b= = =  

Since 1 2
, ,...,

ni i iA A A  is a basis of a station cone 
then c a nonnegative linear combination of 

1 2
, ,...,

ni i iA A A . Therefore , 0c x ≤  is a 
consequent inequality of the system 

1 2
0, 0,..., 0.

ni i iA x A x A x≤ ≤ ≤     (2.4) 

This means that if 1x  is a solution of the system 
(2.4) then 

1, 0c x ≤              (2.5) 

From (2.5) and the fact that x is a vertex of M, it 
follows that 

, , ,                   c x c x x M≥ ∀ ∈       (2.6) 

On the other hand 

{ } { }max , max , , 0c x x M c x Ax b x∈ ≥ ≤ ≥  (2.7) 

Combine (2.6) and (2.7), we have 

{ }, max , | ,  0             c x c x Ax b x≥ ≤ ≥       (2.8) 

If x  satisfies all the constraints then (2.8) implies 

{ }, max , | ,  0 .c x c x Ax b x= ≤ ≥
 

This means x  is an optimal solution of the 
problem (2.1). The proof is completed.  

3. Selecting the Leaving Vector 

Let 1 2
, ,...,

ni i iA A A  be the basis of the station cone 
and 

0
1 1

,  ,    1, 2,...
k k

n n

k i j kj i
k k

c A A A j mλ λ
= =

= = =∑ ∑
 

Then from definion 2.1 follows that 

0,   1, 2,...ko k nλ ≥ ∀ = . 

From now on we assume that all koλ  are strictly 
positive, i.e.  

0 0,  1, 2,...,k k nλ > = . 

It is obvious that 

0 00,  1, 2,..., ;  0,  1,...,k kk n k n mλ λ> = = = +  is 
a basis solution of the dual problem of (2.1): 

{ }min  , \ , 0T Tb A cλ λ λ≥ ≥      (3.1) 

where mRλ ∈ . The assumption 

0 0,  1, 2,...,k k nλ > =  means that the dual problem 
(3.1) is nondegenerated. 

Similarly to the simplex table, we establish the table 

of the coefficients kjλ  in the following way: 
 

No Basis c  1A
 2A

 
... sA

 
.... mA

 

1 
1i

A
 

10λ
 11λ

 12λ
 

.... 1sλ
 

.... 1mλ
 

2 
2i

A
 

20λ
 21λ

 22λ
 

.... 2sλ
 

.... 2mλ
 

... ... ... ... ... .... ... ... ... 

r  ri
A

 
0rλ

 1rλ
 2rλ

 
.... rsλ

 
.... rmλ

 
  ... ... ... ... ... ... ... 

n  ni
A

 
0nλ  1nλ  2nλ  

 nsλ  
.... nmλ  
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Fig. 1 

 

Suppose ri
A  is the leaving vector and sA  is the 

entering vector. New coefficients 'koλ  of vector c  
can be calculated by the following formula  

0
0

0
0 0

0 0

' ,

' ,   ,       

,   0,    0.

r
r

rs

r
k k ks

rs

k r
rs ks

ks rs

k r

λλ
λ

λλ λ λ
λ

λ λ λ λ
λ λ

=

= − ≠

≥ > >

   (3.2) 

From 0,  ' 0,   1, 2,...ko ko k nλ λ> > ∀ =  
we follow that 

0
0

0
0 0

0 0

' 0,

' ,   ,       

,   0,    0.

r
r

rs

r
k k ks

rs

k r
rs ks

ks rs

k r

λλ
λ

λλ λ λ
λ

λ λ λ λ
λ λ

= >

= − ≠

≥ > >
  

Therefore 

0 0min ,   0,   0             r k
ks rsk

rs ks

λ λ λ λ
λ λ

= > >     (3.3) 

The formulas (3.2), (3.3) guarantee that 

1 2 1 1
, ,..., , , ,

r r ni i i s i iA A A A A A
− +  are the basis of the 

station cone. So we have proved the following 
Theorem 2.3 Let 1 2

, ,...,
ni i iA A A  be the basis of 

the station cone. Suppose we replaced
ri

A by sA . 

Then 1 1 1
,..., , , ,...,

r r ni i s i iA A A A A
− +  is the basis of the 

station cone if the leaving vector ri
A  was chosen by 

condition 

0 0 ,min   0,   0              r k
rskskrs ks

λλ λ λ
λ λ

= > >     (3.4) 

Now we have to show that formula (3.4) is hold.  
Theorem 2.4 Among the coefficients ksλ , k = 1, 

2,..., n at least one rsλ  exists such that 0rsλ >  
Proof. Suppose 0,   1,2,...,ks k nλ ≤ ∀ = . 

Then the system  

1 2,   , ,..., ,i i n s sA x b i i i i A x b≤ = ≤  

either would have a unique solution or would have no 
solution. This contradicts the assumption that the 
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feasible set P has interior points. So there exists at 
least one 0rsλ > . The theorem is proven � 

4. Selecting the Entering Vector 

The idea of our algorithm is moving from one 
vertex kx  of a station cone kM  to another vertex 

k 1x +  of another station cone k 1M +  with a better 
value of the objective function. The movement 
depends on the cutting hyperplane s sA x b=  which 
will be defined by the intersection of the feasible 
polytope P and the segment connecting the vertex kx
of the station cone kM and the given interior point
O P.∈  The movement stops when the vertex kx  of 
the station cone kM  becomes a feasible point. The 
number of iterations will depend on the method of 
selecting the cutting hyperplane. We will illustrate the 
idea and the effectiveness of our algorithm by 
considering the following examples. 

Let us approximate the equator of the earth by a 
polygon with the edge of 1 meter long. Then this 
polygon has 40 millions edges and 40 millions 
vertices. Suppose we have to find the maximum of a 
linear function 1 2cx cx+  over this polygon.  

On figure 2, let A denote an optimal point, 1B
denote the starting point. Suppose the distance 
between 1B  and A is 5 million meters. Then the 

simplex method will produce an optimal solution after 
5 million iterations. 

Let 1M be a station cone defined by 2 constraints 
containing points 1B  and 1D , where 1D  is on the 
other side of A with a distance, for examples, 4 
million meters to A (see fig.2).  

We denote by 𝑥𝑥1 the vertex of 𝑀𝑀1. Since 𝑀𝑀1 is a 
station cone, it is clear that  

cx  1 1cx, x M .≥ ∀ ∈ . 

The station cone 𝑀𝑀1 will be our starting cone. 
Starting  our  algorithm  with  the  operation  of 
connecting 𝑥𝑥1 with 𝑂𝑂, where 𝑂𝑂 is the center of the 
equator. The segment [𝑥𝑥1, 𝑂𝑂] will intersect with the 
boundary of P at 𝐵𝐵2 . Replacing the constraint 
containing 𝐵𝐵1 by the constraint containing 𝐵𝐵2 we 
have a new cone 𝑀𝑀2. Repeat the above procedure 
with 𝑀𝑀2 and we have 𝑀𝑀3, etc. (see figure 2). The 
replacement of one constraint by another has to follow 
the restriction that the new generating cone is a station 
cone. We note that at each iteration, the distance 
between  two  points 𝐵𝐵𝑘𝑘  and 𝐷𝐷𝑘𝑘  defined by two 
edges   of   the   station   cone 𝑀𝑀𝑘𝑘  is   reduced  by 
approximately  2  times  in  comparison  with  the 
previous iteration. Therefore the number of the 
iterations T can be estimated by the following bound  

 

 
Fig. 2 
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2
mT log .
2

≈
 

For our example with 𝑚𝑚 = 40 million the formula 
(4.1) gives  

7
2 2

mT log log 2.10 25
2

≈ = <
 

The above example shows that our algorithm can 
produce an optimal solution after around 25 iterations. 

We now proceed to find an initial station cone. We 
can find an initial station cone M by solving the 
following system  

,  0,T TA cλ λ= ≥           (4.2) 

where mλ ∈ . We can suppose 0Tc ≥  because, if 
some coefficient of Tc  is negative then we multiply 
both sides of the corresponding equation with -1. To 
find a solution of (4.2), we solve the following big - M 
problem 

{ }1 1 2 2min ...

     ,  0,  0,
n n

T T

M y M y M y

A Ey c yλ λ

+ + +

+ = ≥ ≥
     (4.3) 

Where, ,  m nyλ ∈ ∈   and E is the unit matrix 
of ( n n× ) and 1 2, ,..., nM M M  are significantly 
large positive numbers. The problem (4.3) has an 
optimal solution * 0,  0.yλ ∗≥ =  and λ∗  is a 
solution of (4.2).  

We also assume that a strict interior feasible 
solution O of (2.1) is available. If such an initial point 
is not available then we modify the problem using the 
usual big – M augmentation [11] as follows: 

{ }1

1 1

max  ,
      ,  , 0.

n

n n

c x Mx
Ax ex b x x

+

+ +

−
− ≤ ≥       (4.4) 

Where ( )1,1,....,1 T me = ∈ and M is a 
significantly large positive number.  

Let { }0
1 1 2max 0, , ,...,n mx b b b+ > − − − .Then 

( )0
10,...,0,

T

nx +  is a strict interior feasible solution of 

(4.4) which is in the same form as (2.1).  

Let O be a strict interior point of P. Denoted by

0 ,  1, 2,...,i i n=  the projections of 𝑂𝑂  onto 𝑛𝑛 
facets of the station cone  𝑀𝑀𝑘𝑘 . Let ,  1, 2,...,iH i n=
be the intersection points of the boundary of  

P and the segments 0,  0 ,  1, 2,...,i i n= . Then the 
new point 𝑂𝑂∗  will be calculated by the following 
formula 

1

1*
1

n

i
i

O H O
n =

 = + +  
∑         (4.5) 

It is obvious that 𝑂𝑂∗ in (4.5) is the barycenter of 
the polytope 1 2, ,..., ,0.nH H H  Let us connect the 
point 𝑂𝑂∗ with vertex 𝑥𝑥𝑘𝑘  of the station cone 𝑀𝑀𝑘𝑘 . Let 
𝑧𝑧𝑘𝑘  denote the intersection point of P and [𝑂𝑂∗, 𝑥𝑥𝑘𝑘], 
such that 𝑧𝑧𝑘𝑘 ∈ 𝑃𝑃,(𝑧𝑧𝑘𝑘 , 𝑥𝑥𝑘𝑘] ∉𝑃𝑃.  Then the inequality 
𝐴𝐴𝑠𝑠𝑥𝑥 ≤  𝑏𝑏𝑠𝑠 with 𝐴𝐴𝑠𝑠𝑧𝑧𝑘𝑘 =  𝑏𝑏𝑠𝑠  will be chosen as 
entering variable. This means the inequality 
𝐴𝐴𝑠𝑠𝑥𝑥 ≤  𝑏𝑏𝑠𝑠will enter the next station cone 𝑀𝑀{𝑘𝑘+1} (if 
𝐴𝐴𝑖𝑖𝑧𝑧𝑘𝑘 =  𝑏𝑏𝑖𝑖  for some 1 2, ,..., ,0.nH H H  then we can 
choose any 𝑖𝑖 ∈ {𝑖𝑖1, 𝑖𝑖2, …, 𝑖𝑖𝑘𝑘} ). The point kz  will 
be calculated as follows. 

Denote { }1,2,...,I m⊂  such that Ai kx > bi, i = 

1, 2, …, m, we have to find ,  i i Iλ ∈  such that
,  ,i i iA z b i I= ∈  i.e. 

( (1 ) ) ,  0 1,  .k
i i i i iA O x b i Iλ λ λ+ − = < < ∈  

Therefore 
(1 ) ,  

max
,  0 1,  i I

k
i i i

s i
i i i i

z O x

A z b

λ λ
λ λ

λ

 = + − =  
= < < ∈  

 

will define the cutting hyperplane s sA x b=  and As 

is the entering vector into the next station cone Mk+1. 

If k
i iA z b=  for { }1 2, ,..., ki i i i∈  then we can 

choose any { }1 2, ,...., ki i i i∈ . 
Now we show that the vertex 1kx +  of Mk+1 will 

produce a smaller value for the objective function. 
Theorem 2.5. Let kx  be a vertex of Mk at step k. 

Suppose kx is a unique optimal solution of 

,c x ,∀𝑥𝑥 ∈ Mk. Then 

1, ,k kc x c x+ <
. 
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Proof. Since kx is a unique optimal solution then 

, , ,   ,   k k kc x c x x M x x> ∀ ∈ ≠   (4.6) 

On the other hand 

1 .k kx M+ ∈            (4.7) 

From (4.6), (4.7), follows 1, ,k kc x c x+ < . 

The proof is completed � 
Remark 1 The assumption kx  is a unique optimal 

solution of ,c x  on Mk which is equivalent to the 

assumption that the vector c is a strict positive linear 
combination of the basis vectors of Mk i.e. 

0 0,  1,2,...,k k nλ > ∀ = . This means the dual 
problem (3.1) of (2.1) is nondegenerated.  

5. Algorithms 

After the above discussion, we now proceed to 
formulate the following algorithm. 

Algorithm 1 
1. Initialization 
Determine the starting station cone 𝑀𝑀. Calculate 

the point 𝑂𝑂∗ by formula (4.5). 
Let: 𝑀𝑀𝑘𝑘 = 𝑀𝑀;  𝑂𝑂 =  𝑂𝑂∗. 
2. Step (𝒌𝒌 = 𝟏𝟏, 𝟐𝟐, … ) 
If the vertex 𝑥𝑥𝑘𝑘  of the station cone 𝑀𝑀𝑘𝑘  is a 

feasible point of P, then 𝑥𝑥𝑘𝑘  is an optimal solution. In 
the contrary case, select the inequality 𝐴𝐴𝑠𝑠𝑥𝑥 ≤  𝑏𝑏𝑠𝑠  for 
entering the station cone and define the inequality 
𝐴𝐴𝑖𝑖𝑟𝑟𝑥𝑥 ≤  𝑏𝑏𝑖𝑖𝑟𝑟  for leaving the station cone. Determine 
the new station cone 𝑀𝑀{𝑘𝑘+1} with the vertex 𝑥𝑥{𝑘𝑘+1}. 

Go to next step 𝑘𝑘 = 𝑘𝑘 + 1. 
Remark 2 Except for the calculation for finding the 

entering variable, each step of algorithm 1 is a 
simplex pivot. 

With the assumption that the dual problem (3.1) of 
(2.1) is nondegenerated, we hence have the following. 

Theorem 2.6 
The above algorithm produces an optimal solution 

after a finite number of iterations. 
Proof. Follows from the theorems 2.3,2.4,2.5. It is 

obvious that the calculation of the interior point 𝑂𝑂∗ 
by formula (4.5) may require additional computational 
work which influences on the efficiency of the above 
algorithm. Normally we suggest using the point O 
instead of 𝑂𝑂∗ if O is positioned quite distantly 
separated from the facets of P. We also note that if O 
is near the optimal solution of (2.1) then the cutting 
hyperplane can most probably be one of the facets 
which formulate the optimal solution. Taking this 
advantage, we can have 

1 ( )
2

kO O z= +  where  k
s sA z b=    (5.1) 

It is clear that point O in the formula (5.1) is a strict 
interior point which is moving in the direction towards 
the optimal point step by step. We hope that for some 
class of linear programming problems the movement 
of O towards the optimal point can reduce the number 
of iterations.Therefore we suggest the following: 

Algorithm 2 
1. Initialization 
Determine the starting station cone 𝑀𝑀. Find the 

point 𝑂𝑂. 
Let ;kM M O O= =   
2. Step k (𝑘𝑘 = 1, 2, … ) 
If the vertex 𝑥𝑥𝑘𝑘  of the station cone 𝑀𝑀𝑘𝑘  is a 

feasible point of P, then 𝑥𝑥𝑘𝑘  is an optimal solution. In 
the contrary case, select the inequality s sA x b≤  for 
entering the station cone and define the inequality

r ri iA x b≤  for leaving the station cone.  

Let 1 ( )
2

kO O z= +  where  k
s sA z b=  

Determine the new station cone { }1kM +  with the 
vertex { }1kx + .  

Go to next step 𝑘𝑘 = 𝑘𝑘 + 1. 

6. Numerical Example 

Consider the Linear programming problem:  

1 22     maxx x− + →  
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1 2 1 2

1 2

1 2 1 2

1 2

3  3,     5,
  2 2
   3 36,     20,

0,   3

x x x x
x x

x x x x
x x

− + ≤ − + ≤
− − ≤ −

+ ≤ + ≤
− ≤ − ≤

     (6.1) 

We apply Algorithm 1 to solve problem (6.1). 
Initial step:  
- Find an initial station cone 
Find a basis which is a positive linear combination 

of vector c. That means to find a solution of the 
following system : 

1 2

1 2 3 4 5 6

1 2 3 4 5 7

j 1 2

3 1
2 3 2

0,   1,2,...,7,   0,  0,    

0, , ,

λ λ λ λ λ λ
λ λ λ λ λ λ
λ λ λ

λ

− − − + + − = −

+ − + + − =

≥ = > >

= ≠
j j jj

j j j

(6.2) 

We use the big - M augmentation to find a solution 
of (6.2). It is easy to note that 

5 6

5

1
2

λ λ
λ

− = −
=  

define a positive linear combination of vector c with 

5 62;   3λ λ= = .Then the initial station cone M1 
will be defined by following system 

1 2

1

    20
        0  

x x
x

+ ≤
− ≤

 

with vertex 1 (0, 20).x =  The vectors 

5 6(1,1),   ( 1,0)A A= = −  are basis of M1. We note 
that 1 (0, 20)x =  is not a feasible solution of (6.1) 
then go to step 2. 

- Define a strict initial interior point O  
Note that O = (3 , 3) is a strict interior point. 
Calculating O* 
Project O onto the facets of M1 (see figure 3), we 

have: 1 2(9,9);   (0,3).H H= =  From (3.5) follows 

1 2
1 ( ) (4,5)
3

O O H H∗ = + + =  

 

 
Fig. 3 
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Therefore O = O* = (4, 5) is a strict initial interior 
point. 

Step k = 1 
- Finding the cutting hyperplane 
Connect O = (4, 5) with 1 (0, 20).x =  The 

segment [O, x1] intersect with the boundary of P at the 
inequality 1 2 5x x− + ≤  (see figure 3). Therefore 

2 ( 1,1)A = −  is entering vector and the inequality 

1 2 5x x− + ≤  is entering into the next station cone.  

Denote { }1,2,...,I m⊂  is index set such that 
kx  is violating. Then the cutting hyperplane is defined 

by  

(1 ) ,  
max

,  0 1,  i I

k
i i i

s i
i i i i

z O x

A z b

λ λ
λ λ

λ

 = + − =  
= < < ∈  

 

It is obvious 1 (0,20)x =  is not satisfying the 
constraints 1,2,4 ( { }1,2,4I = ). Calculate 

1 2 4, ,λ λ λ  : 

1(1 ) (4 ,20 15 ).i i i i iz O xλ λ λ λ= + − = −  

Put iZ  into the constraints 1, 2, 4. With the 
constraint 1 we have: 

1 2

1 1

1

     -3   3 
12  + 20 - 15 = 3 

    17 / 27.

x x
λ λ

λ

+ = ⇒
− ⇒

=

 

With constraint 2 : 2     15/19λ =  ; With 
constraint 4 : 4      24 /11λ = . 

Then 

{ }2 1 2 4max 17 / 27, 15 /19, 24 /11 .λ λ λ λ= = = =  

Therefore the inequality 1 2 5x x− + ≤  is entering to 
the next step. 

- Selecting the leaving vector 
Establish the simplex table with basis 5 6,A A  as 

follows:  

 

N Basis C A1 A2 A3 A4 A5 A6 A7 
1 A5 2 1 1 -2 3 1 0 -1 
2 A6 3 4 2 -1 2 0 1 -1 
(Step 1) 
 

A2 is the entering vector and 
21 221 0;   2 0;λ λ= > = >

20 10 20

22 12 22

3 3min 2, .
2 2

λ λ λ
λ λ λ

 
= = = = 

 
 

Therefore A6 is the leaving vector. The station cone 
M2 with vertex x2defined by system  

1 2 1 2    20;      5 . x x x x+ ≤ − + ≤  

Since the vertex 2 1 1(7 ,12 )
2 2

x =  does not satisfy 

all constraints of (6.1) then we go to next step. 
Step k = 2 
- Selecting the cutting hyperplane 
Similarly to step k=1, we find the inequality

1 2  3  36x x+ ≤  is entering to the next step (see 
figure 3). 

- Selecting the leaving vector 
New simplex table for basis A5, A2: 

 

N Basis C A1 A2 A3 A4 A5 A6 A7 
1 A5 ½ -1 0 -3/2 2 1 -1/2 -1/2 
2 A2 3/2 2 1 -1/2 1 0 1/2 -1/2 
(step 2) 
 

Similarly we have A4 is the entering vector and A5 
is the leaving vector. The station cone M3 and the 
vertex x3 are defined by 

1 2 1 2  3  36;     5.x x x x+ ≤ − + ≤  

The vertex 3 1 1
(5 ,  10 )

4 4
x =  satisfies all 
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constraints of (6.1). Then x3 is an optimal solution of 

(6.1) and 3 1
, 15

4
c x = . 

7. Computational Experiences 

The proposed Algorithm 1 has been tested, using 
MatLab, on a set of randomly generated linear 
problems [13] of the form 

max  ,  
     ,

c x
Ax b




≤
            (7.1) 

Where𝑐𝑐 = (1, 1, … , 1) ∈  𝑅𝑅𝑛𝑛 , A is the full matrix of 

( n m× ) with ija  is randomly generated from the 

interval [0,1), the vector b has been chosen such that 
the hyperplanes , ,  1,...,= =i iA x b i m  are 
tangent to the sphere (0, 1) with center at origin and 
radius r = 1. To ensure that (7.1) has a finite optimal 
solution we add the constraints 

 1 ,   1, 2,..., .ix i n≤ =            (7.2) 

The optimal solution and objective function value 
of ((7.1)-(7.2)) have been retested by simplex 
algorithm from MatLab.  

Function Data01. m randomly generates the input 
data for the problems and stores the matrix A and, 
vector b in the data base form Dat01. mat. Function 
Alg01. m solves the problem by a new proposed 
algorithm1 and function Simplex01. m itself isthe 
simplex algorithm from the optimization toolbox of 
MatLab. 

We would like to remark that, in order to find the 
next vertex of station cone, instead of calculating a 
simplex table, here we call procedure from MatLab to 
solve the system of linear equalities Ax = b. This will 
take much more computing time, especially when n 
and m are large numbers. We have tested several 
hundreds examples. Some of them as follows: 

 

n m Problem 
Iterations 
PHASE II SIMPLEX DUAL SIMPLEX INEX  

40 200 
1 1529 1300 216 
2 1438 1600 234 
3 1438 1390 229 

100 200 
1 5489 7443 830 
2 6715 8528 865 
3 6351 8293 882 

300 1000 1 212261   227215  8952  
400 1000 2   388676  13266  
500 1000 3  583464  21033  
 

8. Conclusions 

The above tested examples show that the number of 
iterations of the interior exterior approach is 
significantly smaller than that of the second phase of 
the simplex method. Additionally, when the number 
of variables and constraints of the problem increase, 
the number of iterations of the interior exterior 
approach increase in a slower manner than that of the 
simplex method. In order to gain a more precise 
conclusion on the effectiveness of the above proposed 
algorithm 1, there is a need to re-program Algorithm 1 

and then carry out computational experiments on a 
larger scale together with a bigger number of variables 
and constraints. 
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