
For Review Only

 

 

 

 

 

Downscaling Gridded DEM using the Hopfield Neural 

Network 
 

 

Journal: 
Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing 

Manuscript ID JSTARS-2018-00862 

Manuscript type: Regular  

Date Submitted by the Author: 24-Sep-2018 

Complete List of Authors: Nguyen, Quang Minh; Hanoi University of Mining and Geology, Faculty of 
Geomatics and Land Administration 
La, Phu Hien; Hanoi University of Mining and Geology, Faculty of Geomatics 
and Land Administration 
Pham, Thanh Thao; Hanoi University of Mining and Geology, Faculty of 

Geomatics and Land Administration 
Nguyen, Thi Thu Huong; Hanoi University of Mining and Geology, Faculty of 
Geomatics and Land Administration 
Lewis, Hugh; University of Southampton, School of Engineering Sciences;   
Atkinson, Peter; Lancaster University, Faculty of Science and Technology; 
Queen's University of Belfast, School of Geography, Archaeology and 
Palaeoecology 

Keywords: Hopfield networks, Remote sensing 

  

 

 



For Review Only

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

 

Abstract— In this paper, a new model for downscaling of a 

digital elevation model in grid form (gridded DEM) is proposed. 

The downscaling model works by minimizing the local 

semivariance as a goal, and by matching the original coarse spatial 

resolution elevation value as a coherence constraint. The approach 

was coded into the Hopfield neural network (HNN) model in which 

each pixel of the original coarse DEM is divided into m×m sub-

pixels, represented as network neurons. The elevation of each sub-

pixel is derived iteratively (i.e. optimized) based on minimizing the 

local semivariance under the elevation coherence constraint. A 

simple linear activation function was used in this HNN model. The 

proposed model was tested against two commonly applied 

alternative benchmark methods (bilinear resampling and bi-cubic 

resampling) via an experiment using both degraded and sampled 

datasets at 20 m, 60 m and 90 m spatial resolutions. The evaluation 

of the algorithms was accomplished comprehensively with visual 

and quantitative assessments. The visual assessment process was 

based on direct comparison of the same topographic features in 

different downscaled images, scatterplots and profiles. The 

quantitative assessment was based on the most commonly used 

parameters for DEM accuracy assessment such as root mean 

square errors (RMSEs), linear regression parameters m and b, 

and correlation coefficient R. Both visual and quantitative 

assessment revealed a much greater accuracy of downscaled 

DEMs when using the HNN approach for increasing the spatial 

resolution of the gridded DEMs. 

 
Index Terms—Digital Elevation Model, Downscaling, Hopfield 

Neural Networks.  

 

I. INTRODUCTION 

HE he spatial resolution of a gridded DEM affects both the 

information content and the accuracy of the data and, 

potentially, of many other secondary data products [1], [2]. 

Examples include the well-known effects of spatial resolution 

on the spatial properties of DEM and other spatial data [3], [4], 

and more specifically on slope and aspect [5], [6], , watershed 

boundary delineation and the accuracy of SWAT schemes [7], 

[8], water run-off models [9], [10], three dimensional modelling 

of landscapes [11], local slope, plan curvature, drainage area 
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[12], [13], soil survey results and soil moisture [14], [15]. All 

of the above-mentioned studies showed that DEMs with a finer 

spatial resolution can produce more informative and potentially 

more accurate results. 

Gridded DEMs with fine spatial resolution and high accuracy 

can be acquired using remote sensing and airborne LiDAR 

technology, ground surveying or photogrammetry [16], [17]. 

Airborne LiDAR enables the acquisition of data with a very 

high density of 3-dimensional coordinate points and, therefore, 

production of a DEM with sub-meter spatial resolution. 

Airborne LiDAR-derived DEMs have been used in many 

different applications, some of which require very fine spatial 

resolution and very high accuracy [18]. Although being capable 

of generating a fine spatial resolution DEM, airborne LiDAR 

technology has some challenges such as the very large amount 

of data storage required and high computing capacity for data 

processing. Compared with airborne LiDAR, other methods for 

fine spatial resolution DEM acquisition such as ground 

surveying and photogrammetry are more time consuming and 

labour intensive [19]. Hence, if the resolution of the DEM can 

be increased using algorithms, it is possible to save the time and 

labour cost by fine resolution DEM generating. Additionally, 

the improvement in accuracy and resolution of DEM though a 

simple algorithm is an added product for any available source 

of DEM data. 

Potentially, raster DEM data can be downscaled using 

several resampling approaches [20]. The most commonly used 

approaches for downscaling DEMs are nearest neighbor, 

bilinear and bi-cubic interpolation [21], [22]. A research by 

Dixon and Earls [23] used the simple nearest neighbour 

resampling to increase the resolution of DEMs and compare the 

effects of results to the DEM’s products such as stream flow, 

watershed, delineations, number of sub-basins and slopes. It 

was showed that the simple resampling of DEM does not 

increase the accuracy of DEMs greatly, or in the other hand, the 

resampling methods in this case did not create new significant 

information that is not available at the original resolution of 

DEM [24]. However, an experiment by Shi et. al. [22] showed 
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that downscaling using bilinear resampling can increased the 

accuracy of DEMs in term of root mean square error (RMSE) 

with a suitable value of re-sampling ratio r. Jana et. al. [25] and 

Jordan [26] increased the accuracy of DEM from the raster 

contour data and ridgeline elevation. However, these methods 

used additional information from raster channels to correct the 

elevation of DEM’s cells. Similarly, the accuracy and 

resolution of gridded DEM can be increased using geostatistical 

methods and sets of additional high accurate elevation data 

points [27], [28]. Other methods include B-spline resampling 

and the filtering method used in a patent by Atkins et al. [29]. 

All of these researches suggested that the downscaling of raster 

data can potentially increase the spatial resolution of these data 

for use as a gridded DEM. 

Sub-pixel mapping is a technique used to predict land cover 

class at the sub-pixel scale (i.e., at a spatial resolution that is 

finer than the original input data) using a soft-classified land 

cover proportions image as input [30]. In terms of geographical 

scaling, sub-pixel mapping approaches are downscaling 

techniques which use the soft-classified land cover proportions 

as a pixel-level constraint and maximize some goal functions 

(e.g., the spatial dependence between sub-pixels) to increase the 

spatial resolution [31]. Several sub-pixel mapping techniques 

have been developed such as the sub-pixel swapping [32], [33], 

Markov random field [34], geospatial based method (Atkinson 

et al., 2008) and Hopfield neural network (HNN) approaches 

[35], [36], [37], [38], [39]. The HNN technique has previously 

been modified for smoothing and increasing the spatial 

resolution of raw multispectral remotely sensed imagery [40]. 

Because remote sensing images and gridded DEMs are both 

provided in the raster data model, it is expected that a new 

approach developed based on the idea of HNN approach for 

remote sensing images may be applied for gridded DEM due to 

the similar feature of these two types of data. This paper 

explores the potential for development and application of the 

new HNN model to the task of downscaling DEM imagery. 

Specifically, a new model of HNN was developed to increase 

the resolution and accuracy of gridded DEM and tested with 

different sources of elevation data. 

II. METHOD 

A.  HNN approach for sub-pixel mapping 

The model proposed here for increasing the spatial resolution 

of a gridded DEM is based on the idea of the HNN designed for 

sub-pixel mapping [35], [41]. In the HNN for sub-pixel 

mapping, an original pixel is divided into m×m sub-pixels and 

each sub-pixel is represented by a neuron in the HNN. This 

particular model is based on an area proportion constraint and 

two goal functions. The proportion constraint ensures that the 

total number of sub-pixels of each land cover class is equal to 

the number of sub-pixels assigned by the soft-classified land 

cover proportion. The goal functions play the role of a spatial 

dependence engine, which increases the tendency of adjacent 

sub-pixels to belong to the same land cover class. 

In the HNN used for sub-pixel mapping, the output vij of a 

neuron (sub-pixel) (i, j) is: 

𝑣𝑖𝑗 = 𝑔(𝑢𝑖𝑗) =
1

2(1+𝑡𝑎𝑛ℎ𝜆𝑢𝑖𝑗)
               (1) 

here 𝑔(𝑢𝑖𝑗) is an activation function of each neuron, 𝑢𝑖𝑗 is the 

input value of each neuron and λ is steepness value, which is 

defined empirically as 100. 

The input value 𝑢𝑖𝑗 is determined at the time t as 

𝑢𝑖𝑗(𝑡) = 𝑢𝑖𝑗(𝑡 − 𝑑𝑡) +
𝑑𝑢𝑖𝑗

𝑑𝑡
𝑑𝑡                    (2), 

where, dt is time step, 𝑢𝑖𝑗(𝑡 − 𝑑𝑡) is the output value at the time 

(𝑡 − 𝑑𝑡)  and 𝑑𝑢𝑖𝑗 𝑑𝑡⁄  is defined as follows: 
𝑑𝑢𝑖𝑗

𝑑𝑡
=

𝑑𝐸𝑖𝑗

𝑑𝑣
                      (3), 

where, E is the energy, defined as E = Goals + Constraint and  

 
𝑑𝐸𝑖𝑗

𝑑𝑣
= (∑

𝑑𝐺𝑜𝑎𝑙𝑒

𝑑𝑣

𝐾
𝑒 +

𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

𝑑𝑣
)                                     (4) 

where, K is the number of Goal functions. Depending on the 

specific application, the goal and constraint functions can be 

modified for optimization. In Tatem et al. [35], the Goal 

functions are the two Goal functions for spatial dependence 

maximization, and the Constraint Functions comprise an Area 

Constraint function used for retaining the area proportions 

predicted by the soft-classification and a Multi-class Function 

which ensures that a sub-pixel belongs to only one class. In 

Nguyen et. al. [41] Panchromatic Constraint Function was 

added to the HNN model of Tatem et. al. [35] to increase the 

accuracy of the sub-pixel mapping results. 

The running of the HNN in the above cases is terminated 

when the total energy E of the HNN reaches a minimum value 

determined as 

     𝐸 = ∑ ∑ (∑ (𝑘𝑓𝑣
𝑖𝑗

𝐺𝑜𝑎𝑙𝑓)𝑓 + ∑ (𝑘𝑔𝑣
𝑖𝑗

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑔
)𝑔 )𝑗𝑖 = min      

 Or:      𝐸(𝑡) − 𝐸(𝑡 − 𝑑𝑡) = 0               (5). 

B. 2.2. Proposed HNN approach for gridded DEM 

downscaling 

The new proposed approach is based on the assumption that 

the elevation of each sub-pixel must be close to its adjacent sub-

pixels (spatial dependence assumption). The realization of 

spatial dependence in this case is calculated using the 

semivariance, which can be defined as 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑣𝑖𝑗 − 𝑣𝑖𝑗+ℎ]

2𝑁(ℎ)
1             (6) 

where 𝛾(ℎ) is the semivariance value at lag distance h (i.e., 

ignoring direction), h is the distance between a pair of data 

points 𝑣𝑖𝑗  and 𝑣𝑖𝑗+ℎ, and 𝑁(ℎ) is the number of pairs of data 

points. If the points are spatially dependent, the semivariance 

will be small at small value of h. In other words, there is greater 

spatial dependence when there is a large difference between the 

a priori variance (maximum fitted semivariance at large h) and 

the smallest semivariance at small h. Thus, minimizing the 

semivariance at small h (at the sub-pixel scale) effectively 

maximizes the spatial dependence, that is, creates the greatest 

amount of spatial structure in the DEM at fine spatial resolution. 

The minimum value of semivariance can be defined based on 

the derivative as 
𝜕𝛾(ℎ)

𝜕𝑣
= 0                                                                   (7) 

and, 

𝜕𝛾(ℎ)

𝜕𝑣
=

1

2𝑁(ℎ)
∑ (2𝑣𝑖𝑗 − 2𝑣𝑖𝑗+ℎ)𝑁(ℎ)

1 = 𝑣𝑖𝑗 −
∑ 𝑣𝑖𝑗+ℎ

𝑁(ℎ)
1

𝑁(ℎ)
     (8). 
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So, from equation (7), it is possible to achieve an expected 

output value of 

 𝑣𝑖𝑗
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

=
∑ 𝑣𝑖𝑗+ℎ

𝑁(ℎ)
1

𝑁(ℎ)
                                    (9). 

The change in elevation of each sub-pixel from the spatial 

dependence maximization operation is 

𝑑𝑢𝑖𝑗
𝑠𝑑 = 𝑣𝑖𝑗

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
− 𝑣𝑖𝑗                                            (10). 

This means that the expected value of data points 𝑣𝑖𝑗  is the 

average of the values of all data points with lag distance h 

(𝑣𝑖𝑗+ℎ). In this model, for a gridded DEM, the data points with 

smallest h are the eight pixels surounding the pixel 𝑣𝑖𝑗 . This 

function can be called as the spatial dependence maximization 

function. Similar to two Goal functions in the HNN model 

proposed by Tatem et al. [35], the spatial dependence 

maximization function also maximizes the spatial dependence 

between the adjacent sub-pixels. However, the difference 

between these function is that while the Goal functions of 

Tatem et al. increase the value of central sub-pixel to 1 or 

reduce the value of central sub-pixel to 0, the spatial 

dependence maximization function in the new HNN model 

increases or reduces the output value of central sub-pixel to the 

averaged elevation of eight surrounding sub-pixels. 

 
Fig. 1.  Downscaling of grid DEM by a factor of 4 

The proposed model developed for downscaling a grid DEM 

is presented in Fig. 1 for the example case of a DEM with 2×2 

pixels sizes. A pixel in the original DEM is divided into 4×4 

sub-pixels in the new DEM (zoom factor f = 4). So the original 

image of 2×2 pixels is resampled to an image of 8×8 sub-pixels. 

Each sub-pixel is represented by a neuron in the HNN model 

where the initial value is the elevation value of the pixel in the 

original DEM (or may be assigned randomly). According to 

Formula (10), the expected elevation for each sub-pixel is equal 

to the average of the 8 surounding sub-pixels (based on the 

spatial dependence maximization function using a 3×3 

window). 

If the spatial dependence maximizing function is the only 

function used in the model, the elevation of all sub-pixels in the 

new DEM will be finally the same and the elevation values of 

the coarse original DEM will not be preserved. To resolve this 

problem, a simple constraint function is used. The principle of 

this constraint is perfect coherence between scales; the 

elevation of a pixel of the DEM represents the averaged 

elevation of all points within that pixel. That means the average 

elevation of all sub-pixels located within a pixel of the original 

DEM must be equal to the elevation of that original pixel. For 

example, the average of the elevation of all sub-pixels within 

the area of the pixel (1,1) of the original image in Fig. 1 must 

be equal to the elevation of the pixel (1,1).  

 

𝑑𝑢𝑖𝑗
𝑒𝑝

= 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑥,𝑦 −
∑ ∑ 𝑣𝑝𝑞

𝑦×𝑚
(𝑦−1)×𝑚

𝑥×𝑚
(𝑥−1)×𝑚

𝑚×𝑚
        (11), 

 

where 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑥,𝑦 is the elevation value of the pixel (x, y) in 

the original image, 𝑣𝑝𝑞 is output (elevation) value of the sub-

pixel (p, q) in the newly generated image covered by pixel (x, 

y), and m is the zoom factor. If the average of the elevation 

values of all sub-pixels within a pixel is smaller than the 

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑥,𝑦, then a value is added to the elevation value 𝑣𝑝𝑞 

of all sub-pixels covered by pixel (x, y). In contrast, when the 

average of the elevation values of all sub-pixels within pixel (x, 

y) is larger than the 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑥,𝑦, a value is subtracted from the 

output value 𝑣𝑝𝑞 of the neuron (p, q). 

Then an input value of each neuron (sub-pixel) can be 

calculated based on Formula (2) with the value 𝑑𝑢𝑖𝑗 𝑑𝑡⁄  as 
𝑑𝑢𝑖𝑗

𝑑𝑡
=

𝑑𝐸𝑖𝑗

𝑑𝑣
= 𝑑𝑢𝑖𝑗

𝑠𝑑 + 𝑑𝑢𝑖𝑗
𝑒𝑝

                      (12). 

 

The output value 𝑣𝑖𝑗  of each neuron is then calculated using 

an activation function 𝑔(𝑢𝑖𝑗). However, in this new model, the 

activation function 𝑔(𝑢𝑖𝑗) is not the same as in Equation 1 

because it is not used for pushing the output value of the 

neurons to 0 or 1 as in the case of HNN for sub-pixel mapping. 

Instead, a linear activation function as presented in a Tank and 

Hopfield research [42] was used in this new approach as  

𝑣𝑖𝑗 = 𝑔(𝑢𝑖𝑗) = 𝑎 × 𝑢𝑖𝑗 + 𝑏                          (13) 

where, a = 1 and b = 0 in this model. 

The HNN network runs until the energy is minimized as  

𝐸 = ∑ ∑ (𝑑𝑢𝑖𝑗
𝑠𝑑 + 𝑑𝑢𝑖𝑗

𝑒𝑝
)𝑗𝑖 = 𝑚𝑖𝑛                         (14) 

or, the 𝐸(𝑡) − 𝐸(𝑡 − 𝑑𝑡) = 0 , where (t - dt) and t  are two 

consecutive iterations of the Hopfield Neural Network. 

III. ASSESSMENT OF THE ALGORITHM 

A. Reference and testing data  

Two types of data were used to evaluate the proposed 

algorithm. The first type of data was degraded coarse DEMs 

which were calculated from the reference DEMs at fine 

resolution using nearest neighbour (or averaging method) to 

make an error-free data for algorithm testing. These data alone 

may be enough to assess the algorithm but it may lead to a 

skepticism because they were not real DEMs. The real DEMs, 

as someone may argue, are mostly sampled from point 

elevation or contour data rather than being averaged from the 

elevation of sub-pixels within a footprint of the original pixel. 

Actually, the elevation of a pixel of the DEM represents the 

elevation of the surface covered by this pixel so it must be the 

averaged elevation of this surface. The interpolation algorithms 

are used to estimate this representing elevation from point or 

contour data so the elevation of a pixel in the real grid DEMs is 

actually the averaged elevation of all points within the footprint 

of this pixel with some estimation errors. To implement more 

comprehensive evaluation of the new HNN algorithm, the 
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sampled (real) DEMs generated by interpolating point 

elevation and contour data were used.  

The spatial resolution for all four testing DEM datasets in this 

paper was selected between 5 m and 90 m and, accordingly, the 

zoom factor values are 3 or 4. There are two reasons for this 

selection of the spatial resolution. The first reason is because 

most of currently available sources of grid DEM data are at this 

range of resolution. The second and more important reason is 

that the increasing in accuracy of the data at these spatial 

resolutions is useful for many applications. Finer resolution grid 

DEM data may be obtained from airborne LiDAR or 3D Laser 

scanners but they are accurate enough for most of the 

applications therefore the increasing in accuracy or resolution 

of these types of data are actually not necessary and meaningful. 

 

(a) (b) 

(c) (d) 

(e)  
 

(f) 

Fig. 2. Downscaling of DEM from 60 m to 20 m spatial resolution. (a) 

Reference DEM at 20 m resolution; (b) Degraded DEM at 60 m resolution 
(note: this forms the only input to the algorithms); (c) HNN downscaled DEM 

at 20 m resolution; (d) DEM at 20 m using bilinear resampling; (e) DEM at 20 

m resolution using bi-cubic resampling; and (f) the positions of profiles for 

DEM accuracy evaluation. 

Degraded DEMs 

The first set of degraded DEM data covered an area of about 

3.5 km by 3.5 km and were acquired at Yen Thanh District, 

Nghe An Province, in North Central Vietnam. The area is 

located at 18o 58’ 57.03” N, 105o 22’ 44.87” E, about 45 km 

from Vinh City. This DEM was produced from topographic 

maps at the scale of 1:10000. The spatial resolution of the 

original DEM is 20 m (Fig. 2(a)) and this was degraded to 60 m 

by averaging the elevation value of 20 m pixels within the 

footprint of the degraded 60 m (Fig. 2(b)).  

The second downscaled DEM dataset was provided by the 

Shuttle Radar Topography Mission (SRTM) of the USGS Earth 

Explorer (http://earthexplorer.usgs.gov/) (Fig. 3(a)). This 

dataset covered the same area as the first DEM but with a spatial 

resolution of 30 m. This was also degraded to 90 m to create a 

second set of test data for the HNN algorithm (Fig. 3(b)).  

 

(a) (b) 

(c)  (d) 

(e) (f) 
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Fig. 3. Downscaling of DEM from 90 m to 30 m spatial resolution. (a) 
Reference DEM at 30 m resolution; (b) Degraded DEM at 90 m resolution 

(note: this forms the only input to the algorithms); (c) HNN downscaled DEM 

at 30 m resolution; (d) DEM at 30 m resolution resulted from bilinear 
resampling; (e) DEM 30 m resolution resulted from bi-cubic resampling; and 

(f) the positions of profiles for DEM accuracy evaluation. 

(a) (b) 

(c) (d) 

(e) 

 

(f) 

Fig. 4. Downscaling of DEM data from 20 m to 5 m spatial resolution. (a) 
Reference DEM data at 5 m resolution; (b) Degraded DEM data at 20 m 

resolution (note: this forms the only input to the algorithms); (c) HNN 

downscaled DEM at 5 m resolution; (d) DEM at 5 m resolution resulted from 
bilinear resampling; (e) DEM at 5 m resolution resulted from bi-cubic 

resampling; and (f) the positions of profiles for DEM accuracy evaluation. 

Sampled DEMs 

The first sampled dataset was acquired using ground 

surveying in Lang Son Province of Vietnam. The area of the 

test field is about 200 m by 200 m in Mai Pha Ward, Lang Son 

City which is about 150 km from Hanoi. A set of 533 measured 

elevation points were used with Kriging interpolation to 

generate a gridded DEM dataset at 5 m spatial resolution for use 

as a reference, as can be seen in Fig. 4(a). The accuracy of 

reference DEM was assessed based on the ASPRS Accuracy 

Standard for Digital Geospatial Data [43], [44] with a set of 234 

validation points. The results of assessment (Table 1) showed 

that the quality of the reference DEM is slightly better than that 

of 66.7-cm ASPRS DEM Class and Class VIII of ASPRS 1990 

Standards [44] with RMSEz of 48.3 cm and the Appropriate 

Contour interval of 1.449-meter. The coarse DEM at 20 m 

spatial resolution was created using the same interpolation 

algorithm from the point data (Fig. 4(b)). This coarse 20 m 

DEM was used as input for the HNN algorithm to make 5 m 

DEM and this result was compared with 5 m DEM reference 

data. 

 

 

(a) (b) 

(c) (d) 

TABLE I 
ACCURACY ASSESSMENT BASED ON ASPRS ACCURACY STANDARD FOR 

DIGITAL GEOSPATIAL DATA 

Dataset and 

standards 

Absolute Accuracy Appropriate 

Contour 

Interval 
Supported by 

the RMSEz 

value 

RMSEz 

Non-

Vegetate
d (cm) 

NVA at 

95% 
Confidenc

e Level 

(cm 

VVA at 

95th 

Percentile 
(cm) 

Mai Pha, 

Langson 

DEM 

48.3 
1.449-
meter 

1.449 1.449-meter 

Standard 

ASPRS class 

VIII (66.7-
cm) 

66.7 2-meter 200 2-meter 
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(e) (f) 

(g) 

 

 

(h) 

Fig. 5. Downscaling of DEM data from 90 m to 30 m spatial resolution. (a) 

Contour data at 5 m interval; (b) Contour data at 10 m interval; (c) Reference 
DEM data at 20 m resolution (created from 5 m internal contour data); (d) Input 

DEM data at 90 m resolution (created from 10 m internal contour data) (note: 

this forms the only input to the algorithms); (e) HNN downscaled DEM at 30 
m resolution; (f) DEM at 30 m resolution resulted from bilinear resampling; (g) 

DEM at 30 m resolution resulted from bi-cubic resampling; and (h) the 

positions of profiles for DEM accuracy evaluation. 

B. Reference and testing data  

1) Results and assessment methods 

To test the proposed algorithm, the DEMs with coarser 

spatial resolution were used as an input to the proposed 

algorithm to produce DEMs at the same resolution of reference 

data using the bilinear, bi-cubic resampling and the HNN 

downscaling algorithms. A computer program for the HNN 

downscaling was created using Visual Basic 6 platform. The 

running of the HNN downscaling program was performed by a 

computer with Intel Pentium 5 Processor and 8 GB Ram. For 

Lang Son dataset, the running time was 2 seconds after 53 

iterations. For the other three testing data, the running time were 

from 5 minutes to 7 minutes, depending on the sizes of the 

DEMs.  Results of these downscaling for four datasets are 

presented in Fig. 2, Fig. 3, Fig. 4 and Fig. 5. 

The assessment was implemented based on both visual 

comparison of the resulting DEMs from the three different 

methods and quantitative evaluation using the parameters 

which were usually used for DEMs’ accuracy assessment such 

as RMSE [45], coefficient of determination [46], the linear 

regression parameters, and the elevation profiles [47], [45]. 

Visual assessment of the results was carried out in several 

approaches. The first approach is direct visual comparison of 

the DEM images, especially comparison of the same 

topographical features in different images. The second 

approach is to analyse the scatterplots between the elevation 

values the pixels of reference DEMs and the elevation values of 

the coresponding pixels of the HNN downscaled DEM, bilinear 

and bi-cubic resampled DEMs as in Fig. 7, Fig. 8, Fig. 9, and 

Fig. 10. Another approach which was used in many previous 

research on DEMs evaluation is comparing the cross-sections 

(profiles) of the resulted downscaled DEMs [47], [45]. These 

profiles present the matching between the surfaces formed by 

the reference fine spatial resolution DEM and the surfaces 

formed by DEM at coarse spatial resolution, DEMs generated 

by bilinear, bi-cubic resampled and the HNN downscaling 

algorithms and therefore enable the evaluation of the effects of 

the algorithms on different forms of terrain and topographical 

features. The locations of the profiles for the four datasets are 

presented in Fig. 2(f), Fig. 3(f), Fig. 4(f) and Fig. 5(h).  

The quantitative assessment was implemented mainly based 

on the RMSEs for whole images and each profiles of the Nghe 

An (20 m spatial resolution and 30 m spatial resolution), Lang 

Son and Dac Ha datasets as presented in Table 4, Table 2, Table 

3, and Table 5, respectively. Together with the RMSEs, the 

linear regression coefficents such as slope coefficient m, the 

intercept coefficient b, and the correlation coefficent R were 

used to assess the matching between the downscaled DEMs 

from the HNN downscaling, biliner and bi-cubic resamplings 

and the reference DEMs for 4 datasets as in Table 2, Table 3, 

Table 4, Table 5 and Table 6. 

2) Visual assessment 

Visual comparison showed that the resulting DEMs from the 

newly proposed HNN method are visually more similar to the 

reference DEM than the coarse spatial resolution DEMs and the 

DEMs generated by the bilinear and bi-cubic resampling 

methods for both degraded and sampled datasets. The 

improvement in visual similarity between the  resulted 

downscaled DEMs and reference DEM is seen clearly when 

comparing between the 20 m and 30 m DEMs in degraded 

datasets in Nghe An (Fig. 2 and Fig. 3) and 5 m and 30 m 

resampled DEMs with reference DEMs (Fig. 4 and Fig. 5). 

While the images of original coarse resolution DEMs and the 

DEMs by resampling methods, especially the images created by 

bi-cubic resampling, were blurred with noises and the shapes of 

terrain features in these images look distorted, the images of 

HNN downscaled DEMs in Fig. 2(c), Fig. 3, Fig. 4(c) and Fig. 

5(e) look noise-free and very similar to the reference DEMs in 

Fig. 2(a), Fig. 3(a), Fig. 4(a), and Fig. 5(c). The most clearly 

improvement of reconstruction of the shapes of terrains from 

coarse resolution data can be seen in the marked areas in Fig. 2, 

Fig. 3, Fig. 4, and Fig. 5. 

The comparison of the surfaces of the resulting DEMs using 

profiles in Fig. 6 reveals a clearer advantage of the HNN 

downscaling method over the original coarse resolution DEM 

and the DEMs created by resampling methods. In this figure, 

the elevation profiles of the HNN downscaled DEMs are closer 

to the profiles of reference DEMs than those of the bilinear and 

bi-cubic resampled DEMs for both degraded and sampled 

datasets.  This is most clearly seen in the 5 m Lang Son dataset 

as in Fig. 6(c) (a row profile) and Fig. 6(g) (a column profile) 

in the places such as tops of the hills or bottoms of valleys. In 

these images, it is possible to observe that the surfaces from the 
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bilinear and bi-cubic resampling methods are closer to the 

original coarse spatial resolution surface while the surface 

formed by the HNN downscaled DEM are closer to the 5 m 

reference surface. The HNN downscaling method performed 

much more accurately than the bilinear and bi-cubic resampling 

methods for more extreme elevation features such as the tops of 

ridges and hills or bottoms of the valleys, especially for V-

shaped valleys and sharp ridges and hills. This can be explained 

by the effects of the elevation constraint that helps to reduce or 

increase the elevation at such points while the spatial 

dependence maximization function makes the elevations of the 

adjacent sub-pixels change gradually as in the real terrain. 

 

 (a)  (b) 

 (c) (d) 

 (e) (f) 

(g) (h) 
Fig. 6. Comparison of reference surface (reference DEM), HNN downscaled 

surface (downscaled DEM), original coarse resolution surface (original N-

DEM), bilinear (original B-DEM) and bi-cubic (original C-DEM) resampled 

surfaces based on profiles: (a) a column profile for 20 m degraded dataset in 
Nghe An; (b) a column profile for 30 m degraded dataset in Nghe An, (c) a 

column profile for 5 m sampled dataset in Lang Son;  (d) a column profile for 

30 m sampled dataset in Dac Ha; (e) a row profile for 20 m degraded dataset in 
Nghe An; (f) a row profile for 30 m degraded dataset in Nghe An; (g) a row 

profile for 5 m sampled Lang Son dataset; a row profiles for 30 m sampled 

dataset in Dac Ha, Vietnam 

(a) (b) 

(c) (d) 

Fig. 7. Scatterplots of the reference fine spatial resolution DEM against the 

downscaled DEM for the degraded 20 m Nghe An dataset test: (a) reference 
DEM and coarse degraded DEM (N-DEM), (b) the reference DEM and the 

HNN downscaled DEM (D-DEM), (c) the reference DEM and the bilinear 

resampled DEM (B-DEM), (d) the reference DEM and the bi-cubic resampled 

DEM (C-DEM). 

(a) (b) 

(c) (d) 

Fig. 8. Scatterplots of the reference fine spatial resolution DEM against the 

downscaled DEMs for the degraded 30 m Nghe An dataset test: (a) the reference 

DEM and the coarse degraded DEM (N-DEM), (b) the reference DEM and the 
HNN downscaled DEM (D-DEM), (c) the reference DEM and the bilinear 

resampled DEM (B-DEM), (d) the reference DEM and the bi-cubic resampled 

DEM (C-DEM). 
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(a) (b) 

(c) (d) 

Fig. 9. Scatterplots of the reference fine spatial resolution DEM against the 
downscaled DEM for the sampled 5 m Lang Son dataset test: (a) the reference 

DEM and coarse degraded DEM (N-DEM), (b) the reference DEM and the 

HNN downscaled DEM (D-DEM), (c) the reference DEM and the bilinear 
resampled DEM (B-DEM), (d) the reference DEM and the bi-cubic resampled 

DEM (C-DEM). 

(a)  (b) 

(c) (d) 

Fig. 10. Scatterplots of the reference fine spatial resolution DEM against the 

downscaled DEM for the sampled 30 m Dac Ha dataset test: (a) the reference 
DEM and the coarse degraded DEM (N-DEM), (b) the reference DEM and the 

HNN downscaled DEM (D-DEM), (c) the reference DEM and the bilinear 

resampled DEM (B-DEM), (d) the reference DEM and the bi-cubic resampled 

DEM (C-DEM). 

The visual comparison of scatterplots in Fig. 7, Fig. 8, Fig. 

9, and Fig. 10 also showed the better match between the results 

of the HNN downscaling and the reference DEM data in 

comparison with the original coarse DEM and resampling 

results. In these scatterplots, the two DEM data are considered 

to be closer if the data points are located closer to the regression 

line. That means the slope coefficient m is closer to the value of 

TABLE 2 
ROOT MEAN SQUARED ERROR FOR THE PREDICTIONS USING THE BILINEAR 

RESAMPLING, BI-CUBIC RESAMPLING AND THE HNN DOWNSCALING 

ALGORITHMS FOR THE NGHE AN 20 M DEM 

Datasets 

Original 
coarse 

DEM 

(m) 

Bilinear 

Resamp
ling (m) 

Bi-cubic 

Resampl
ing (m) 

HNN 
downsc

aling 

(m) 

Accuracy 

improve-

ment over 
coarse 

DEM (%) 

Overall 

RMSE 
6.9326 3.3026 3.3716 1.9853 71.4  

CP 1* 4.5389 3.0986 3.1431 2.1229 53.2  

CP 2 4.4169 2.8131 2.8973 1.7895 59.5  

CP 3 4.3370 2.7674 2.8041 1.8675 56.9  
CP 4 4.4689 2.9057 2.9731 2.0949 53.1  

CP 5 4.0911 2.9148 2.9445 2.0043 51.0  

CP 6 3.8029 2.5245 2.5619 1.9124 49.7  
CP 7 4.6677 3.1959 3.2344 2.2049 52.8  

CP 8 4.8884 2.9958 3.0833 2.0910 57.2  

CP 9 5.1846 2.9851 3.0731 2.0171 61.1  
CP 10 5.2172 3.3379 3.4256 2.1865 58.1  

CP 11 4.3794 2.5489 2.6209 1.7203 60.7  

RP 1 6.9375 3.7005 3.6816 2.3578 66.0  
RP 2 6.4972 2.9903 3.0293 1.7544 73.0  

RP 3 4.5824 2.8843 2.9332 1.9631 57.2  
RP 4 7.0182 3.4087 3.4013 2.0925 70.2  

RP 5 6.5620 3.5779 3.5906 2.1577 67.1  

RP 6 6.9686 3.3586 3.4280 2.2070 68.3  
RP 7 6.8329 3.1977 3.2778 2.0975 69.3  

RP 8 7.7733 3.7850 3.7997 2.1990 71.7  

RP 9 5.7281 2.7969 2.9109 1.9301 66.3  
RP 10 5.0358 2.3813 2.4803 1.5229 69.8  

RP 11 2.3477 1.3837 1.4051 0.9383 60.0  

*CP stands for Column Profile  
*RP stands for Row Profile. 

 

 TABLE 3 

ROOT MEAN SQUARED ERROR FOR THE PREDICTIONS USING THE BILINEAR 

RESAMPLING, BI-CUBIC RESAMPLING AND THE HNN DOWNSCALING 

ALGORITHMS FOR THE NGHE AN SRTM 30 M DEM 

Datasets 

Original 

coarse 

DEM 
(m) 

Bilinear 
Resamp

ling (m) 

Bi-cubic 
Resampl

ing (m) 

HNN 
downsca

ling (m) 

Accuracy 

improve-
ment over 

coarse 

DEM (%) 

Overall 

RMSE 
11.1379 8.8105 8.8736 8.3510 25.0  

CP 1 8.5013 6.8408 6.9101 6.4673 23.9  
CP 2 9.7106 8.4326 8.4863 8.5069 12.4  

CP 3 11.6961 10.7635 10.8141 10.4270 10.9  

CP4 10.0198 8.9907 9.0225 8.3592 16.6  
CP 5 9.2745 7.0420 7.2130 7.0696 23.8  

CP 6 11.5945 9.8018 9.8618 9.7523 15.9  
CP 7 9.7925 8.3543 8.4407 8.5220 13.0  

RP 1 10.4429 9.8024 9.8357 9.3701 10.3  

RP 2 9.9168 8.0953 8.0897 7.6225 23.1  

RP 3 10.5144 9.6251 9.6645 9.3598 11.0  

RP 4 9.9849 7.7341 7.8310 8.3409 16.5  

RP 5 9.8911 8.4770 8.5192 7.6701 22.5  
RP 6 8.8079 7.7367 7.7801 7.6159 13.5  

RP 7 6.6352 6.4032 6.4005 6.3202 4.7  

*CP stands for Column Profile  
*RP stands for Row Profile. 

 

 

TABLE 4 

ROOT MEAN SQUARED ERROR FOR THE PREDICTIONS USING THE BILINEAR 

RESAMPLING, BI-CUBIC RESAMPLING AND THE HNN DOWNSCALING 

ALGORITHMS FOR THE LANG SON 5 M DEM 

Datasets 

Original 

coarse 
DEM 

(m) 

Bilinear 

Resamp

ling (m) 

Bi-cubic 

Resampl

ing (m) 

HNN 

downsc
aling 

(m) 

Accuracy 
improve-

ment over 

coarse 
DEM (%) 

Overall 

RMSE 

2.4571 1.5139 1.6000 0.8493 65.4 

CP 1 1.4960 1.2419 1.2912 0.9734 34.9 

CP2 1.6962 1.1635 1.1821 0.5120 69.8 

CP 3 2.0641 1.4043 1.4791 0.7383 64.2 

CP 4 2.2345 1.3591 1.4586 0.7156 68.0 

CP 5 2.2705 1.3006 1.3728 0.9587 57.8 

CP 6 2.3084 1.7034 1.7805 0.8381 63.7 

CP 7 2.0349 1.6198 1.6569 0.8068 60.4 

CP 8 2.0325 1.4749 1.5564 0.8032 60.5 

CP 9 2.0937 1.2861 1.3578 0.9988 52.3 

CP 10 1.9876 1.2374 1.2959 0.9294 53.2 

RP 1 1.9569 1.4024 1.4348 0.8798 55.0 

RP 2 2.2873 1.6555 1.7196 0.7838 65.7 

RP 3 2.3612 1.6712 1.7451 1.1155 52.8 

RP 4 1.9510 1.4361 1.5174 0.5897 69.8 

RP 5 1.7489 1.4228 1.4657 0.6816 61.0 

RP 6 1.7289 1.4081 1.4297 1.1131 35.6 

RP 7 1.6217 1.1567 1.2101 0.7876 51.4 

RP 8 1.3897 0.8887 0.9730 0.6621 52.4 

RP 9 1.4791 0.9317 0.9592 0.5098 65.5 

RP 10 1.8042 1.4126 1.4593 0.6564 63.6 

*CP stands for Column Profile  
*RP stands for Row Profile. 
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1 and the intercept coefficient b is closer to the value of 0. The 

scatterplots of the HNN downscaling results in Fig. 7(b), Fig. 

8(b), Fig. 9(b), and Fig. 10(b) showed a closer match between 

the reference DEM and the HNN downscaled DEM data in 

comparison with the original coarse DEM data (Fig. 7(a), Fig. 

8(a), Fig. 9(a), and  Fig. 10(a)) and the bilinear (Fig. 7(c), Fig. 

8(c), Fig. 9(c), and Fig. 10(c)) and bi-cubic (Fig. 7(d), Fig. 8(d), 

Fig. 9(d), and Fig. 10(d)) resampling DEM data. This 

improvement can be seen most clearly with the 5 m sampled 

Lang Son and 20 m degraded Nghe An datasets. The data points 

in the scatterplots in Fig. 7(b) (20 m HNN downscaled DEM) 

and  Fig. 9(b) (5 m HNN downscaled DEM) are distributed very 

close to (and sometimes exactly on) the best fit line and the best 

fit line’s coefficients in these scatterplots are closer to the value 

of 1 and 0. Comparing the four datasets, the data points in the 

scatterplots in Fig. 7(c), Fig. 8(c), Fig. 9 and Fig. 10(c) (bilinear 

resampled DEM), and Fig. 7(d), Fig. 8(d), Fig. 9(d), and Fig. 

10(d) (bi-cubic resampled DEM) are more scattered away from 

the best fit line than those of the HNN downscaled DEMs.   

3) Quantitative assessment 

Coinciding with the result of visual observation, quantitative 

assessment based on the RMSE (Table 2, Table 3, Table 4, and 

Table 5) reveals a greater accuracy for the HNN downscaling 

method over the conventional resampling methods for the 

results of all four datasets. Among the two degraded data, the 

increase in accuracy is higher for 20 m data. The RMSE for the 

HNN downscaling DEM is 1.9853 m while the RMSEs for the 

bilinear and bi-cubic resampling methods are 3.3716 m and 

3.3716 m, respectively. Comparing with the RMSE of the 

original 60 m data, the RMSE of the HNN downscaled 20 m 

reduced significantly by 71.3% from 6.9326 m to 1.9853 m. For 

the Nghe An 30 m degraded test data, the increase in accuracy 

for HNN downscaling algorithm is not as large as for the 20 m 

datasets but it is still very convincing with the RMSE decreased 

by 25% comparing with the original 90 m DEM. The 

improvement in accuracy for sampled datasets is similar to that 

of the degraded datasets. The RMSE of 5 m Lang Son data 

decreased sharply for the HNN downscaling DEM to 0.8493 m 

from 2.4571 m for the original DEM (65.4%), 1.5139 m for 

bilinear resampling and 1.6 m for bi-cubic resampling results, 

respectively. The result for 30 m Dac Ha test is not as 

impressive as that of 5 m Lang Son data, however, the 

improvement of DEM accuracy is significant with the RMSE 

decreased by 50.67% in comparison with the original coarse 

images. These statistics demonstrate that the proposed HNN 

method can increase the accuracy of the gridded DEM when it 

is used to downscale DEM to a finer spatial resolutions. 

Furthermore, the algorithm in the presented examples seemed 

to work more effectively with the finer spatial resolution 

DEMs. 

 

The increase in accuracy in term of RMSE, along with the 

profiles, demonstrated the effects of the terrain features on the 

algorithm. For the 20 m and 30 m datasets in Nghe An, the 

increase in accuracy between the original and downscaled 

DEMs was relatively constant. For the 30 m dataset, the 

increase in accuracy for most profiles was between 10% and for 

the 5 m sampled Lang Son dataset is more variable with the 

smallest value of 35% and the largest value of 49%. This is 

because most of the profiles with a large increase in accuracy 

of more than 65% (such as column cross-sections 2, 4 and row 

cross-sections 2, 4, 9) are located in areas of specific terrain 

such as valley bottoms or the tops of hills. In contrast, the 

profiles with a smaller increase in accuracy occur mostly on the 

sides of mountains where the surface of the original (coarse) 

DEM is relatively close to the reference (fine) DEM. The 

smaller amount of variation in the increase in accuracy for the 

20 m and 30 m degraded datasets and 30 m sampled Dac Ha 

dataset occurs because most profiles located along many 

different types of terrain rather than occurring mostly on 

specific terrain forms. 

 

The increase in accuracy in term of RMSE, along with the 

profiles, demonstrated the effects of the terrain features on the 

algorithm. For the 20 m and 30 m datasets in Nghe An, the 

increase in accuracy between the original and downscaled 

DEMs was relatively constant. For the 30 m dataset, the 

increase in accuracy for most profiles was between 10% and 

20%. The range of the increase in accuracy for the 20 m dataset 

is 20% and between 50% and 70%. The increase in accuracy 

for the 5 m sampled Lang Son dataset is more variable with the 

smallest value of 35% and the largest value of 49%. This is 

because most of the profiles with a large increase in accuracy 

of more than 65% (such as column cross-sections 2, 4 and row 

cross-sections 2, 4, 9) are located in areas of specific terrain 

such as valley bottoms or the tops of hills. In contrast, the 

profiles with a smaller increase in accuracy occur mostly on the 

sides of mountains where the surface of the original (coarse) 

TABLE 5 

ROOT MEAN SQUARED ERROR FOR THE PREDICTIONS USING THE BILINEAR 

RESAMPLING, BI-CUBIC RESAMPLING AND THE HNN DOWNSCALING 

ALGORITHMS FOR THE DAC HA 30 M DEM 

Datasets 

Original 

coarse 

DEM 
(m) 

Bilinear 
Resamp

ling (m) 

Bi-cubic 
Resampl

ing (m) 

HNN 

downsc

aling 
(m) 

Accuracy 

improve-
ment over 

coarse 

DEM (%) 

Overall 

RMSE 5.0680 2.3284 2.4218 2.0946 58.67 

CP 1 4.0702 2.3434 2.4436 2.2320 45.16 
CP 2 4.0203 2.0594 2.2048 1.9625 51.19 

CP 3 3.8541 2.0370 2.0956 2.2621 41.31 

CP 4 3.5399 2.2395 2.2698 2.3247 34.33 
CP 5 3.4595 1.8231 1.9178 1.8204 47.38 

CP 6 2.3885 1.3172 1.3603 1.4309 40.09 

CP 7 2.6743 1.1377 1.2514 0.9323 65.14 
CP 8 2.2896 1.0186 1.1031 0.9520 58.42 

CP 9 2.0938 1.0068 1.0624 0.9615 54.08 

RP 1 4.6476 1.8714 1.9762 2.5334 45.49 
RP 2 4.6907 2.2973 2.3739 2.3246 50.44 

RP 3 4.5113 1.7205 1.8051 1.6411 63.62 

RP 4 3.6187 1.4932 1.5675 1.4326 60.41 
RP 5 3.9713 1.2816 1.4015 1.3186 66.80 

RP 6 3.2681 1.0181 1.0540 1.1284 65.47 

RP 7 2.8494 1.5355 1.5676 1.6376 42.53 

RP 8 3.0366 1.0666 1.0934 1.1509 62.10 

RP 9 4.2630 1.9581 2.0194 1.9647 53.91 
RP 10 5.2869 2.3473 2.4070 2.8301 46.47 

*CP stands for Column Profile  
*RP stands for Row Profile. 
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DEM is relatively close to the reference (fine) DEM. The 

smaller amount of variation in the increase in accuracy for the 

20 m and 30 m degraded datasets and 30 m sampled Dac Ha 

dataset occurs because most profiles located along many 

different types of terrain rather than occurring mostly on 

specific terrain forms.20%. The range of the increase in 

accuracy for the 20 m dataset is 20% and between 50% and 

70%. The increase in accuracy  

 

The similarity of the two DEMs can also be evaluated 

quantitatively using the linear regression coefficients (m, b) and 

the correlation coefficient R. Comparing two DEMs, if the 

elevation of a pixel in the reference dataset is x and the elevation 

of the corresponding pixel in the comparing dataset is y, the 

expected perfect fit line should be y = x such that m = 1 and b = 

0. Because the value of m may be greater or smaller than 1 and 

the value of b may be greater or smaller than 0, comparison 

between different values of m and b to define the closeness of 

them to 1 and 0, respectively, sometimes does not make sense. 

To make more sense for this evaluation, the sub-parameters 

such as |1 − 𝑚|  and |𝑏| were calculated (Table 6). 

Accordingly, the smaller values of |1 − 𝑚| and |𝑏| 
simultaneously are, the more similar the two datasets are. The 

third parameter for evaluating the fitting of the two datasets is 

the correlation coefficient R. The correlation coefficient 

measures the association between two datasets and, thus, 

captures the distribution of the data points in the scatterplots 

around the best fit line. The closer value of R2 to 1, the more 

data points are located close to the best fit line. A perfect match 

between two DEM datasets means that all the data points are 

located on the identity line (y = x) and the coefficient of 

determination R2 = 1. However, note that it is possible for R2 = 

1 where the points lie on the best fit line, but the best fit line 

does not lie on the 1:1 line. Such as situation indicates bias, 

which is not measured by R. That means the two datasets are 

exactly the same if the value of m is equal to 1, b is equal to 0 

and R2 is equal to 1, simultaneously.  

 

To evaluate the results of the different methods, linear 

regression models were fitted to the relation between the 

reference data and the downscaled and resampled datasets 

(Table 6). The coefficient values show the better fitting of the 

HNN downscaled DEMs with the reference DEMs than those 

of the original DEMs, bilinear and bi-cubic resampled DEMs. 

For all four datasets, the values of parameters m, b and R2 of the 

HNN downscaled DEMs are much closer to the values of 1, 0, 

and 1, respectively, than those of the original, bilinear and bi-

cubic resampled DEMs. In case of the Lang Son 5 m resampled 

dataset, the values |1 − 𝑚| = 0.0195, |𝑏| = 5.9080 and R2 = 

0.9937 for the HNN downscaled DEM showed greater 

similarity to the reference DEM than those of the original coarse 

DEM (|1 − 𝑚| = 0.0310, |𝑏| = 9.3306 and R2 = 0.9425), 

bilinear resampled DEM (|1 − 𝑚| = 0.0399, |𝑏| = 12.3782 and 

R2 = 0.9793) and bi-cubic resampled DEM (|1 − 𝑚| = 0.0342, 

|𝑏| = 10.6432 and R2 = 0.9763). Linear regression statistics for 

the Dac Ha sampled data also showed the better matching of the 

downscaled DEM to the reference with |1 − 𝑚| = 0.0043, |𝑏| 
= 4.1179 and R2 = 0.9968 comparing with |1 − 𝑚| = 0.0128, 

|𝑏| = 12.1453 and R2 = 0.9960 for bilinear resampling and 

|1 − 𝑚| = 0.0115, |𝑏| = 10.9118 and R2 = 0.9959 for bi-cubic 

resampling.  

 

Linear regression coefficients for the 20 m Nghe An 

degraded dataset showed that the HNN downscaled DEM 

matches very closely to the reference DEM with |1 − 𝑚| = 

0.0019, |𝑏| = 0.2949 and R2 = 0.9973 whereas the other 

downscaled DEMs are very different to the reference DEM. 

Surprisingly, the comparison also showed that the original 

coarse DEM with parameters of |1 − 𝑚| = 0.0178 and |𝑏| = 

2.1147 is generally more matched to the reference DEM than 

TABLE 6 
LINEAR REGRESSION COEFFICIENTS FOR 20 M NGHE AN AND 30 M NGHE AN RESAMPLED DATASETS, AND THE LANG SON 5 M AND DAC HA 30 M SAMPLED 

DATASETS. 

Datasets 

 

Linear Regression Coefficients 

m |1 − 𝑚| b |𝑏| R2 

20 m Nghe An 

dataset 

60 m degraded DEM 0.9822 0.0178 2.1147 2.1147 0.9770 

20 m downscaled DEM 0.9981 0.0019 0.2949 0.2949 0.9973 

20 m bilinear resampled DEM 0.9765 0.0235 2.5368 2.5368 0.9951 

20 m bi-cubic resampled DEM 0.9781 0.0219 2.3680 2.3680 0.9948 

30 m Nghe An 

dataset 

90 m degraded DEM 0.9659 0.0341 1.2658 1.2658 0.9412 

30 m downscaled DEM 0.9904 0.0096 -1.6013 1.6013 0.9686 

30 m bilinear resampled DEM 0.9500 0.0500 3.2057 3.2057 0.9646 

30 m bi-cubic resampled DEM 0.9529 0.0471 2.8723 2.8723 0.9639 

Lang Son dataset 

20 m coarse DEM 0.9690 0.0310 9.3306 9.3306 0.9425 

5 m downscaled DEM 1.0195 0.0195 -5.9080 5.9080 0.9937 

5 m bilinear resampled DEM 0.9601 0.0399 12.3782 12.3782 0.9793 

5 m bi-cubic resampled DEM 0.9658 0.0342 10.6432 10.6432 0.9763 

Lang Son dataset 

90 m coarse DEM 0.9934 0.0066 6.1988 6.1988 0.9810 

30 m downscaled DEM 1.0043 0.0043 -4.1179 4.1179 0.9968 

30 m bilinear resampled DEM 0.9872 0.0128 12.1453 12.1453 0.9960 

30 m bi-cubic resampled DEM 0.9885 0.0115 10.9118 10.9118 0.9959 
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the resampled DEMs with |1 − 𝑚| = 0.0235 and |𝑏| = 2.5368, 

and |1 − 𝑚| = 0.0219 and |𝑏| = 2.3680 for bilinear and bi-cubic 

resampled DEMs, respectively. However, more data points of 

the bilinear (R2 = 0.9951) and bi-cubic (R2 = 0.9948) resampled 

DEMs are distributed close to the best fit line than those of the 

original 20 m DEM (R2 = 0.9770). 

For the 30 m degraded dataset, the increase in prediction 

precision of the HNN downscaling is clearly seen when 

comparing the linear regression parameters of the three 

methods. Although the coefficient of determination of the HNN 

downscaling result (R2 = 0.9686) is just slightly larger than 

those of the bilinear (R2 = 0.9646) and bi-cubic (R2 = 0.9639) 

methods, the best fit lines of the datasets showed less bias of the 

HNN downscaled DEM data with the reference data (|1 − 𝑚| 
= 0.0096 and |𝑏| = 1.6013) than those of the bilinear (|1 − 𝑚| 
= 0.0500 and |𝑏| = 3.2057) and bi-cubic (|1 − 𝑚| = 0.0471 and 

|𝑏| = 2.8723) resampling data. 

Comparing the slope parameter m and intercept parameter b 

of the best fit lines of all four datasets, it is clear that all the 

slope parameters m of the resampled DEMs are smaller than 1 

and the intercept parameters b are larger than 0. This means that 

for locally-low places (usually the bottom of valleys) the pixels 

of the DEM data produced by these methods are likely to be 

higher than the corresponding pixels in the reference DEM. 

Conversely, for locally-high places such as the top of hills or 

mountain ridges, the elevation of the pixels in the resampled 

DEM data is likely lower than that of the corresponding pixels 

in the reference image. This is due to the smoothing effect 

(referred to as conditional bias where highs are under-predicted 

and lows are over-predicted) and can be reduced using the HNN 

downscaling. The evidence for this is the values of the four pairs 

of m and b values for the HNN downscaling method for the 20 

m (m = 0.9981, b = 0.2949) and 30 m (m = 0.9904, b = -1.6013) 

degraded DEMs and 5 m (m = 1.0195, b = -5.9080) and 30 m 

(m = 1.0043, b = -4.1179) sampled DEMs. These best fit lines 

are very close to the 1:1 line with m = 1, and b = 0. Even for the 

5 m dataset, the HNN downscaling method has a tendency to 

produce elevation values in low elevation areas that are slightly 

lower and elevation values in high elevation areas that are 

slightly higher than those of the reference DEM. This can be 

explained by the effect of the elevation constraint of the HNN 

downscaling model. This effect is crucial, as it demonstrates 

that the HNN approach works not because it is an alternative 

spatial smoother that captures more of the salient information 

in the coarse resolution data, but explicitly because it imposes 

a pixel-level constraint on the predictions such that extremes 

tend to be more closely honoured. In other words, the structure 

of the HNN method (formulated as a within- and across-pixel 

smoothing goal and pixel-level constraint) means that it brings 

a specific advantage that other commonly applied resampling 

methods do not. 

IV. CONCLUSION 

A new method for increasing the spatial resolution and 

accuracy of gridded DEMs was proposed and demonstrated 

comprehensively using data with different DEM spatial 

resolutions and characteristics. The newly proposed 

downscaling algorithm was formulated based on the Hopfield 

neural network (HNN) with a spatial dependence maximization 

goal function and an elevation constraint. Tests of the proposed 

algorithm were implemented on two types of elevation datasets; 

20 m and 30 m degraded DEMs in Nghe An province, Vietnam,  

a 5 m sampled DEM in Lang Son province (from ground 

surveying elevation data), and 30 m sampled DEM in Dac Ha, 

Kontum Province, Vietnam (generated from the contour lines). 

The new method was evaluated against two existing and 

commonly applied methods;:bilinear and bi-cubic resampling.  

 

The test results revealed a sharp increase in accuracy for the 

HNN downscaled gridded DEMs in comparison with the 

original (coarse) gridded DEM, and the bilinear and bi-cubic 

resampling downscaled DEMs. Visual assessment revealed the 

greater similarity of the HNN downscaled DEMs with the 

reference DEM than the DEMs generated by bilinear and bi-

cubic resampling. Quantitative accuracy assessment based on 

the RMSE revealed an increase in DEM accuracy for the HNN 

downscaling algorithm over the bilinear and bi-cubic 

resampling methods. The RMSE of the downscaled DEMs 

decreased by approximately 71%, 25%,  65%, and 58% for the 

20 m and 30 m degraded DEMs in Nghe An province, 5 m 

sampled DEM in Lang son province, and 30 m sampled DEM 

in Dac Ha, Vietnam, respectively. The RMSE values of the 

HNN downscaled DEM were lower in comparison with those 

of the bilinear and bi-cubic resampling methods, especially for 

the 5 m and 20 m datasets.  

 

Further evaluation was also implemented using linear 

regression of the original fine spatial resolution DEM against 

the original, the HNN downscaled DEM, and the bilinear and 

bi-cubic resampled DEMs, particularly focusing on the 

coefficients m, b and R2. Analysis of these parameters showed 

that the HNN downscaled DEMs was closer to the reference 

DEMs than the original DEM and those produced using the 

bilinear and bi-cubic resampling methods. 

 

Visual and quantitative assessment showed that the HNN 

downscaling algorithm performed more accurately for some 

specific terrain features such as valley bottoms or the crests of 

ridges. The RMSEs of profiles located mostly in these terrain 

features decreased by about 20% (i.e., improved more) 

compared with those of the profiles occurring mostly on 

mountain sides or flat areas. This improvement can be 

attributed to the effects of the combination of the elevation 

constraint with the spatial dependence maximization functions 

in the HNN approach. That is, the specific formulation of the 

HNN method brings structural advantages to the DEM 

downscaling task that cannot be achieved using commonly 

applied spatial resampling methods. 
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