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 In this paper, a comparison and evaluation of three resampling methods 
for gridded DEM is implemented. The evaluation was based on the results 
of bilinear, bi-cubic and Kriging resampling methods for an experiment 
using both degraded and sampled datasets at 20 m, 60 m and 90 m spatial 
resolutions. The evaluation of the algorithms was accomplished 
comprehensively with visual and quantitative assessments. The visual 
assessment process was based on direct comparison of the same 
topographic features in different resampled images, scatter plots and 
profiles. The quantitative assessment was based on the most commonly 
used parameters for DEM accuracy assessment such as root mean square 
errors (RMSEs), linear regression parameters m and b, and correlation 
coefficient R of the resulted DEMs versus the reference DEM. Both visual 
and quantitative assessment revealed a greater accuracy of the Kriging 
resampling over the other two conventional methods with the RMSE of 
the Kriging interpolated DEMs decreased by approximately 58%, 23%, 
50%, and 58% for the 20 m and 30 m degraded DEMs in Nghe An 
province, 5 m sampled DEM in Lang son province, and 30 m sampled DEM 
in Dac Ha, Vietnam, respectively. 
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1. Introduction 

 The spatial resolution of a gridded DEM 
affects both the information content and the 
accuracy of the data and, potentially, of many 
other secondary data products (Reddy and Reddy, 
2015; Saksena and Merwade, 2015). Examples 
include the well-known effects of spatial 

resolution on the spatial properties of DEM and 
other spatial data (Bian and Butler, 1999; Zhao et 
al., 2010) such as specifically on slope and aspect 
(Bolstad, Paul V. & Stowe, 1994; Chang and Tsai, 
2008), watershed boundary delineation and the 
accuracy of SWAT schemes (Chaubey et al., 2005; 
Rawat et al., 2018), water run-off models 
(Vázquez and Feyen, 2007; Vieux, 2006), three 
dimensional modelling of landscapes (Schoorl et 
al., 2000), local slope, plan curvature, drainage 
area (Li and Wong, 2010; Sulis et al., 2011),
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soil survey results and soil moisture (Kuo et al., 
1999; Smith et al., 2006).These studies showed 
that DEMs with a finer spatial resolution can 
produce more informative and potentially more 
accurate data to many other applications. 

Gridded DEMs with fine spatial resolution 
and high accuracy can be acquired using airborne 
LiDAR technology, ground surveying and 
photogrammetry(Guo et al., 2013; Wilson, 2012). 
Airborne LiDAR enables the acquisition of data 
with a very accurate and high density of 3-
dimensional coordinate points and, therefore, the 
production of a DEM with sub-meter spatial 
resolution. Airborne LiDAR-derived DEMs have 
been used in many different applications, some of 
which require very fine spatial resolution and 
very high accuracy (Rapinel et al., 2015). Although 
being capable of generating a fine spatial 
resolution DEM, airborne LiDAR technology has 
some challenges such as the very large amount of 
data storage required and high computing 
capacity for data processing. Compared with 
airborne LiDAR, other methods for fine spatial 
resolution DEM acquisition such as ground 
surveying and photogrammetry are more time 
consuming and labour intensive (Liu, 2008). 
Hence, if the resolution of the DEM can be 
increased using algorithms, it is possible to save 
the time and labour cost. 

Sometimes, it is necessary to resample the 
raster DEM to a higher resolution using the 
common algorithms such as nearest neighbour, 
bilinear and bi-cubic interpolation. Potentially, 
these algorithms can downscale the raster DEM 
data (Kidner et al., 1999). That means the 
resolution or the accuracy of raster DEM were 
slightly improved through resampling using these 
approaches (Shi et al., 2014; Wu et al., 2008). 
Another method for resampling gridded DEM 
data to a finer resolution with higher accuracy is 
Kriging interpolation (Grohmann and Steiner, 
2008). To test the ability of increasing the 
resolution and accuracy of the resampling 
algorithms, Dixon and Earls (Dixon and Earls, 
2009) used the simple nearest neighbour 
resampling to increase the resolution of DEMs 
and compare the effects of results to the DEM’s 
products such as stream flow, watershed, 
delineations, number of sub-basins and slopes. It 
was showed that the simple resampling of DEM 

did not increase the accuracy of DEMs greatly, or, 
the resampling methods did not create new 
significant information that is not available at the 
original resolution of DEM (Band and Moore, 
1995). The experiments by Rees (Rees, 2000) and 
Shi et. al. (Shi et al., 2014) showed that bilinear, 
bicubic and Kriging resampling increased the 
accuracy of DEMs in term of root mean square 
error (RMSE) with a suitable value of resampling 
ratio r. Comparing three resampling methods, 
Kriging performed better than the other two 
methods for smooth terrain. However, for terrain 
with high roughness, the performance of three 
resampling were similar (Rees, 2000). All of 
researches suggested that the resampling of 
raster DEM data can potentially increase the 
spatial resolution of the data and it is necessary to 
have further evaluation on the ability of 
increasing spatial resolution of these algorithms. 
For that reason, in this paper, the comprehensive 
evaluation of the algorithms was accomplished 
with new visual and quantitative parameters. The 
visual assessment process was based on direct 
comparison of the same topographic features in 
different downscaled images, scatterplots and 
profiles. The quantitative assessment was based 
on the most commonly used parameters for DEM 
accuracy assessment such as root mean square 
errors (RMSEs), linear regression parameters m 
and b, and correlation coefficient R. 

2. Method 

2.1. Bilinear resampling 

Suppose that the value of the unknown 
function f at the point (x, y), for example the 
elevation of the point (x, y). It is assumed that we 
know the value of f at the four points Q11 = (x1, y1), 
Q12 = (x1, y2), Q21 = (x2, y1), and Q22 = (x2, y2) 
(Fadnavis, 2014) Figure 1. 

The value of point (x, y) is estimated as:  

𝑓(𝑥, 𝑦) =  
1

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)
 

[𝑥2 − 𝑥 𝑥 − 𝑥1] [
𝑓(𝑄11) 𝑓(𝑄11)
𝑓(𝑄11) 𝑓(𝑄11)

] [
𝑦2 − 𝑦
𝑦 − 𝑦1

] 

2.2. Bi-cubic resampling 

Different to the bilinear resampling, the value 
of unknown function f at the point (x, y), for 

(1) 
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example the elevation of the point (x, y), is 
calculated from 16 adjacent data points. The 
calculation is more complicated, and the data 
value of the point is affected not by the only 
closest data points. Figure 2Error! Reference 
source not found. shows how the data value of 
the points is estimated using 16 surrounding 

points (Fadnavis, 2014). 

2.3. Kriging interpolation 

The basic idea of Kriging is to predict the 
value of a function at a given point by computing 
a weighted average of the known values of the 
function in the neighbourhood of the point 
(Fadnavis, 2014). The method is mathematically 
closely related to regression analysis. Kriging 
aims to derive a best linear unbiased estimator, 
based on assumptions on covariances, make use 

of Gauss-Markov theorem to prove independence 
of the estimate and error, and make use of very 
similar formulae. Kriging is based on the 
semivariogram value as 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑗)]

2𝑁(ℎ)
1   

Where 𝛾(ℎ) is variogram value, N is number 
of sample data points, h is distance between two 
data points, 𝑍(𝑥𝑖) and 𝑍(𝑥𝑗) is data value of point 

𝑥𝑖 and 𝑥𝑗, respectively. 

The semivariogam is firstly estimated from 
the sample data points and then used to estimate 
the data value of the predicted point based as 
follows:  

𝑍(𝑥0) = ∑ 𝑤𝑖(𝑥0)

𝑛

1

𝑍(𝑥𝑖) 

Where 𝑤𝑖(𝑥0) is weight value which is 
calculated using semivariogram. 

2.4. Method of assessment 

To test these three algorithms for resampling, 
the DEMs with coarser spatial resolution were 
used as an input to the resampling algorithms to 
produce DEMs at the same resolution of reference 
data using the bilinear, bi-cubic resampling, and 
Kriging interpolation. Because the accuracy of 
Kriging interpolation is contingent on the 
selection of the parameters, in this experiment, 
several Kriging parameters such as semivariogam 
model, number of samples and range of searching 
for samples were tested to find the best 
parameters. The most accurate results were 
selected with Kriging interpolation using 
exponential variogram model with 8 samples. 
Results of these resampling for four datasets are 
presented in Figure 3, Figure 4, Figure 5, Figure 6. 

The assessment was implemented based on 
both visual comparison of the resulting DEMs 
from the three different methods using visual 
inspection, and the comparison of scatterplots 
and profiles. The quantitative evaluation was 
based on the parameters which were usually used 
for DEMs’ accuracy assessment such as RMSE 
(Alganci et al., 2018), coefficient of determination, 
linear regression parameters, and the elevation 
profiles (Kienzle, 2003). 

Figure 1. Bilinear resampling to estimate the 
value f of the point P(x, y) from the point Q11 = (x1, 

y1), Q12 = (x1, y2), Q21 = (x2, y1), and Q22 = (x2, y2). 

Figure 2. Bi-cubic calculation of the data point 
from surrounding 16 points. 

(2) 

(3) 
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Visual assessment of the results was carried 
out by several approaches. The first approach is 
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 direct visual comparison of the DEM images, 
especially comparison of the images of same 
topographical features in different images. The 
second approach is to analyse the scatterplots 
between the elevation values the pixels of 
reference DEMs and the elevation values of the 
corresponding pixels of the bilinear and bi-cubic 
resampled DEMs, and Kriging interpolated DEM 
as in Figure 9, Figure10, Figure11, Figure 12. 
Another approach which was used in many 
previous research on DEMs evaluation is 
comparing the cross-sections (profiles) of the 
resulted downscaled DEMs (Alganci et al., 2018; 
Kienzle, 2003). These profiles present the match 
between the surfaces formed by the reference fine 
spatial resolution DEM and the surfaces formed 
by DEM at coarse spatial resolution, DEMs 
generated by bilinear, bi-cubic resampling, and 
Kriging interpolation algorithms and therefore 
enable the evaluation of the effects of the 
algorithms on different forms of terrain and 
topographical features. The locations of the 

profiles for the four datasets are presented in 
Figure 8. 

The quantitative assessment was 
implemented mainly based on the RMSEs for 
whole images and profiles of the Nghe An (20 m 
spatial resolution and 30 m spatial resolution), 
Lang Son and Dac Ha datasets as presented in 
Table 2, Table 3, Table 4 and Table 5, respectively. 
Together with the RMSEs, the linear regression 
was implemented between the reference DEM 
and resampled DEMs. The evaluation was then 
based on linear regression coefficients such as 
slope m, intercept b, and correlation R to assess 
the match between the downscaled DEMs from 
the bilinear and bi-cubic resampling methods, 
Kriging interpolation and the reference DEMs for 
4 datasets as in Table 6. 

3. Reference and testing data  

Two types of data were used to evaluate the 
proposed algorithm. The first type of data was 

Figure 3. Downscaling of DEM 
from 60 m to 20 m spatial 

resolution. (a) Reference DEM at 
20 m resolution; (b) Degraded 
DEM at 60 m resolution (note: 
this forms the only input to the 
algorithms); (c) DEM at 20 m 
using bilinear resampling; (d) 

DEM at 20 m resolution using bi-
cubic resampling; (e) DEM at 20 

m resolution using Kriging 
interpolation. 
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Figure 2. Downscaling of DEM from 
90 m to 30 m spatial resolution. (a) 

Reference DEM at 30 m resolution; (b) 
Degraded DEM at 90 m resolution 

(note: this forms the only input to the 
algorithms); (c) DEM at 30 m 

resolution resulted from bilinear 
resampling; (d) DEM 30 m resolution 
resulted from bi-cubic resampling; (e) 

DEM at 30 m resolution resulted by 
Kriging interpolation. 

Figure 5 Downscaling of DEM data 
from 20 m to 5 m spatial resolution. 

(a) Reference DEM data at 5 m 
resolution; (b) Degraded DEM data 
at 20 m resolution (note: this forms 

the only input to the algorithms); (c) 
DEM at 5 m resolution resulted from 
bilinear resampling; (d) DEM at 5 m 

resolution resulted from bi-cubic 
resampling; (e) DEM at 5 m 

resolution resulted from Kriging 
interpolation. 
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degraded coarse DEMs which were calculated 
from the reference DEMs at fine resolution using 
nearest neighbour (or averaging method) to make 
a source of error-free data for algorithm testing. 
Error-free in this case means the elevation values 
of pixels in DEM do not contain interpolation and 
measurement errors. The difference between 

these degraded and reference DEM was due to the 
difference in the resolution only. These data alone 
may be enough to assess the algorithms’ 
performance but it may lead to a scepticism 
because they were not real DEMs. The real DEMs 
are mostly sampled from point elevation or 
contour data rather than being averaged from the 

Figure 6 Downscaling of DEM data from 90 m to 30 m spatial 
resolution. (a) Contour data at 5 m interval; (b) Contour data at 10 

m interval; (c) Reference DEM data at 20 m resolution (created 
from 5 m internal contour data); (d) Input DEM data at 90 m 

resolution (created from 10 m internal contour data) (note: this 
forms the only input to the algorithms); (e) DEM at 30 m resolution 

resulted from bilinear resampling; (f) DEM at 30 m resolution 
resulted from bi-cubic resampling; and (g) DEM at 30 m resolution 

resulted from Kriging interpolation. 
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Table 1. Accuracy assessment based on ASPRS 
accuracy standard for digital geospatial data. 

elevation of sub-pixels within a footprint of the 
original pixel. Actually, the elevation of a pixel of 
the DEM represents the elevation of the surface 
area covered by this pixel so it must be the 
averaged elevation of all point of that surface area. 
The interpolation algorithms are used to estimate 
this representing elevation from point or contour 
data so the elevation of a pixel in the real grid 
DEMs is actually the averaged elevation of all 
points within the footprint of this pixel with some 
estimation errors. To implement more 
comprehensive evaluation of the algorithms, the 
sampled (real) DEMs generated by interpolating 
point elevation and contour data were used. 
 
 
 

Dataset 
and 

standards 

Absolute Accuracy Appropriate 
Contour 
Interval 

Supported 
by the 
RMSEz 
value 

RMSEz 

Non-
Vegetated 

(m) 

NVA at 
95% 

Confidence 
Level (cm) 

VVA at 
95th 

Percentile 
(cm) 

Mai Pha, 
Langson 

DEM 
0.483 

1.449-
meter 

1.449 
1.449-
meter 

Standard 
ASPRS 

class VIII 
(66.7-
cm) 

0.667 2-meter 200 2-meter 

 
The spatial resolution for all four testing DEM 

datasets in this paper was selected between 5 m 
and 90 m and, accordingly, the zoom factor values 
are 3 or 4. There are two reasons for this selection 
the spatial resolution. The first reason is because 
most of currently available sources of grid DEM 
data are at this range of resolution. The second 

and more important reason is that the increasing 
in accuracy of the data at these spatial resolutions 
is useful for many applications.  

Finer resolution grid DEM data may be 
obtained from airborne LiDAR or 3D Laser 
scanners but they are accurate for most 
applications therefore increasing in accuracy or 
resolution of these types of data are actually not 
necessary and meaningful. 

3.1. Degraded DEMs 

The first set of degraded DEM data covered 
an area of about 3.5 km by 3.5 km and were 
acquired at Yen Thanh District, NgheAn Province, 
in North Central Vietnam. The area is located at 
18o58’57.03” N, 105o22’ 44.87” E, about 45 km 
from Vinh City. This DEM was produced from 
topographic maps at the scale of 1:10000. The 
spatial resolution of the original DEM is 20 m 
(Figure 3(a)) and this was degraded to 60 m by 
averaging the elevation value of 20 m pixels 
within the footprint of the degraded 60 m Figure 
3(b)). 

The second degraded DEM dataset was 
provided by the Shuttle Radar Topography 
Mission (SRTM) of the USGS Earth Explorer 
(http://earthexplorer.usgs.gov/) (Figure 4(a)). 
This dataset covered the same area as the first 
DEM but with a spatial resolution of 30 m. This 
was also degraded to 90 m to create a second set 
of test data for the resampling algorithms (Figure 
4(b)). 

3.2. Sampled DEMs 

The first sampled dataset was acquired using 
ground surveying in Lang Son Province of 
Vietnam. The area of the test field is about 200 m 
by 200 m in Mai Pha Ward, Lang Son City which is

about 150 km from Hanoi. A set of 533 measured 
elevation points were used with Kriging 
interpolation to generate a gridded DEM dataset 
at 5 m spatial resolution for use as a reference, as 
can be seen in Figure 5(a). The accuracy of 
reference DEM was assessed based on the ASPRS 
Accuracy Standard for Digital Geospatial Data 
with a set of 234 validation points. The results of 
assessment (Table 1) showed that the quality of 
the reference DEM is slightly better than that of 
66.7-cm ASPRS DEM Class and Class VIII of ASPRS 

1990 Standards (ASPRS, 2015; Whitehead and 
Hugenholtz, 2015) with RMSEz of 48.3 cm and the 
Appropriate Contour interval of 1.449-meter. The 
coarse DEM at 20 m spatial resolution was created 
using the same interpolation algorithm from the 
point data (Figure 5(b)). This coarse 20 m DEM 
was used as input for the algorithms to make 5 m 
DEM and this result was compared with 5 m DEM 
reference data. 

The second sampled DEM dataset (named as 
S2 dataset) was created from contour data in
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 Dac Ha district in Kontum Province in 
Vietnam. The location of this DEM dataset was at 
14.671794° N and 107.967292° E. The area of the 
test field is about 6.6 km by 6.6 km. From the 
original contour data at 5 m interval (Figure 6(a)), 
a 30 m resolution DEMs were generated and used 
as reference data (Figure 6(c)). The coarse 90 m 
spatial resolution data (Figure 6(d)) was then 
interpolated from the 10 m interval contours of 
the same area (Figure 6(b)). The evaluation is 
then implemented by comparing the resulted 30 
m DEMs which were downscaled from coarse 90 
m DEMs (zoom factor of 3) with reference data. 

4. Visual assessment 

Visual comparison showed that the resulting 
DEMs generated by the bilinear and bi-cubic 
resampling methods, and Kriging interpolation 
are visually more similar to the reference DEM 
than the coarse spatial resolution DEMs for both 
degraded and sampled datasets. The 
improvement in visual similarity between the 
resampled DEMs and reference DEM is seen

 clearly when comparing between the 20 m and 
30 m DEMs in degraded datasets in Nghe An 
(Figure 3 and Figure 4) and 5 m and 30 m DEMs 
resampled datasets with reference DEMs (Figure 
5 and Figure 6). While the images of original 
coarse resolution DEMs and the DEMs by 
resampling and methods, especially the images 
created by bi-cubic resampling, were blurred with 
noises and the shapes of terrain features in these 
images look distorted, the images of Kriging 
interpolation downscaled DEMs in Figure 3(e), 
Figure 4(e), Figure 5(e) and Figure 6(g) look 
noise-free and very similar to the reference DEMs 
in Figure 3(a), Figure 4(a), Figure 5(a), and Figure 
6(c). The most clearly improvement of 
reconstruction of the shapes of terrains from 
coarse resolution data can be seen in the marked 
areas in Figure 3, Figure 4, Figure 5, and Figure 6. 

The comparison of the surfaces of the 
resulting DEMs using profiles in the locations 
showed in Figure 8 reveals a clearer advantage of 
the Kriging interpolation method over the original 
coarse resolution DEM and the DEMs created by

Figure 7. The positions of profiles for DEM accuracy evaluation: (a) Nghe An 20m dataset; (b) Nghe An 
30m dataset; (c) Lang Son 5m dataset; and (d) Dac Ha 30m dataset. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 Figure 8. Comparison of reference surface (reference DEM), original coarse resolution surface (original N-
DEM), bilinear (original B-DEM) and bi-cubic (original C-DEM) resampled surfaces based on profiles: (a) a 

column profile for 20 m degraded dataset in Nghe An; (b) a column profile for 30 m degraded dataset in 
Nghe An, (c) a column profile for 5 m sampled dataset in Lang Son; (d) a column profile for 30 m sampled 

dataset in Dac Ha; (e) a row profile for 20 m degraded dataset in Nghe An; (f) a row profile for 30 m 
degraded dataset in Nghe An; (g) a row profile for 5 m sampled Lang Son dataset; a row profiles for 30 m 

sampled dataset in Dac Ha, Vietnam. 
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 resampling methods. In Figure 8, the elevation 
profiles of the Kriging interpolated DEMs are 
closer to the profiles of reference DEMs than those 
of the bilinear and bi-cubic resampled for both 
degraded and sampled datasets.This is most 
clearly seen in the 5 m Lang Son dataset in Figure 
8(e) (a column profile) and Figure 8(f) (a row 
profile) in places such as tops of hills or bottoms 
of valleys. In these images, it is possible to observe 
that the surfaces from the bilinear and bi-cubic 
resampling methods are closer to the original 
coarse spatial resolution surface while the surface 
formed by the Kriging interpolation DEM are 
closer to the 5 m reference surface. The Kriging 
interpolation performed much more accurately 
than the bilinear and bi-cubic resampling 

methods for more extreme elevation features 
such as the tops of ridges and hills or bottoms of 
valleys, especially for V-shaped valleys and sharp 
ridges and hills. 

The visual comparison of scatterplots in 
Figure 9, Figure 10, Figure 11, and Figure 12 also 
showed the better matchbetweenthe results of 
the resampling methods and the reference DEM 
data in comparison with the original coarse DEM. 
In these scatterplots, the two DEM data are 
considered to be closer if the data points are 
located closer to the regression line. That means 
the slope coefficient m is closer to the value of 1 
and the intercept coefficient b is closer to the 
value of 0.  

 
(a) (b) 

(c) (d) 

 
Figure 9. Scatterplots of the reference fine spatial resolution DEM against the downscaled DEM for the 
degraded 20 m NgheAn dataset test: (a) reference DEM and coarse degraded DEM (N-DEM), (b) the 

reference DEM and the bilinear resampled DEM (B-DEM), (c) the reference DEM and the bi-cubic resampled 
DEM (C-DEM), (d) the reference DEM and Kriging interpolated DEM (K-DEM). 
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(a) (b) 

(c) (d) 

Figure 10. Scatterplots of the reference fine spatial resolution DEM against the downscaled DEMs for the 
degraded 30 m Nghe An dataset test: (a) the reference DEM and the coarse degraded DEM (N-DEM), (b) the 
reference DEM and the bilinear resampled DEM (B-DEM), (c) the reference DEM and the bi-cubic resampled 

DEM (C-DEM), (d) the reference DEM and Kriging interpolated DEM (K-DEM). 
 
The scatterplots of the resampling results in 

Figure 9, Figure 10, Figure 11, and Figure 12 
showed a closer match between the reference 
DEM and the resampling DEMs data in 
comparison with the original coarse DEM data 
(Figure 9(a), Figure 10(a), Figure 11(a), and 
Figure 12(a)) and the bilinear (Figure 9(b), Figure 
10(b), Figure 11(b), and Figure 12(b)), bi-cubic 
(Figure 9(c), Figure 10(c), Figure 11(c), and 
Figure 12(c)) resampling, Kriging interpolation 
(Figure 9(d), Figure 10(d), Figure 11(d), and 
Figure 12(d)) DEM data. This improvement can be 
seen most clearly with the 5 m sampled Lang Son 
and 20 m degraded Nghe An datasets. The data 
points in the scatterplots in Figure 9 and Figure 11 
showed that it is very close to and (sometime 
exactly on) the best fit line and the best fit line’s 
coefficients in these scatterplots are closer to the 

value of 1 and 0. Comparing the four datasets, the 
data points in the scatterplots in Figure 9(b), 
Figure 10(b), Figure 11(b) and Figure 12(b) 
(bilinear resampled DEM), Figure 9(c), Figure 
10(c), Figure 11(c), and Figure 12(c) (bi-cubic 
resampled DEM, and Figure 9(d), Figure 10(d), 
Figure 11(d), and Figure 12(d) (Kriging 
interpolated DEM) are less scattered away from 
the best fit line than those of the original DEMs. 

5. Quantitative assessment 

Coinciding with the result of visual 
observation, quantitative assessment based on 
the RMSE (Table 2, Table 3, Table 4, and Table 5) 
reveals a greater accuracy for the resampling and 
Kriging interpolation methods for all four 
datasets. Among the two degraded data, the 
increase in accuracy is higher for 20 m data.  
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(a) (b) 

(c) (d) 

 
Figure 11. Scatterplots of the reference fine spatial resolution DEM against the downscaled DEM for the 
sampled 5 m Lang Son dataset test: (a) the reference DEM and coarse degraded DEM (N-DEM), (b) the 

reference DEM and the bilinear resampled DEM (B-DEM), (c) the reference DEM and the bi-cubic resampled 
DEM (C-DEM), (d) the reference DEM and Kriging interpolated DEM (K-DEM). 

 
The RMSEs for the bilinear, bi-cubic 

resampling and Kriging interpolation methods 
are 3.3716 m, 3.3716 m and 2.8874 m, 
respectively. Comparing with the RMSE of the 
original 60 m data, the RMSE of the resampled 
DEMs at 20 m reduced significantly for all three 
methods. For the Nghe An 30 m degraded test 
data, the increase in accuracy for resampling 
algorithms is not as large as for the 20 m datasets 
but it is still very convincing with the RMSE 
decreased by around 20% comparing with the 
original 90 m DEM. Similar to that of the degraded 
datasets, the accuracy for sampled datasets also 
increased considerably. The RMSE of 5 m Lang 
Son data decreased sharply for the resampling 
algorithms DEM with the values of 1.5139 m for 
bilinear, 1.6 m for bi-cubic resampling, and 1.2092 
m for the Kriging interpolation. The result for 30 

m Dac Ha test is not as impressive as that of 5 m 
Lang Son data, however, the improvement of DEM 
accuracy is still significant with the RMSE 
decreased by around 50% in comparison with the 
original coarse images. These statistics 
demonstrate that the resampling methods can 
increase the accuracy of the gridded DEM when it 
is used to downscale DEM to a finer spatial 
resolution. 

The increase in accuracy in term of RMSE for 
the profiles demonstrated the effects of the 
terrain features on the algorithm. For the 20 m 
and 30 m datasets in Nghe An, the increase in 
accuracy between the original and resampled 
DEMs was relatively constant. For the 30 m 
dataset, the increase in accuracy for most profiles 
was between 20% and for the 5 m sampled Lang 
Son dataset is more variable with the smallest 
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(a) (b) 

(c) (d) 

 
Figure 12. Scatterplots of the reference fine spatial resolution DEM against the downscaled DEM for the 

sampled 30 m Dac Ha dataset test: (a) the reference DEM and the coarse degraded DEM (N-DEM), (b) the 
reference DEM and the bilinear resampled DEM (B-DEM), (c) the reference DEM and the bi-cubic 

resampled DEM (C-DEM), (d) the reference DEM and Kriging interpolated DEM (K-DEM). 
 

value of 18% and the largest value of 60%. This is 
because most of the profiles with a large increase 
in accuracy of more than 65% (such as column 
cross-sections 2, 4 and row cross-sections 2, 4, 9) 
are located in areas of specific terrain such as 
valley bottoms or the tops of hills. In contrast, the 
profiles with a smaller increase in accuracy occur 
mostly on the sides of mountains where the 
surface of the original (coarse) DEM is relatively 
close to the reference (fine) DEM. The smaller 
amount of variation in the accuracy increasing for 
the 20 m and 30 m degraded datasets and 30 m 
sampled Dac Ha dataset occurs because most 
profiles located along many different types of 
terrain rather than occurring mostly on specific 
terrain forms. The range of the increase in 

accuracy for the 20 m dataset is 20% and between 
50% and 70%.The similarity of the two DEMs can 
also be evaluated quantitatively using the linear 
regression coefficients (m, b) and the correlation 
coefficient R. Comparing two DEMs, if the 
elevation of a pixel in the reference dataset is x 
and the elevation of the corresponding pixel in the 
comparing dataset is y, the expected perfect fit 
line should be y = x such that m = 1 and b = 0. 
Because the value of m may be greater or smaller 
than 1 and the value of b may be greater or smaller 
than 0, comparison between different values of m 
and b to define the closeness of them to 1 and 0, 
respectively, sometimes it is not easy to evaluate. 
To make it easier for this evaluation, the sub-
parameters such as |1 − 𝑚| and |𝑏| were.  
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Table 2 Root mean squared error (RMSE) for the predictions using the bilinear resampling, bi-cubic 
resampling and the Kriging algorithms for the Nghe An 20 m DEM (CP stands for Column Profile, RP stands for 

Row Profile.) 

Table 3. Root mean squared error (RMSE) for the predictions using the bilinear resampling, bi-cubic resampling 
and the Kriging algorithms for the NgheAn SRTM 30 m DEM. 

 
 
 

Datasets 
Original 

coarse DEM 
RMSE (m) 

Bilinear 
Resampling 
RMSE (m) 

Accuracy 
improvement 
over coarse 

DEM (%) 

Bi-cubic 
Resampling 
RMSE (m) 

Accuracy 
improvement 
over coarse 

DEM 

Kriging 
interpolation 

RMSE (m) 

Accuracy 
improvement 
over coarse 

DEM 
Overall RMSE 6.9326 3.3026 52.4% 3.3716 51.4% 2.8874 58.4% 

CP 1* 4.5389 3.0986 31.7% 3.1431 30.8% 3.2242 29.0% 
CP 2 4.4169 2.8131 36.3% 2.8973 34.4% 2.8798 34.8% 
CP 3 4.3370 2.7674 36.2% 2.8041 35.3% 2.6625 38.6% 
CP 4 4.4689 2.9057 35.0% 2.9731 33.5% 2.7696 38.0% 
CP 5 4.0911 2.9148 28.8% 2.9445 28.0% 2.9336 28.3% 
CP 6 3.8029 2.5245 33.6% 2.5619 32.6% 2.6330 30.8% 
CP 7 4.6677 3.1959 31.5% 3.2344 30.7% 3.1115 33.3% 
CP 8 4.8884 2.9958 38.7% 3.0833 36.9% 2.9249 40.2% 
CP 9 5.1846 2.9851 42.4% 3.0731 40.7% 2.7065 47.8% 

CP 10 5.2172 3.3379 36.0% 3.4256 34.3% 3.2270 38.1% 
CP 11 4.3794 2.5489 41.8% 2.6209 40.2% 2.4393 44.3% 
RP 1 6.9375 3.7005 46.7% 3.6816 46.9% 3.6813 46.9% 
RP 2 6.4972 2.9903 54.0% 3.0293 53.4% 2.8799 55.7% 
RP 3 4.5824 2.8843 37.1% 2.9332 36.0% 2.8899 36.9% 
RP 4 7.0182 3.4087 51.4% 3.4013 51.5% 3.1660 54.9% 
RP 5 6.5620 3.5779 45.5% 3.5906 45.3% 3.4508 47.4% 
RP 6 6.9686 3.3586 51.8% 3.4280 50.8% 3.3106 52.5% 
RP 7 6.8329 3.1977 53.2% 3.2778 52.0% 3.1780 53.5% 
RP 8 7.7733 3.7850 51.3% 3.7997 51.1% 3.7522 51.7% 
RP 9 5.7281 2.7969 51.2% 2.9109 49.2% 2.7287 52.4% 

RP 10 5.0358 2.3813 52.7% 2.4803 50.7% 2.2053 56.2% 
RP 11 2.3477 1.3837 41.1% 1.4051 40.1% 1.3916 40.7% 

 
 

 

Datasets 
Original 

coarse DEM 
RMSE (m) 

Bilinear 
Resampling 
RMSE (m) 

Accuracy 
improvement 
over coarse 
KDEM (%) 

Bi-cubic 
Resampling 
RMSE (m) 

Accuracy 
improvement 
over coarse 

DEM (%) 

Kriging 
resampling 
RMSE (m) 

Accuracy 
improvement 
over coarse 

DEM (%) 
Overall RMSE 11.1379 8.8105 20.9% 8.8736 20.3% 8.5719 23.0% 

CP 1 8.5013 6.8408 19.5% 6.9101 18.7% 6.9668 18.1% 
CP 2 9.7106 8.4326 13.2% 8.4863 12.6% 8.5101 12.4% 
CP 3 11.6961 10.7635 8.0% 10.8141 7.5% 11.0702 5.4% 
CP4 10.0198 8.9907 10.3% 9.0225 10.0% 9.2379 7.8% 
CP 5 9.2745 7.0420 24.1% 7.2130 22.2% 7.3050 21.2% 
CP 6 11.5945 9.8018 15.5% 9.8618 14.9% 9.7752 15.7% 
CP 7 9.7925 8.3543 14.7% 8.4407 13.8% 8.4730 13.5% 
RP 1 10.4429 9.8024 6.1% 9.8357 5.8% 9.6199 7.9% 
RP 2 9.9168 8.0953 18.4% 8.0897 18.4% 8.0478 18.8% 
RP 3 10.5144 9.6251 8.5% 9.6645 8.1% 9.5933 8.8% 
RP 4 9.9849 7.7341 22.5% 7.8310 21.6% 7.6501 23.4% 
RP 5 9.8911 8.4770 14.3% 8.5192 13.9% 8.1091 18.0% 
RP 6 8.8079 7.7367 12.2% 7.7801 11.7% 7.3437 16.6% 
RP 7 6.6352 6.4032 3.5% 6.4005 3.5% 6.2829 5.3% 
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Table 4. Root mean squared error (RMSE) for the predictions using the bilinear resampling, bi-cubic resampling 
and the Kriging algorithms for the Lang Son 5 m DEM. 

 
 
 

Datasets 

Original 
coarse 
DEM 

RMSE (m) 

Bilinear 
Resampling 
RMSE (m) 

Accuracy 
improvement 
over coarse 

DEM 

Bi-cubic 
Resampling 
RMSE (m) 

Accuracy 
improvement 
over coarse 

DEM 

Kriging 
interpolation 

RMSE (m) 

Accuracy 
improvement 
over coarse 

DEM 
Overall RMSE 2.4571 1.5139 38.4% 1.6000 34.9% 1.2092 50.8% 

CP 1 1.4960 1.2419 17.0% 1.2912 13.7% 0.8727 41.7% 
CP2 1.6962 1.1635 31.4% 1.1821 30.3% 1.1771 30.6% 
CP 3 2.0641 1.4043 32.0% 1.4791 28.3% 1.1067 46.4% 
CP 4 2.2345 1.3591 39.2% 1.4586 34.7% 0.9983 55.3% 
CP 5 2.2705 1.3006 42.7% 1.3728 39.5% 1.1682 48.5% 
CP 6 2.3084 1.7034 26.2% 1.7805 22.9% 0.9444 59.1% 
CP 7 2.0349 1.6198 20.4% 1.6569 18.6% 0.9789 51.9% 
CP 8 2.0325 1.4749 27.4% 1.5564 23.4% 0.8047 60.4% 
CP 9 2.0937 1.2861 38.6% 1.3578 35.1% 1.5940 23.9% 

CP 10 1.9876 1.2374 37.7% 1.2959 34.8% 1.7913 9.9% 
RP 1 1.9569 1.4024 28.3% 1.4348 26.7% 0.9771 50.1% 
RP 2 2.2873 1.6555 27.6% 1.7196 24.8% 1.5087 34.0% 
RP 3 2.3612 1.6712 29.2% 1.7451 26.1% 1.2566 46.8% 
RP 4 1.9510 1.4361 26.4% 1.5174 22.2% 1.6807 13.9% 
RP 5 1.7489 1.4228 18.6% 1.4657 16.2% 1.2011 31.3% 
RP 6 1.7289 1.4081 18.6% 1.4297 17.3% 1.4138 18.2% 
RP 7 1.6217 1.1567 28.7% 1.2101 25.4% 0.7408 54.3% 
RP 8 1.3897 0.8887 36.1% 0.9730 30.0% 0.5217 62.5% 
RP 9 1.4791 0.9317 37.0% 0.9592 35.1% 0.7389 50.0% 

RP 10 1.8042 1.4126 21.7% 1.4593 19.1% 0.9341 48.2% 

 
calculated (Table 6). Accordingly, the smaller 
values of |1 − 𝑚| and |𝑏| simultaneously are, the 
more similar the two datasets are. The third 
parameter for evaluating the fitting of the two 
datasets is the correlation coefficient R. The 
correlation coefficient measures the association 
between two datasets and, thus, captures the 
distribution of the data points in the scatterplots 
around the best fit line. The closer value of R2 to 1, 
the more data points are located close to the best 
fit line. A perfect match between two DEM 
datasets means that all the data points are located 
on the identity line (y = x) and the coefficient of 
determination R2 = 1. That means the two datasets 
are exactly the same if the value of m is equal to 1, 
b is equal to 0 and R2 is equal to 1, simultaneously 

To evaluate the results of the different 
methods, linear regression models were fitted to 
the relation between the reference data and 
resampled data (Table 6). The coefficient values 
show the better fitting of the Kriging interpolated 
DEMs with the reference DEMs than those of the 
original DEMs, bilinear and bi-cubic resampled 

DEMs. For all four datasets, the values of 
parameters m, b and R2 of Kriging interpolated 
DEMs are closer to the values of 1, 0, and 1, 
respectively, than those of the original, bilinear 
and bi-cubic resampled DEMs. In case of the Lang 
Son 5 m resampled dataset, the values |1 − 𝑚|  =
 0.0550, |𝑏|  =  16.3717 and𝑅2  =  0.9884 for 
the Kriging interpolated DEM showed greater 
similarity to the reference DEM than those of the 
original coarse DEM (|1 − 𝑚| = 0.0310, |𝑏| = 
9.3306 and R2 = 0.9425), bilinear resampled DEM 
(|1 − 𝑚| = 0.0399, |𝑏| = 12.3782 and R2 = 0.9793), 
bi-cubic resampled DEM (|1 − 𝑚| = 0.0342, |𝑏| = 
10.6432 and R2 = 0.9763. Linear regression 
statistics for the Dac Ha sampled data also showed 
the better matching of the Kriging interpolation 
DEM to the reference with |1 − 𝑚| = 0.0078, |𝑏| = 
7.3917 and R2 = 0.9967 comparing with |1 − 𝑚| = 
0.0128, |𝑏| = 12.1453 and R2 = 0.9960 for bilinear 
resampling, |1 − 𝑚| = 0.0115, |𝑏| = 10.9118 and 
R2 = 0.9959 for bi-cubic resampling. Among three 
resampling methods, the most inaccurate results 
are from the bi-cubic but comparing with the 
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Table 5. Root mean squared error (RMSE) for the predictions using the bilinear resampling, bi-cubic resampling 
and the Kriging algorithms for the DacHa 30 m DEM. 

original coarse resolution data, these results were 
much more accurate.  

Linear regression coefficients for the 20 m 
Nghe An degraded dataset showed that the 
resampled DEM matches closely to the reference 
DEM. Surprisingly, the comparison also showed 
that the original coarse DEM with parameters of 
|1 − 𝑚| = 0.0178 and |𝑏| = 2.1147 is generally 
more matched (less bias) to the reference DEM 
than the resampled DEMs with |1 − 𝑚| = 0.0235 
and |𝑏| = 2.5368, and |1 − 𝑚| = 0.0219 and |𝑏| = 
2.3680 for bilinear and bi-cubic resampled DEMs, 
respectively. However, more data points of the 
bilinear (R2 = 0.9951) and bi-cubic (R2 = 0.9948) 
resampled DEMs are distributed close to the best 
fit line than those of the original 20 m DEM (R2 = 
0.9770).For the 30 m degraded dataset, the 
increase in prediction precision of the resampled 
methods is clearly seen when comparing the 
linear regression parameters of the three 
methods.  

Comparing the slope parameter m and 
intercept parameter b of the best fit lines of all 
four datasets, it is clear that all the slope

 parameters m of the resampled DEMs are smaller 
than 1 and the intercept parameters b are larger 
than 0. This means that for locally-low places 
(usually the bottom of valleys) the pixels of the 
DEM data produced by these methods are likely to 
be higher than the corresponding pixels in the 
reference DEM. Conversely, for locally-high places 
such as the top of hills or mountain ridges, the 
elevation of the pixels in the resampled DEM data 
is likely lower than that of the corresponding 
pixels in the reference image. This is due to the 
smoothing effect (referred to as conditional bias 
where highs are under-predicted and lows are 
over-predicted). 

6. Conclusion 

A test for resampling algorithms to increase 
the spatial resolution and accuracy of gridded 
DEMs was implemented and demonstrated 
comprehensively using data with different DEM 
spatial resolutions and characteristics. Tests of 
there sampling algorithms were implemented on 
two types of elevation datasets; degraded DEMs at 
20 m and 30 m spatial resolution in Nghe An  

 
 
 

Datasets 

Original 
coarse 

DEM RMSE 
(m) 

Bilinear 
Resampling 
RMSE (m) 

Accuracy 
improvement 
over coarse 

DEM 

Bi-cubic 
Resampling 
RMSE (m) 

Accuracy 
improvement 
over coarse 

DEM 

Kriging 
interpolation 

RMSE (m) 

Accuracy 
improvement 
over coarse 

DEM 
Overall RMSE 5.0680 2.3284 54.1% 2.4218 52.2% 2.1095 58.4% 

CP 1 4.0702 2.3434 42.4% 2.4436 40.0% 2.2330 45.1% 
CP 2 4.0203 2.0594 48.8% 2.2048 45.2% 1.9960 50.4% 
CP 3 3.8541 2.0370 47.1% 2.0956 45.6% 2.1132 45.2% 
CP 4 3.5399 2.2395 36.7% 2.2698 35.9% 2.1836 38.3% 
CP 5 3.4595 1.8231 47.3% 1.9178 44.6% 1.7027 50.8% 
CP 6 2.3885 1.3172 44.9% 1.3603 43.0% 1.3345 44.1% 
CP 7 2.6743 1.1377 57.5% 1.2514 53.2% 1.0253 61.7% 
CP 8 2.2896 1.0186 55.5% 1.1031 51.8% 0.9693 57.7% 
CP 9 2.0938 1.0068 51.9% 1.0624 49.3% 0.9942 52.5% 
RP 1 4.6476 1.8714 59.7% 1.9762 57.5% 2.0200 56.5% 
RP 2 4.6907 2.2973 51.0% 2.3739 49.4% 2.2684 51.6% 
RP 3 4.5113 1.7205 61.9% 1.8051 60.0% 1.4827 67.1% 
RP 4 3.6187 1.4932 58.7% 1.5675 56.7% 1.3472 62.8% 
RP 5 3.9713 1.2816 67.7% 1.4015 64.7% 1.1203 71.8% 
RP 6 3.2681 1.0181 68.8% 1.0540 67.7% 0.9603 70.6% 
RP 7 2.8494 1.5355 46.1% 1.5676 45.0% 1.3829 51.5% 
RP 8 3.0366 1.0666 64.9% 1.0934 64.0% 1.1003 63.8% 
RP 9 4.2630 1.9581 54.1% 2.0194 52.6% 1.8029 57.7% 

RP 10 5.2869 2.3473 55.6% 2.4070 54.5% 2.5440 51.9% 
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Table 6. Linear regression coefficients for 20 m Nghe An and 30 m Nghe An resampled datasets, and the Lang 
Son 5 m and Dac Ha 30 m sampled datasets. 

 
 
 

Datasets 
Linear Regression Coefficients 

m |1 − 𝑚| b |𝑏| R2 

20 m Nghe An 
dataset 

60 m degraded DEM 0.9822 0.0178 2.1147 2.1147 0.9770 
20 m bilinear resampled DEM 0.9765 0.0235 2.5368 2.5368 0.9951 
20 m bi-cubic resampled DEM 0.9781 0.0219 2.3680 2.3680 0.9948 

20 m Kriging interpolated DEM 0.9832 0.0168 1.8217 1.8217 0.9962 

30 m Nghe An 
dataset 

90 m degraded DEM 0.9659 0.0341 1.2658 1.2658 0.9412 
30 m bilinear resampled DEM 0.9500 0.0500 3.2057 3.2057 0.9646 
30 m bi-cubic resampled DEM 0.9529 0.0471 2.8723 2.8723 0.9639 

30 m Kriging interpolated DEM 0.9608 0.0392 1.9291 1.9291 0.9964 

Lang Son 
dataset 

20 m coarse DEM 0.9690 0.0310 9.3306 9.3306 0.9425 
5 m bilinear resampled DEM 0.9601 0.0399 12.3782 12.3782 0.9793 
5 m bi-cubic resampled DEM 0.9658 0.0342 10.6432 10.6432 0.9763 

5 m Kriging interpolated DEM 0.9450 0.0550 16.3717 16.3717 0.9884 

Dac Ha dataset 

90 m coarse DEM 0.9934 0.0066 6.1988 6.1988 0.9810 
30 m bilinear resampled DEM 0.9872 0.0128 12.1453 12.1453 0.9960 
30 m bi-cubic resampled DEM 0.9885 0.0115 10.9118 10.9118 0.9959 

30 m Kriging interpolated DEM 0.9922 0.0078 7.3917 7.3917 0.9967 

 
province, Vietnam, and sampled DEMs at 5m 
spatial resolution in Lang Son province (from 
ground surveying elevation data), and 30 m 
spatial resolution in Dac Ha, Kontum Province, 
Vietnam (generated from the contour lines). 

The test results revealed a considerable 
increase in accuracy for the Kriging interpolated 
gridded DEMs in comparison with the original 
(coarse) gridded DEM, and the bilinear and bi-
cubic resampling. Visual assessment revealed the 
greater similarity of the Kriging interpolated 
DEMs with the reference DEM than the DEMs 
generated by bilinear and bi-cubic resampling 
methods. Quantitative accuracy assessment 
based on the RMSE revealed an increase in DEM 
accuracy for the Kriging algorithm over the 
bilinear and bi-cubic resampling methods. The 
RMSE of the Kriging interpolated DEMs decreased 
by approximately 58%, 23%, 50%, and 58% for 
the 20 m and 30 m degraded DEMs in Nghe An 
province, 5 m sampled DEM in Lang son province, 
and 30 m sampled DEM in Dac Ha, Vietnam, 
respectively. 

Further evaluation was also implemented 
using linear regression of the original fine spatial 
resolution DEM against the original, the bilinear 
and bi-cubic resampled, and Kriging interpolated 
DEMs, particularly focusing on the coefficients m, 

b and R2. Analysis of these parameters showed 
that the Kriging interpolated DEMs was closer to 
the reference DEMs than the original DEM and 
those produced using the bilinear and bi-cubic 
resampling methods. 
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