
Vol.:(0123456789)

SN Applied Sciences (2019) 1:283 | https://doi.org/10.1007/s42452-019-0295-9

Case Study

Support vector regression approach with different kernel functions 
for predicting blast‑induced ground vibration: a case study 
in an open‑pit coal mine of Vietnam

Hoang Nguyen1,2 

© Springer Nature Switzerland AG 2019

Abstract
Blast-induced ground vibration (PPV) is one of the effects of the hazard in open-pit mines. It can make vibration of the 
structure, instability of slope and bench, impact on underground water, and the surrounding residential. Therefore, the 
precise prediction of blast-induced PPV is needed to minimize undesirable effects on the surrounding environment. Also, 
one of the most important objectives of this study is to determine the site characteristics for the application of controlled 
blasting techniques. In this study, the support vector regression (SVR) approach was considered and developed for pre-
dicting blast-induced PPV in an open-pit coal mine (Vietnam) as a case study. Three forms of the equation include linear 
(L), polynomial (P), and radius basis function (RBF) were applied to develop the SVR models. For comparison purpose, 
an empirical technique was also referred to as estimate blast-induced PPV in this study on the same training dataset. A 
database with 181 blasting events was used for this aim. Performance indicators such as root-mean-square error (RMSE) 
and the coefficient of determination (R2) were used to compare and evaluate the performance of the predictive models. 
The results showed that SVR was an effective approach for predicting blast-induced PPV in this study. Among three forms 
of the equation, the SVR model with RBF was the most superior model for predicting blast-induced PPV in this study with 
an RMSE of 0.396, R2 of 0.924, and MAE of 0.135, whereas the empirical model only obtained performance with an RMSE 
of 0.856, R2 of 0.643, and MAE of 0.575. This study provided an overview of the SVR approach in predicting blast-induced 
PPV. A comparison of different kernel functions for the selection of the SVR model is needed to find out the best model 
for predicting blast-induced PPV.
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1  Introduction

Open-pit mining is a type of technology that recovers 
resources in the ground, including drilling, blasting, 
loading, and hauling operations [1]. The mining process 
usually removes the burden for exposing the mineral 
deposits or fragment hard rock for subsequent opera-
tions (loading, transporting, or dumping). And one of 
the most effective methods is still blasting. For fragment-
ing rocks by the drilling–blasting method, the boreholes 

with various diameters (45–250 mm) were used. Then, 
the explosive was charged in the boreholes. The other 
blasting accessories such as blasting cap, detonator 
fuse, detonating primer, and signal tube can be used to 
detonate boreholes [2]. When initiated, the energy of the  
explosives will strike and break the rock. However, not 
100% of explosives energy was used to break rock [3]. 
According to previous scientists, up to 80–85% of the 
energy of explosives was wasted and produced ill effects, 
such as ground vibration (PPV), air overpressure, fly rock, 
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dust and toxic [4–8]. Of these side effects, ground vibra-
tion is the most dangerous effect [9–11]. It can make 
quake and destroy the surrounding structures, instability 
of the slope and benches, effects on the railway, under-
ground water, etc., (Fig. 1). Therefore, the accurate blast-
induced PPV prediction is required for a few reasons as 
follows:

•	 Ensuring that levels of vibration do not cause damage 
to neighboring property;

•	 Preventing annoyance to others by maintaining the 
lowest possible levels;

•	 Demonstrating compliance with conditions;
•	 Reducing the undesirable effects on the environment.

For predicting blast-induced PPV, the parameters’ influ-
ence is investigated and defined. There are many param-
eters that influence blast-induced PPV, including the con-
trollable and uncontrollable parameters [12–14]. Of the 
two group parameters, the controllable parameters may 
include (but not limit) the following parameters: maximum 
charge per delay (W), monitoring distance (R), spacing (S), 
powder factor (P), burden (B), bench height (H), stemming 
(T), blast-hole depth (L). The blast designers can change 
these parameters [15]. In the uncontrollable parameters 
group, parameters related to geological and geophysical 
conditions are parameters that cannot be altered by blast 
designers such as rock hardness, crack, bedding, faults, 
density distribution [16]. Thus, PPV-blast-induced predic-
tive studies usually focus on the controllable parameters 
by blast designers. Of the controllable parameters, the 
maximum charge per delay (W) and monitoring distance 
(R) was the most influential parameters for blast-induced 
PPV [17–20].

With the estimation of blast-induced PPV, many schol-
ars have attempted to study and develop empirical formu-
las based on the relationship between W and R as shown 

in Table 1. Nevertheless, their effectiveness is not high in 
some cases [7, 17, 18, 21–23].

In recent years, artificial intelligence (AI) has become 
more popular and widely applied in many different fields. 
Review of literature showed that AI had been involved in 
many aspects such as mineralizing geochemical anomalies 
[33–35], optimizing operational mine planning [36], civil 
engineering [37, 38], analyzing mineral systems [39], min-
eral potential mapping [40, 41], resourcing future genera-
tions [42, 43], predicting blast-induced problems [44–47]. 
In predicting blast-induced PPV, the feasibility of a support 
vector machine (SVM) algorithm was studied and applied 
by Hasanipanah et al. [7] to predict blast-induced PPV in 
Bakhtiari Dam, Iran. A total of 80 blasts were used in their 
study with 60 blasting events for the training process and 
20 blasts for the testing process. A variety of empirical 
equations were used by Hasanipanah et al. [7] to estimate 
PPV and compare with the SVM model. The performance 
of the predictive models was evaluated based on a series 
of criteria such as variance absolute relative error (VARE), 
root-mean-square error (RMSE), determination coefficient 
(R2), median absolute error (MEDAE), mean absolute per-
centage error (MAPE), Nash and Sutcliffe (NS), and variance 
accounted for (VAF). Based on the results, they indicated 
that SVM model provided higher performance capacity 
in predicting blast-induced PPV compared to empirical 
equations with an RMSE of 0.34, R2 of 0.957, VARE of 0.3, 
MAPE of 6.36, MEDAE of 0.15, NS of 0.94, and VAF of 94.24. 
In another study, [6] successfully developed the blast-
induced PPV predictive model based on an artificial neural 

Fig. 1   Blast-induced ground vibration for rock fragmentation

Table 1   Some empirical techniques for predicting PPV proposed
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network and K-nearest neighbor algorithm, i.e., ANN-KNN. 
Seventy-five blasting events with two input variables, W 
and D, were used for predicting PPV in their study. An 
empirical equation of the United States Bureau of Mines 
(USBM) was also performed for estimating blast-induced 
PPV. RMSE, R2, and VAF are the performance indices used 
for assessment of the quality of the models in their study. 
As a result, they found the optimal ANN-KNN model with 
an RMSE of 0.54, R2 of 0.88, and VAF of 87.84. In another 
algorithm, Hasanipanah et al. [48] developed a simple 
model with high precision to predict the PPV produced by 
blasting using particle swarm optimization (PSO) with two 
forms of the equation, including linear and power. The two 
input variables, W and D, were also identified by Hasani-
panah et al. [48] and used as input parameters for pre-
dicting PPV. The USBM experimental technique is a com-
parative method used to evaluate the effectiveness of the 
PSO model in their study. A great conclusion is given by 
Hasanipanah et al. [48] that a PSO model with power equa-
tion provided a higher accuracy than the USBM model for 
forecasting PPV with an RMSE of 0.24 and R2 of 0.938. In 
another study, Hasanipanah et al. [49] developed a clas-
sification and regression tree (CART) model to predict PPV 
in an open-pit mine. Eighty-six blasting events were moni-
tored for their study. An effort for building a CART model 
was conducted with a good result, RMSE of 0.17 and R2 of 
0.95. In a new survey, Armaghani et al. [50] investigated 
and studied the usability of the imperialist competitive 
algorithm (ICA) for predicting blast-induced PPV with two 
forms of equations, i.e., power and quadric. Seventy-three 
blasting events were collected for their aim with W, D and 
PPV being carefully measured. As a result, the ICA quad-
ratic form is the most dominant model among the devel-
oped models with an RMSE of 0.37 and R2 of 0.94. Several 
similar works can be found at those references [51–55].

Review of the literature showed that SVR had been suc-
cessfully implemented for blasting problems in several 
places [7, 56–59]. Nevertheless, it has not been applied 
in all areas. However, the effects of blast-induced PPV in 
each country are different [60] and need to be accurately 
predicted. Also, comparison, evaluation, and selection of 
SVR models with varying functions of kernel have not been 
performed in previous studies. Review of literature showed 
that Hasanipanah et al. [7] evaluated the feasibility of SVR 
for predicting blast-induced PPV. However, it seems they 
have specified the radial primary kernel function (RBF) for 
the development of the SVR model. Also, Sheykhi et al. [44] 
also developed the SVR models based on fuzzy C-means 
clustering (FCM). The RBF was also selected as a kernel 
function for the development of their study without com-
parison and evaluation. Hence, SVR models were devel-
oped in this study with three forms of kernel function for 
predicting blast-induced PPV. Comparison and assessment 

of them are employed for the determination of the best 
SVR model in this study.

The structure of the article consists of six parts as fol-
lows: Sect. 1 presents the reason to implement this study 
and overview of related works; Sect. 2 describes the study 
area and data used as a case study; Sect. 3 shows the back-
ground of the methodology used; the blast-induced PPV 
prediction model is developed in Sect. 4; Sect. 5 demon-
strates and discusses the results of this work; finally, the 
conclusions and recommendations are given.

2 � Study area and data used

2.1 � Study area

The study area is medium mountainous with an absolute 
altitude in a range of 100–434 m. The mine in the form 
of plain terrain has an elevation of 50–100 meters over 
the sea level. It is located between longitude 105°30′40″E 
and 105°31′00″E, and latitude 21°42′30″N and 21°43′00″N 
(Fig. 2). The geological composition of the study area is 
involved, including faults and layers of metamorphic sand-
stone, zander, limestone, shale, and siltstone. The thick-
ness of the coal seam varies from 0 to 2.75 m; overburden 
is in a range of 5–10.2 m.

The mine’s reserves are 945,900 tons. Annual min-
ing output is 80,000–100,000 tons/year. The maximum 
depth of the mine is − 202 m, and the height of the slope 
is 245–270 m with the slope angle changing from 32° to 
36°. The rock mass has a relatively high hardness (pebbles, 
gravel, clay), and the drilling–blasting method was applied 
to rock breakage. The mine uses two main diameters of 
220 mm and 105 mm for boreholes. Explosives are mainly 
used by ANFO and AD-1 with non-electric delay blasting. 
In the overburden benches, the maximum charge per 
delay was in a range of 100–623 kg.

2.2 � Described data used

As discussed in Sect. 1, the maximum charge per delay 
(W) and monitoring distance (R) were the most influential 
parameters for blast-induced PPV. Therefore, W and R are 
two parameters used to predict blast-induced PPV in this 
study. The datasets used in this study are summarized in 
Table 2.

From Table 2, it can be seen that W is in a range of 
100–623 kg, R is in the range of 48–218 m, and PPV was 
recorded in the range of 17.21–23.55. For collecting the 
datasets, Micromate instrument (Instantel—Canada) was 
used to record blast-induced PPV. PPV can be recorded in 
the range of 0.127–254 mm/s by the Micromate instru-
ment. A handheld GPS navigation system was used to 
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determine monitoring distance (R). Finally, W was col-
lected from blasts design. Figure 3 illustrates a histogram 
of the datasets collected in this study.

3 � Overview of support vector regression 
with kernel functions

Support vector machine (SVM) is a machine learning algo-
rithm based on the principle of minimizing structural risk 
to generalize a limited number of samples better and is 
proposed by Cortes, Vapnik [61]. SVM can solve both classi-
fication and regression problems. For regression problems, 
the SVM is called the support vector regression (SVR). SVR 

relies on a subset of training datasets to build the forecast-
ing model [62]. The goal of SVR is to estimate a smooth 
function f(X) with a deviation not more significant than ɛ 
for all output values [63].

For predicting blast-induced PPV in this study, SVR is 
performed based on three forms of kernel function as 
follows:

•	 Linear kernel:

•	 Polynomial kernel:

•	 Radial primary kernel function:

Here r, d, γ, and σ are kernel parameters which can be 
adjusted for optimal predictive models. In addition to the 
parameters of the algorithm, C parameter (cost) is also a 
penalty factor used to improve the accuracy of the predic-
tive models [64].

(1)K (X , Y) = XTY

(2)K (X , Y) = (𝛾 ⋅ XTY + r)d ; 𝛾 > 0; d = (1, 2,…)

(3)K (X , Y) = exp

�

‖X − Y‖2

2�2

�

Fig. 2   A view of the site study

Table 2   Summary of the datasets used in this study

W R PPV

Min. 100.0 Min. 48.0 Min. 17.21
1st Qu. 237.0 1st Qu. 110.0 1st Qu. 19.88
Median 316.0 Median 133.0 Median 20.59
Mean 318.9 Mean 134.2 Mean 20.60
3rd Qu. 397.0 3rd Qu. 154.0 3rd Qu. 21.50
Max. 623.0 Max. 218.0 Max. 23.55
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4 � Proposing SVR models with different 
kernel functions for predicting PPV

To develop the SVR models, the original datasets were 
divided into two parts, 85% of the whole datasets (157 
blasting events) were used as the training datasets, and 
the rest 15% (24 blasting events) were used as the test-
ing datasets. It should be noted that all the PPV pre-
dictive models are developed based on the same train-
ing datasets and validated based on the same testing 
datasets.

4.1 � Support vector regression with linear (SVR‑L)

For support vector regression with linear (SVR-L), no 
parameters of kernel functions are used to optimize the 
model. Only the C penalty factor is adjusted to improve the 
accuracy of the SVR-L model. For increasing the accuracy 
of the model and avoid overfitting, tenfold cross-validation 
resampling technique with three repeats was used in the 
development of the SVR-L models. A “trial and error” pro-
cedure was performed with 1000 SVR-L models for various 
C parameter values as shown in Fig. 4. Root-mean-square 
error (RMSE) was used to select the optimal model using 
the smallest value. As a result, the final value used for the 
model was C = 0.18.

Fig. 3   Histogram of the data-
sets used in this study

Fig. 4   Performance of SVR-L 
models on the training data-
sets
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4.2 � Support vector regression with radial basis 
function (SVR‑RBF)

In support vector regression with radial basis function 
(SVR-RBF), there are two parameters that can be adjusted 
to optimize the predictive model, including σ and C. Like 
the SVR-L models, a “trial and error” procedure is also 
employed with 1000 SVR-RBF models for variables σ and 
C parameters. Tenfold cross-validation resampling tech-
nique with three repeats was also used in the develop-
ment of the SVR-RBF models for increasing the accuracy 
of the model and avoid overfitting. RMSE continues to be 
used to select the optimal model using the smallest value. 
The final values used for the SVR-RBF model were σ = 0.017 
and C = 304.411. Figure 5 illustrates the performance of 
SVR-RBF models with various parameters. 

4.3 � Support vector regression with polynomial 
(SVR‑P)

In support vector regression with polynomial (SVR-P), 
there are three parameters used for controlling the perfor-
mance of the model, including degree, scale, and C. Similar 
to the SVR-L and SVR-RBF models, a “trial and error” proce-
dure with 1000 models was developed for SVR-P models. 
For improving the accuracy of the model and avoid overfit-
ting, tenfold cross-validation resampling technique with 
three repeats was used in the development of the SVR-P 
models. RMSE was used to select the optimal model using 
the smallest value. As a result, the final values used for the 
model were degree = 3, scale = 0.117 and C = 0.08 as shown 
in Fig. 6.

5 � Results and discussion

5.1 � Performance metrics for evaluating the models

To assess the performance of the mentioned predictive 
models, the performance indicators are used, including 
root-mean-square error (RMSE), coefficient of determina-
tion (R2), and mean absolute error (MAE), which are calcu-
lated using Eqs. (4–6), respectively.

where n is the total number of data; yPPV  is the meas-
ured value, ŷPPV  is the predicted value; and y  is mean of 
measured values. In the most optimal model, R2 should 
be equal to 1, and RMSE and MAE should be similar to 0, 
respectively.

5.2 � Empirical

For comparison and evaluation of the performance of the 
predictive models, an empirical technique is also applied 

(4)RMSE =

√

√

√

√
1

n
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2
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2
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Fig. 5   Performance of SVR-
RBF models on the training 
datasets
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in this study. Of the current empirical methods, the United 
States Bureau of Mines (USBM) remained the most widely 
used empirical method for estimating PPV and was pro-
posed by Duvall, Petkof [24]. Therefore, we have chosen 
a USBM innovative formula that represents experimental 
techniques to evaluate blast-induced PPV in this study. The 
USBM empirical method is described in Eq. 7 as follows:

where W is the maximum charge per delay, kg; R is the 
distance between the blast site and monitoring point, m; 
λ and α are the site factors and are determined by the mul-
tivariate regression analysis.

According to Eq.  7, λ and α are the site factors and 
are determined by the multivariate regression analysis. 
It should be noted that 157 blasting events in the train-
ing datasets are used to identify the site factors λ and α. 
SPSS version 18.0 [65] is used for multivariate regression 
analysis to determine the site factors λ and α. As a result, λ 
and α identified 67.054 and 0.585, respectively. The USBM 

(7)PPV = �

�

R
√

W

�−�

empirical technique for estimating blast-induced PPV in 
this study was defined according to Eq. (7) as follows:

5.3 � Comparison and assessment of the predictive 
models

Based on the developed predictive models, the testing 
datasets are used to evaluate the performance of the 
models via metrics in Eqs. (4–6). Accordingly, RMSE, R2, 
and MAE are calculated on both the training and testing 
datasets. Table 3 interprets the performance of the models.

From Table 3, it can be seen that the empirical tech-
nique (USBM) provided the lowest performance on both 
the training and testing datasets. On the testing datasets, 
the empirical only reached an RMSE of 0.856, R2 of 0.643, 
and MAE of 0.575, whereas the SVR models, i.e., SVR-L, SVR-
RBF, and SVR-P, yielded much higher performance than 
the empirical. It can be seen that the SVR models seem to 
work better for predicting blast-induced PPV. Of the three 
SVR models, SVR-RBF was the best model with an RMSE of 

(8)PPV = 67.054

�

R
√

W

�−0.585

Fig. 6   Performance of SVR-P 
models on the training data-
sets

Table 3   Performance of the 
PPV predictive models on 
training and testing datasets

Model Training datasets Testing datasets

RMSE R2 MAE RMSE R2 MAE

Empirical 0.771 0.561 0.515 0.856 0.643 0.575
SVR-L 0.372 0.857 0.183 0.415 0.915 0.156
SVR-RBF 0.368 0.855 0.184 0.396 0.924 0.135
SVR-P 0.365 0.857 0.189 0.412 0.916 0.157
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0.396, R2 of 0.924, and MAE of 0.135 on the testing data-
sets. Based on the obtained results, it can be seen that the 
controlled blasting techniques can be effectively applied 
by AI techniques, i.e., SVR models. However, they depend 
on the characteristics of each site. Therefore, they can be 
reconsidered when asked for another location. Figure 7 
demonstrates the proper scale of the predictive models 
for predicting blast-produced PPV in this study.

To assess the certain level of the predictive models, the 
predicted values were compared to measured values on 
the testing datasets and are shown in Table 4. Accordingly, 
it can be seen that the SVR-RBF model yielded the pre-
dicted values which closer the measured values than the 
other models. With high levels of accuracy, the SVR-RBF 
model can be applied to control the hazards caused by 
blasting operations in open-pit mines and minimizing the 
impacts on the environment.

6 � Conclusions and recommendations

As an indispensable development, blasting is still the most 
popular and effective method for rock fragmentation in an 
open-pit mine. However, safety and sustainable develop-
ment in mining are essential requirements for the min-
ing industry. Therefore, the undesirable effects caused by 
blasting operations in open-pit mine need to be strictly 
controlled, especially ground vibration. This study investi-
gated and developed a series of blast-induced PPV predic-
tion models based on the SVR algorithm with three differ-
ent kernel functions. Comparison and assessment of them 
were implemented with the USBM empirical technique. 
Finally, the best model for predicting blast-induced PPV 

in Phan Me open-pit coal mine, Vietnam, was selected, i.e., 
SVR-RBF.

In conclusion, SVR is a robust algorithm for predicting 
blast-induced PPV with the power of kernel functions. 

Fig. 7   The relationship 
between measured and pre-
dicted values of the predictive 
models on testing datasets

Table 4   Comparison of measured and predicted values of the pre-
dictive models on testing datasets

No. Measured Empirical SVR-L SVR-RBF SVR-P

1 21.00 24.26 22.97 22.91 22.97
2 18.13 19.39 18.41 18.13 18.24
3 21.17 20.91 21.20 21.20 21.17
4 19.97 20.26 20.05 20.06 20.08
5 19.53 19.82 19.51 19.53 19.54
6 19.03 19.37 19.03 19.04 19.02
7 22.79 22.45 22.76 22.71 22.74
8 19.97 20.20 20.06 20.09 20.10
9 19.90 20.12 19.93 19.95 19.97
10 21.80 21.39 21.79 21.78 21.73
11 17.82 18.85 18.07 17.75 17.79
12 21.27 21.00 21.26 21.26 21.23
13 19.15 19.48 19.07 19.06 19.06
14 20.19 20.35 20.30 20.32 20.33
15 18.74 19.43 18.93 18.89 18.90
16 22.80 23.93 22.92 22.86 22.91
17 21.65 21.17 21.66 21.67 21.62
18 21.07 20.54 21.04 21.08 21.03
19 21.50 21.22 21.41 21.40 21.37
20 22.00 21.34 21.95 21.95 21.90
21 20.93 20.53 20.88 20.92 20.88
22 20.49 20.61 20.55 20.55 20.57
23 21.98 21.41 21.90 21.89 21.84
24 20.39 20.64 20.47 20.46 20.48
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In this study, the SVR model with RBF form seems to 
be more appropriate than L and P functions in predict-
ing blast-induced PPV in this area. With high accuracy, 
the results indicated that the SVR-RBF model should be 
applied in practical engineering to control the impacts 
of PPV on the surrounding environment. The remaining 
SVR models may also be considered in other mine condi-
tions and should be further investigated to improve the 
accuracy of the model.
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