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Abstract
Blasting is one of the cheapest and effective methods for breaking rock mass in open-pit mines. However, its side effects 
are not small such as ground vibration (PPV), air overpressure, fly rock, back break, dust, and toxic. Of these side effects, 
blast-induced PPV is the most dangerous for the human and surrounding environment. Therefore, evaluating and accu-
rately forecasting blast-induced PPV is one of the most challenging issues facing open-pit mines today. In this paper, a 
series of artificial neural network models were applied to predict blast-induced PPV in an open-pit coal mine of Vietnam; 
68 blasting events were used in this study for development of the ANN models. Of the whole dataset, 80% (approximately 
56 observations) were used for the training process, and the rest of 20% (12 observations) were used for the testing 
process. Five ANN models were developed in this study with the difference in the number of hidden layers. The ANN 
2-5-1; ANN 2-8-6-1; ANN 2-5-3-1; ANN 2-8-6-4-1; and ANN 2-10-8-5-1 models were considered in this study. An empirical 
technique was also conducted to estimate blast-induced PPV and compared to the constructed ANN models. For evaluat-
ing the performance of the models, root-mean-squared error (RMSE) and determination coefficient (R2) were used. The 
results indicated that the ANN 2-10-8-5-1 model (10 neurons in the first hidden layer, 8 neurons in the second hidden 
layer, and 5 neurons for the third hidden layer) yielded a superior performance over the other models with an RMSE of 
0.738 and R2 of 0.964. In contrast, the empirical performed poorest performance with an RMSE of 2.670 and R2 of 0.768. 
This study is a new approach to predict blast-induced PPV in open-cast mines aim to minimize the adverse effects of 
blasting operations on the surrounding environment.
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1  Introduction

Blasting is one of the cheapest and most effective meth-
ods for hard-rock fragmentation in open-pit mines and 
civil engineering. However, many previous researchers 
have concluded that only 25–30% of the explosive energy 
was directly involved in breaking rock, the rest produces 
undesirable side effects such as ground vibration (PPV), 
air overpressure, fly rock, and back break [1–7]. Of these 
side effects, PPV is the most dangerous side effects for 

humans and the environment. Therefore, precise predic-
tion of blast-induced PPV is an essential requirement in 
open-pit mines.

To assess and predict blast-induced PPV, many scientists 
have access to empirical techniques based on mathemati-
cal statistics [8–18]. Empirical techniques were mostly 
based on mathematical statistical methods and used two 
input variables including explosive charge per delay/maxi-
mum explosive charge capacity (W) and monitoring dis-
tance (R). They were considered the two most influential 
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factors for blast-induced PPV [19]. However, their perfor-
mance was not high in some cases [20–25].

In recent years, various advanced techniques and 
approaches have been developed to predict and reduce 
the undesirable effects of blast-induced PPV in open-cast 

Table 1   Some studies of 
PPV prediction using soft 
computational models

References Technique No. of datasets Performance

Monjezi et al. [37] MLPNN 269 R2 = 0.954; RMSE = 0.03
Monjezi et al. [38] ANN 182 R2 = 0.949
Armaghani et al. [39] PSO-ANN 44 R2 = 0.930; MSE = 10.71
Saadat et al. [21] ANN 69 R2 = 0.957; MSE = 0.000722
Hasanipanah et al. [6] SVM 80 R2 = 0.957; RMSE = 0.340
Amiri et al. [40] ANN-KNN 75 R2 = 0.880; RMSE = 0.540
Hasanipanah et al. [41] PSO 80 R2 = 0.938; RMSE = 0.240
Faradonbeh and Monjezi [42] GEP 115 R2 = 0.874; RMSE = 6.732
Taheri et al. [23] ABC-ANN 89 R2 = 0.920; RMSE = 0.220
Armaghani et al. [43] ICA 73 R2 = 0.940; RMSE = 0.370
Behzadafshar et al. [44] ICA 76 R2 = 0.939; RMSE = 0.320
Abbaszadeh Shahri and Asheghi [45] ANN 37 R2 = 0.954; RMSE = 0.157
Mokfi et al. [46] GMDH 102 R2 = 0.911; RMSE = 0.889
Torres et al. [47] MLR-Empirical 178 R2 = 0.898

Fig. 1   Overview of the site study
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mining, including machine learning, artificial neural 
network (ANN), genetic algorithm, fuzzy neural system. 
Longjun et al. [26] used random forest (RF) and support 
vector machine (SVM) algorithms to predict blast-induced 
PPV; 93 blasting events were used for development of the 
RF and SVM models in their study. Their results showed 
that the RF and SVM models were acceptable and the SVM 
model was better than the RF model throughout the PPV 
predicted values on the testing dataset. Classification and 
regression tree (CART), multiple regression (MR), and vari-
ous empirical models were also used by Hasanipanah et al. 
[27] to predict blast-induced PPV. A total of 86 blasting 
events were monitored in Miduk copper mine (Iran) for 
their aim. Hasanipanah et al. [27] concluded that the CART 
technique exhibited better performance than the empiri-
cal and MR models with an RMSE of 0.17 and R2 of 0.95. 
Chandar et al. [28] examined regression models and ANNs 
in predicting blast-induced PPV using 168 blasting events 
in three different mines (limestone, dolomite, and coal). 
Their results indicated that the ANN model was the best 
model among the approaches used in their study with a R2 
of 0.878 for the three mines. Faradonbeh and Monjezi [29] 
were also successfully developed two robust metaheuristic 
algorithms to predict blast-induced PPV using 115 blast-
ing events. In their study, a predictive equation based 
on gene expression programming (GEP) was developed 
to estimate blast-induced PPV as the first step. Then, the 
capability of the established GEP model was compared 

with that of a nonlinear multiple regression model and five 
general equations as the next step. Their results revealed 
that the organized GEP model was more efficient than the 
other models in predicting blast-induced PPV. In addition, 
many researchers have used these approaches to predict 
blast-induced PPV in open-cast mines, and the results 
were acceptable [22, 23, 30–36]. Table 1 shows several soft 
computing techniques in predicting blast-induced PPV.

Although the studies of PPV predictions in open-
pit mines using artificial intelligence (AI) have been 
approached, no approach or model was optimal for every 
area. In addition, AI is an approach that needs to be con-
tinually evolving and diverse. Thus, several ANN models 
for predicting blast-induced PPV at an open-pit mine in 
Vietnam were developed in this study. The USBM empirical 
technique was also developed in this study to predict and 
compare with the ANN technique.

The composition of the article includes four parts: Part 
1 reviews a number of published studies and the reasons 
for this study; Sect. 2 summarizes the data used and the 
methodology used; the results of this study and discus-
sion are presented in Sect. 3; Finally, the conclusions and 
recommendations are given in the last section.

2 � Data used and methodologies

2.1 � Summary of the data used

As regarding, this research aims to develop an ANN 
model for predicting blast-produced PPV at an open-
pit coal mine of Vietnam (Fig. 1). Explosives used at the 
mine are mainly ANFO with an explosive capacity of 
1360–6700 kg. The mine used non-electric delay blast-
ing method for fragmentation of rock. The geological 
structure of the mine is quite simple. Major components 

Table 2   Characteristic of the datasets used

W R PPV

Min.: 136.0 Min.: 68.0 Min.: 17.80
1st Qu.: 219.8 1st Qu.: 112.0 1st Qu.: 24.92
Median: 305.5 Median: 134.5 Median: 27.30
Mean: 316.5 Mean: 131.7 Mean: 27.47
3rd Qu.: 405.0 3rd Qu.: 159.5 3rd Qu.: 29.61
Max.: 670.0 Max.: 204.0 Max.: 35.63

Fig. 2   General structure of an ANN model for predicting blast-
induced PPV in this study

Table 3   Site factors and empirical equations for predicting PPV in 
this site study

No. Site factors Equation

k p

1 9.520 − 0.359
PPV = 9.520

�

R

3
√

W

�0.359

2 6.640 − 0.480
PPV = 6.640

�

R

3
√

W

�0.480

3 9.427 − 0.362
PPV = 9.427

�

R

3
√

W

�0.362

4 6.602 − 0.482
PPV = 6.602

�

R

3
√

W

�0.482

5 9.378 − 0.364
PPV = 9.378

�

R

3
√

W

�0.364
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include clay, siltstone, sandstone, limestone, and coal. 
Cracks and faults are not present in the study area. The 
hardness of rock mass is in the range of 8–11 according 
to the hardness strength of Protodiakonov. Therefore, 
blasting is an effective method for rock fragmentation 
in this mine.

In this study, 68 blasting operations were recorded with 
three parameters: maximum explosive charge per delay 
(W), monitoring distance (R) and ground vibration (PPV). 
Of these parameters, W was extracted from 68 blasting 
designs, and a handheld GPS navigation system was used 
to determine R. In this study, W and R were used as the 

input variables for predicting PPV. PPV values were meas-
ured by Blastmate III, Canada. The datasets used for this 
study are summarized in Table 2.

Before constructing the forecasting models, a data 
splitting procedure was performed for this study. Of the 
68 observations, 80% of the whole data (56 observations) 
were used as the training dataset; the remaining 20% (12 
observations) were used as the testing dataset. For the 
development of the PPV predictive models, the training 
dataset was used. For evaluating the performance of the 
models, the testing dataset was used as unseen data based 
on the developed models.

Fig. 3   ANN models for predicting blast-induced PPV in this site study
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2.2 � Empirical technique

As mentioned in Sect. 1, empirical technique was widely 
used for predicting blast-induced PPV in open-pit mine [5, 
39]. Many scholars have proposed and developed empiri-
cal equations for predicting blast-induced PPV [8–18]. 
Review of the literature showed that the United States 
Bureau of Mines (USBM) empirical equation was widely 
applied for estimating blast-induced PPV which was pro-
posed by Duvall and Petkof [8]. However, it was rarely 
applied in Vietnam. Review of the literature showed that 
the empirical equation was proposed by Ambraseys [10] 
which was widely applied in Vietnam [48–50]. Therefore, 
the empirical equation of Ambraseys [10] was selected 
representing for an empirical technique to predict blast-
induced PPV in this study. It is described as follows:

where W denotes the maximum of charge per delay (kg); 
R denotes the distance from the blast site (m); k and p are 
site factors and are determined by multivariate regression 
analysis.

(1)PPV = k

�

R
3
√

W

�−p

,

2.3 � Overview of ANN

Artificial neural network (ANN) is one of the most advanced 
artificial intelligence (AI) techniques that were built based 
on the human neural structure [51]. They have the ability 
to connect neurons to solve problems from input signals 
through the help of computers [51]. The general structure 
of an ANN consists of three layers: an input layer, hidden 
layers, and output layer [51]. Figure 2 illustrates a con-
ventional structure of an ANN model for predicting blast-
induced PPV in this study. In layers containing neurons 
with different tasks and functions, the number of hidden 
layers and neurons in each layer is unlimited. However, 
too many neurons will lead to overfitting, while too few 
neurons will not reflect the properties of the data [52]. The 
number of hidden layers is also one of the factors affecting 
the training time of the model. In theory, an ANN with two 
hidden layers can solve all problems. Too many hidden lay-
ers will increase the training time of the model.

ANN model works in the following manner: At the input 
layer, neurons receive input signals with weights. Then, 
they are processed and sent to the neurons of the first hid-
den layer via the transfer function. Here, the neurons will 
receive the results from the input and processing param-
eter classes, calculate the weights and send them to the 
second hidden layer via the transfer function. The process 

Table 4   Performance indices of the empirical models

No. Training datasets Testing datasets

RMSE R2 RMSE R2

Empirical 1 2.480 0.603 2.670 0.768
Empirical 2 2.329 0.616 2.814 0.677
Empirical 3 2.468 0.599 2.705 0.599
Empirical 4 2.266 0.618 3.042 0.663
Empirical 5 2.631 0.573 1.823 0.761

Table 5   Performance indices of 
the empirical models and their 
ranking

Method Model RMSE R2 Rank for 
RMSE

Rank for R2 Total rank

Empirical Training 1 2.48 0.603 2 3 5
Training 2 2.329 0.616 4 4 8
Training 3 2.468 0.599 3 2 5
Training 4 2.266 0.618 5 5 10
Training 5 2.631 0.573 1 1 2
Testing 1 2.67 0.768 4 5 9
Testing 2 2.814 0.677 2 3 5
Testing 3 2.705 0.599 3 1 4
Testing 4 3.042 0.663 1 2 3
Testing 5 1.823 0.761 5 4 9

Table 6   Total rank of the empirical models

Note: the best empirical model was shown in bold type. It was 
selected for representing for empirical techniques in this study

Method Model no. Total rank

Empirical 1 14
2 13
3 9
4 13
5 11
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continues until the results are passed to the output layer 
and give the final output [53].

The results of the ANN model depend heavily on the 
learning process of the network, also known as the training 
process. The learning process of ANN includes two types 

of learning: supervised learning and unsupervised learn-
ing [54]. Input data for PPV prediction are numerical data 
and using regression algorithms, so most uses supervised 
learning based on input data and output requirements.

In this study, five ANN models with one, two, and three 
hidden layers were considered and developed to predict 
blast-induced PPV.

2.4 � Establish the predictive models

For empirical technique, Ambraseys empirical equation 
was applied according to Eq. (1); 56 blasting events in the 
training dataset were used for this task. A sampling pro-
cedure was repeated five times to create five different sets 
of data. Then, five empirical models for predicting blast-
induced PPV were established. SPSS software version 16.0 
[55] was used to analyze multivariate regression data for 
determining the site factors of k and p. The regression 

Fig. 4   Predicted and measured PPV in this site study by empirical models

Table 7   Performance indices of the ANN models

Model Training datasets Testing datasets

RMSE R2 RMSE R2

ANN 2-5-1 1.007 0.933 1.035 0.936
ANN 2-5-3-1 0.903 0.946 0.831 0.958
ANN 2-8-6-1 0.842 0.953 0.806 0.96
ANN 2-8-6-4-1 0.856 0.952 0.648 0.973
ANN 2-10-8-5-1 0.821 0.956 0.738 0.964
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analysis results and five empirical models are given in 
Table 3. The performance of the empirical models is dis-
cussed in the next section.

For ANN models, a “trial-and-error” procedure with 
five ANN models was employed to predict blast-induced 
PPV in this site study. The ANN models with one, two, and 
three hidden layers were considered and developed in this 
study. The number of neurons in hidden layers lies in the 
range of 3–10 to prevent the creation of too complex ANN 
models; 56 blasting events were used to develop the ANN 
models for predicting blast-induced PPV in this study. As 
a result, five ANN models were developed, including ANN 
2-5-1; ANN 2-5-3-1; ANN 2-8-6-1; ANN 2-8-6-4-1; and ANN 
2-10-8-5-1. The structure of the ANN models is given in 
Fig. 3.

In Fig. 3, I1 and I2 are input parameters corresponding 
to W and R; H1 to H10 is the number of neurons in each 
hidden layer; O1 is the output predicted value (PPV); B1 
to B4 are biased layers that apply constant values to the 
nodes. The black line represents for positive weights, and 
the gray line represents for negative weights. Line thick-
ness is in proportion to the magnitude of the weight rela-
tive to all others.

3 � Results and discussion

For comparing and evaluating the quality of the predictive 
models, the performance indices include the root-mean-
squared error (RMSE) and determination coefficient (R2) 
were used in this study and defined by Eqs. (2)–(3) as follows:

where n is the total number of data. y
PPV

 , ŷ
PPV

 and y  are 
the measured, predicted and mean of the y

PPV
 values, 

respectively.

3.1 � Empirical models

Based on the empirical models developed in Table 3, the 
RMSE and R2 performance indicators were calculated 
according to Eqs. (2) and (3) for training dataset and test-
ing dataset. The performance of the empirical models is 
shown in Table 4.

From Table 4, it can be seen that the empirical mod-
els for predicting blast-induced PPV in this study are not 
so bad. However, it is difficult to assess which empirical 
model is the best among the five empirical models devel-
oped. Therefore, a simple ranking method was applied in 
this study to find the optimal empirical model. The ranking 
results for the empirical models are shown in Table 5. Also, 
a total ranking on both training and testing datasets is also 
presented in Table 6. 

Based on Table 6, it is effortless to see that the empirical 
model No.1 was the best empirical model for predicting 
blast-induced PPV in this study with a total ranking of 14. 

(2)RMSE =

√

√

√

√
1

n

n
∑

i=1

(y
PPV

− ŷ
PPV

)2

(3)R2 = 1 −

∑

i (yPPV − ŷ
PPV

)2

∑

i (yPPV − ȳ)2

Table 8   Performance indices 
of the ANN models and their 
ranking

Method Model RMSE R2 Rank for 
RMSE

Rank for R2 Total rank

ANN Training 1 1.007 0.933 1 1 2
Training 2 0.903 0.946 2 2 4
Training 3 0.842 0.953 4 4 8
Training 4 0.856 0.952 3 3 6
Training 5 0.821 0.956 5 5 10
Testing 1 1.035 0.936 1 1 2
Testing 2 0.831 0.958 2 2 4
Testing 3 0.806 0.96 3 3 6
Testing 4 0.648 0.973 5 5 10
Testing 5 0.738 0.964 4 4 8

Table 9   Total rank of the ANN models

Note: the best ANN model was shown in bold type. It was selected 
for representing for ANN techniques in this study

Method Model no. Total rank

ANN 1 4
2 8
3 14
4 16
5 18
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The empirical models No. 2 and No. 4 were also performed 
well in this study with a slightly lower performance than 
empirical model No. 1. In addition, it can be seen that 
empirical model No. 3 provided the poorest performance 
in this study with a total ranking of 9. Figure 4 illustrates 
the relationship between measured and predicted values 
by the empirical models in this study.

3.2 � The ANN models

In this section, the performance of the ANN models was 
highlighted. Accordingly, five ANN models are developed 
in Sect. 2.4: ANN 2-5-1; ANN 2-5-3-1; ANN 2-8-6-1; ANN 
2-8-6-4-1; and ANN 2-10-8-5-1. For each ANN model, per-
formance indices were computed using Eqs. (2)–(3). Note 
that the training and testing datasets of these ANN mod-
els are the same. The performance of the ANN models is 
shown in Table 7.

From Table  7, it can be seen that the ANN models 
worked better than the empirical models in predicting 
blast-induced PPV in this study. However, it is difficult to 
select the most optimal ANN model among the five ANN 
models developed. Thus, a simple ranking method was 
also applied to find out the optimal ANN model in this 
case. Table 8 interprets the performance of the ANN mod-
els and their ranking on both the training and testing data-
sets. Table 9 summarizes the ranking of each ANN model.

Fig. 5   Measured versus predicted PPV in this study by the ANN models

Table 10   Comparisons of performance between the empirical and 
ANN selected

Method Training datasets Testing datasets

RMSE R2 RMSE R2

Empirical 2.480 0.603 2.670 0.768
ANN 0.821 0.956 0.738 0.964
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Based on Table 9, it is easy to see that the ANN model 
No. 5 (2-10-8-5-1) provided the best performance with a 
total ranking of 18. The ANN model No. 4 (2-8-6-4-1) was 
also useful for predicting PPV with slightly lower perfor-
mance than the ANN model No. 5. Table 9 shows that 
the ANN model with one hidden layer (2-5-1) yielded 
the poorest performance among 5 ANN models used in 
this study. Figure 5 illustrates the relationship between 
the measured and predicted values by the ANN models 
in this study.

3.3 � Performance evaluation between the ANN 
model and empirical model

Based on the above results, two PPV predictive models were 
selected: the empirical model No. 1 representing for empiri-
cal technique, and the ANN 2-10-8-5-1 model representing 
for ANN technique in this study. A comparison and evalu-
ation between the empirical model and the ANN model 
are given in Table 10. As a result, the selected ANN model 
obtained a better performance than the selected empirical 
model based on RMSE and R2. Figure 6 shows that the PPV 
predicted values by the ANN model were closer to actual 
values than the empirical model.

4 � Conclusion and remarks

Blasting is an integral part of the open-pit mining tech-
nology. However, its side effects are dangerous for the 
surrounding environment, especially ground vibration 
(PPV). Therefore, accurate prediction of blast-induced 
PPV is essential to minimize the undesirable effects 
caused by PPV. From the results of this study, we draw 
some conclusions:

•	 ANN is an advanced and robust technique that should 
be used to predict blast-induced PPV in open-pit 
mines. This study has developed a robust ANN model 
with high accuracy (RMSE = 0.738, R2 = 0.964). It 

should be applied in practical engineering to control 
the undesirable effects on the surrounding environ-
ment. However, the development of the ANN models 
in open-pit mine is often complicated, requiring the 
user to have an understanding of mathematics and 
programming.

•	 The ANN model with a hidden layer should not be 
used to predict PPVs because it does not reflect all 
the characteristics of the data that lead to the inac-
curacy of the forecasting model. The ANN model with 
three hidden layers has been proposed for predict-
ing blast-induced PPV in practical engineering based 
on the results of this study. ANN models with many 
hidden layers should be considered in the future for 
predicting blast-induced PPV.

•	 The empirical technique is a rapid and straightforward 
method of estimating blast-induced PPV, but further 
research is needed to improve the accuracy of empiri-
cal models.

•	 The other influence parameters should be considered 
and supplemented to improve the accuracy of PPV pre-
dictive models, especially for empirical methods.

The results of this study are the basis for the develop-
ment of blast-induced PPV predictive models for other 
open-pit mines with similar conditions. At the same time, 
it is useful for managers, engineers, and blasters in opti-
mizing blasting efficiency and minimizing the negative 
impacts caused by blasting operations in open-pit mines.
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