Quinovic acid glycosides from *Mussaenda pilosissima* Valeton

Nguyen Xuan Bach^{2,3}, Vu Kim Thu¹, Do Thi Trang², Phan Van Kiem^{2,3*}

¹Hanoi University of Mining and Geology, Viet Nam

²Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Viet Nam

³Graduate University of Science and Technology, VAST, Viet Nam

Received December 18, 2018; Accepted for publication January 5, 2019

Abstract

Four known quinovic acid glycosides, quinovic acid $28-O-\beta-D$ -glucopyranosyl ester (1), $3-O-\alpha-L$ -rhamnopyranosylquinovic acid $28-O-\beta-D$ -glucopyranosyl ester (glycoside A, **2**), and $3-O-\beta-D$ -glucopyranosylquinovic acid $28-O-\beta-D$ -glucopyranosyl ester (glycoside B, **3**), $3-O-\alpha-L$ -rhamnopyranosylquinovic acid $28-O-\beta-D$ -glucopyranosyl ester (**4**) were isolated from the aerial parts of *Mussaenda pilosissima* Valeton. Their chemical structures were determined using NMR spectra as well as in comparison with the reported data. Compounds **1**, **2**, and **4** were reported for the first time from *Mussaenda* genus.

Keywords. Mussaenda pilosissima, quinovic acid glycoside, ursane.

1. INTRODUCTION

The genus Mussaenda comprises about 200 species belonging to the Rubiaceae family.^[1] In Vietnam, there are about 27 species of genus Mussaenda.^[2] Of which, there are 11 species have been used as folk medicines.^[3] The chemical studies of Mussaenda indicated genus the presence of iridoids. triterpenoids, and flavonoids. These compounds have shown the potential significant biological effects as anti-inflammatory, antioxidant, and anticancer activities.^[4] Mussaenda pilosissima has been used for the treatment of kidney diseases and blood in urine.^[5] Up to now, the chemical constituents of this plant have not been studied yet. Herein, we report the isolation and structural elucidation of four quinovic acid glycosides from the aerial parts Mussaenda pilosissima.

2. MATERIAL AND METHODS

2.1. Plant Material

The aerial parts of *Mussaenda pilosissima* Valeton. were collected at Me Linh, Vinh Phuc, Vietnam in February 2017 and identified by Dr. Nguyen The Cuong, Institute of Ecology and Biological Resources, VAST. A voucher specimen (NCCT-P69) was deposited at the Institute of Marine Biochemistry, VAST.

2.2. General experimental procedures

All NMR spectra were recorded on a Bruker AM500 FT-NMR spectrometer (500 MHz for ¹H-NMR and 125 MHz for ¹³C-NMR). NMR measurements, including ¹H-, ¹³C-NMR, HSQC, and HMBC experiments, were carried out using 5-mm probe tubes at temperature of 22.2 °C. ESI mass spectra were recorded on an Agilent 6530 Accurate-Mass Q-TOF LC/MS system. Column chromatography was performed using a silica gel (Kieselgel 60, 70-230 mesh and 230-400 mesh, Merck) or RP-18 resins (150 μ m, Fuji Silysia Chemical Ltd.), thin layer chromatography (TLC) using a pre-coated silica-gel 60 F₂₅₄ (0.25 mm, Merck) and RP-18 F_{254S} plates (0.25 mm, Merck).

2.3. Extraction and isolation

The dried powder of aerial parts of *M. pilosissima* Valeton. (4.2 kg) was sonicated 3 times with hot methanol. The extract was filtered through filter paper, then solvent was removed under reduced pressure to yield 320 g of a dark solid extract. The extract was suspended in water and successively partitioned with *n*-hexane, dichloromethane, ethyl acetate giving *n*-hexane (MPA1 56.8 g), dichloromethane (MPA2 97.8 g), ethyl acetate extracts (MPA3 23 g) and water layer (MPA4).

64 Wiley Online Library 2019 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 1: Chemical structures of compounds 1-4 from M. pilosissima

The MPA3 extract was chromatographed on a silica gel column eluting with dichloromethane: methanol (100:0 \rightarrow 0:1, v/v) to give 8 subfractions, MPA3A-MPA3H. MPA3F was chromatographed on a RP-18 column eluting with methanol/water (1/1.5, v/v) to give eight smaller fractions, MPA3F1-MPA3F8. Compound 1 (17.0 mg) was yielded from MPA3F2 fraction using a silica gel column eluting dichloromethane/acetone/water (1/2.5/0.15, with v/v/v). MPA3F6 fraction was chromatographed on a silica gel column eluting with dichloromethane/acetone/water (1/2.5/0.15, v/v/v) to give two fractions. MPA3F6A and MPA3F6B. MPA3F6B was chromatographed on a RP18 column eluting with acetone/water (1/1.3, v/v) to yield 2 (30.0 mg). MPA3F8 was continued to fractionate on a RP18 column eluting with acetone/water (1/1.3,v/v) to give two fractions, MPA3F8A and MPA3F8B. MPA3F8A was chromatographed on a silica gel column eluting with dichloromethane/acetone/water (1/2.5/0.15, v/v/v) to yield 3 (10.0 mg). MPA3H was chromatographed on a silica gel column to give three smaller fractions, MPA3H1-MPA3H3. Fraction MPA3H3 was chromatographed on a RP-18 column eluting with acetone/water (1/1.3, v/v) to obtain 4 (25.0 mg).

Quinovic acid 28-*O***-***β***-D-glucopyranosyl ester** (1): White amorphous powder; $[\alpha]_D^{25} + 60.0$ (*c* 0.1, MeOH); ESI-MS m/z 649 [M+H]⁺, C₃₆H₅₆O₁₀, M = 648; ¹H- and ¹³C-NMR (CD₃OD), see table 1.

3-*O*-[α -L-rhamnopyranosyl]-quinovic acid-28-*O*-[β -D-glucopyranosyl] ester (glycoside A, 2): White amorphous powder; $[\alpha]_D^{25} + 15.0$ (*c* 0.1, MeOH); ESI-MS m/z 795 [M+H]⁺, C₄₂H₆₆O₁₄, M = 794; ¹H- and ¹³C-NMR (CD₃OD), see table 1.

3-O-[\beta-D-glucopyranosyl]-quinovic acid-28-O-[β -D-glucopyranosyl] ester (glycoside B, 3): White amorphous powder; $[\alpha]_D^{25} + 30.0$ (*c* 0.1, MeOH); ESI-MS m/z 811 [M+H]⁺, C₄₂H₆₆O₁₅, M = 810; ¹Hand ¹³C-NMR (CD₃OD), see table 2. **Quinovic acid 3-***O*- β -**D**-glucopyranosyl-(1 \rightarrow 2)- β -**D**-glucopyranoside (4): White amorphous powder; $[\alpha]_D^{25}$ + 82.0 (*c* 0.1, MeOH); ESI-MS *m/z* 811 [M+H]⁺, C₄₂H₆₆O₁₅, M = 810; ¹H- and ¹³C-NMR (CD₃OD), see table 2.

3. RESULTS AND DISCUSSION

Compound 1 was obtained as a white amorphous powder. The ¹H-NMR spectrum of **1** showed the following signals: one olefin proton at $\delta_{\rm H}$ 5.64 (br s); six methyl groups at $\delta_{\rm H}$ 0.78 (3H, s), 0.90 (3H, s), 0.95 (3H, s), 0.99 (3H, s), 0.92 (3H, d, J = 6.0 Hz),and 0.94 (3H, d, J = 6.0 Hz), suggesting the presence of the ursane aglycone. In addition, one anomeric proton at $\delta_{\rm H}$ 5.39 (d, J = 8.0 Hz) suggested the appearance of a sugar moiety. The ¹³C-NMR spectrum of **1** revealed the signals of 36 carbons, including eight non-protonated carbons at $\delta_{\rm C}$ 38.2, 40.3, 40.8, 49.9, 57.4, 133.4, 178.0, and 179.0; twelve methines at $\delta_{\rm C}$ 38.1, 40.0, 48.1, 55.4, 56.6, 71.3, 73.9, 78.3, 78.6, 79.7, 95.7, and 130.9; ten methylenes at $\delta_{\rm C}$ 19.5, 23.9, 25.9, 26.5, 27.9, 31.2, 37.0, 38.1, 39.8, and 62.6; and six methyl carbons at $\delta_{\rm C}$ 16.4, 16.9, 18.1, 19.2, 21.3, and 28.7. The ¹H-, ¹³C-NMR data (table 1) and ESI-MS were found to match with those of quinovic acid-28-O- β -D-glucopyranosyl ester.^[3] The positions of the functional groups were confirmed by using HSQC and HMBC spectra. The HMBC correlations from H-23 ($\delta_{\rm H}$ 0.95)/H-24 ($\delta_{\rm H}$ 0.78) to C-3 ($\delta_{\rm C}$ 79.7)/C-4 $(\delta_{\rm C} 40.3)/{\rm C}$ -5 ($\delta_{\rm C} 56.6$) were indicated the positions of oxygenated group at C-3, two methyl groups at C-4. The multiplicity of the oxygenated proton at $\delta_{\rm H}$ 3.13 (dd, J = 4.5, 11.0 Hz) indicated the β configuration of oxygenated group at C-3. The HMBC correlations from H-25 ($\delta_{\rm H}$ 0.99) to C-1 ($\delta_{\rm C}$ 39.8)/C-5 ($\delta_{\rm C}$ 56.6)/C-9 ($\delta_{\rm C}$ 48.1)/C-10 ($\delta_{\rm C}$ 38.2); from H-26 ($\delta_{\rm H}$ 0.90) to C-7 ($\delta_{\rm C}$ 38.1)/C-8 ($\delta_{\rm C}$ 40.8/C-9 ($\delta_{\rm C}$ 48.1)/C-14 ($\delta_{\rm C}$ 57.4) supported for the

C					Ĩ	•
С	· * -		1		2.4	2
	$\delta_{\rm C}^*$	δ_{C}^{u}	$\partial_{\rm H}$ (mult., J in Hz)	<u>δ</u> _C #	δ_{C}^{u}	$\delta_{\rm H}$ (mult., J in Hz)
1	39.8	39.8	1.05 (m)/1.71 (m)	39.1	39.8	1.05 (m)/1.73 (m)
2	27.9	27.9	1.59 (m)/1.65 (m)	26.1	26.7	1.75 (m)/1.95 (m)
3	79.7	79.7	3.13 (dd, 4.5, 11.0)	88.2	90.4	3.07 (dd, 4.5. 11.0)
4	40.2	40.3	-	36.5	40.0	-
5	55.8	56.6	0.74 (d, 11.5)	55.6	56.7	0.77 (d, 11.5)
6	18.9	19.5	1.36 (m)/1.53 (m)	18.5	19.4	1.37 (m)/1.52 (m)
7	37.6	38.1	1.22 (m)/1.65 (m)	37.5	37.9	1.23 (m)/1.66 (m)
8	40.8	40.8	-	38.9	40.8	-
9	47.4	48.1	2.25 (dd, 5.5, 11.5)	47.3	48.0	2.25 (dd, 5.5, 11.5)
10	37.4	38.2	-	40.2	38.0	-
11	23.5	23.9	1.94 (m)/1.96 (m)	23.4	23.9	1.94 (m)/1.97 (m)
12	129.6	130.9	5.64 (br s)	129.6	130.9	5.64 (br s)
13	133.3	133.4	-	133.3	133.3	-
14	56.0	57.4	-	56.8	57.4	-
15	26.2	25.9	1.74 (m)/2.06 (m)	25.5	25.8	1.77 (m)/2.06 (m)
16	25.2	26.5	1.77 (m)/2.11 (m)	26.0	26.5	1.78 (m)/2.10 (m)
17	49.0	49.9	-	49.0	49.8	-
18	54.7	55.4	2.30 (d. 11.0)	54.7	55.3	2.31 (d. 11.0)
19	39.1	40.0	0.94 (m)	37.6	40.3	$\frac{0.95}{0.95}$ (m)
20	37.5	38.1	1 04 (m)	39.1	38.3	$\frac{1.04}{1.04}$ (m)
21	30.3	31.2	$\frac{1.01(m)}{1.28(m)/1.47(m)}$	30.3	31.2	$\frac{1.01 \text{ (m)}}{1.30 \text{ (m)}/1.48 \text{ (m)}}$
22	36.5	37.0	$\frac{1.20 \text{ (m)}}{1.63 \text{ (m)}}$ (m)	37.0	37.0	$\frac{1.60 \text{ (m)}/1.10 \text{ (m)}}{1.62 \text{ (m)}/1.73 \text{ (m)}}$
23	28.6	28.7	0.95(s)	28.1	28.7	0.94 (s)
23	16.6	16.4	0.78(s)	16.8	17.0	0.91(s)
25	16.7	16.9	0.70(3)	16.6	16.9	$\frac{0.01(s)}{1.00(s)}$
25	18.7	18.1	$\frac{0.99(3)}{0.90(s)}$	10.0	10.7	$\frac{1.00(3)}{0.01(s)}$
20	178.1	170.0	0.90 (8)	178.0	170.0	0.91 (8)
21	176.6	179.0	-	176.0	179.0	-
20	1/0.0	1/0.0	-	1/0.3	1/0.0	-
29	19.5	19.2	0.92(0, 0.0)	10.1	21.5	0.95(d, 0.0)
30	21.2	21.5	0.94(0, 0.0)	21.2 2 0 Ph	21.3	0.93 (d, 0.0)
1/	05.7	28-0	5 20 (1, 9, 0)	<u>3-0-Kna</u>	104.4	4.72 (la ra)
1	95.7	95.0	<u>5.39 (d, 8.0)</u>	104.2	104.4	$\frac{4.73 \text{ (br s)}}{2.94 \text{ (1 - 1 - 2.5)}}$
2'	74.2	/3.9	<u>3.33 (m)</u>	72.5	72.5	<u>3.84 (brd, 2.5)</u>
5	/8.0	/8.3	5.42 (t, 9.0)	72.9	12.5	3.05 (ad, 2.5, 9.0)
4'	/1.2	/1.3	5.36 (m)	/4.1	/4.1	<u>5.40 (m)</u>
5'	78.9	/8.6	3.37 (m)	69.8	69.9	3.72 (m)
6'	62.5	62.6	3.69 (dd, 5.5, 12.0)	18.7	17.8	1.25 (d, 6.5)
			3.82 (dd, 2.0, 12.0)			
				28- <i>O</i> -Gl	c	
1"				95.7	95.6	5.40 (d, 8.0)
2"				74.2	74.0	3.34 (m)
3"				79.0	78.3	3.42 (t, 8.0)
4″				71.3	71.2	3.36 (m)
5″				79.3	78.6	3.37 (m)
6''				62.4	62.6	3.68 (dd, 5.5, 12.0)
						3.82 (dd. 2.0, 12.0)

Table 1: NMR data for compounds 1, 2 and reference compounds

^{a)} Measured in CD₃OD, ^{*} δ_{C} of quinovic acid 28-*O*- β -D-glucopyranosyl ester in pyridine- d_{5} [3], [#] δ_{C} of 3-*O*- α -L-rhamnopyranosylquinovic acid 28-*O*- β -D-glucopyranosyl ester in pyridine- d_{5} [5].

location of two methyl groups at C-8 and C-10. The position of double bond at C-12/C-13 was confirmed by the HMBC correlations from H-12 ($\delta_{\rm H}$ 5.64) to C-9 ($\delta_{\rm C}$ 48.1)/C-14 ($\delta_{\rm C}$ 57.4)/C-18 ($\delta_{\rm C}$ 55.4). The HMBC correlations from H-29 ($\delta_{\rm H}$ 0.92) to C-18 ($\delta_{\rm C}$ 55.4)/C-19 ($\delta_{\rm C}$ 40.4)/C-20 ($\delta_{\rm C}$ 38.1); from H-30 ($\delta_{\rm H}$ 0.94) to C-19 ($\delta_{\rm C}$ 40.4)/C-20 ($\delta_{\rm C}$ 38.1)/C-21 ($\delta_{\rm C}$

31.2) supported for the location of two methyl groups at C-19 and C-20. Thus, the aglycone of **1** was assigned as an ursane-12-ene skeleton. The HMBC correlations from H-15 ($\delta_{\rm H}$ 2.06/1.74) to C-27 ($\delta_{\rm C}$ 179.0); from H-16 ($\delta_{\rm H}$ 2.11/1.77)/H-18 to C-28 ($\delta_{\rm C}$ 178.0) indicated the presence of two carboxylic groups at C-14 and C-17. The ¹³C-NMR

Figure 2: The key HMBC correlations of compounds 1-4

data ($\delta_{\rm C}$ 95.6, 73.9, 78.3, 71.3, 78.6, and 62.6) and the multiplicity of glc H-1' [$\delta_{\rm H}$ 5.39 (d, J = 8.0 Hz)] suggested the sugar moiety as β -D-glucopyranosyl. In addition, the sugar position at C-28 of aglycone was confirmed by the HMBC correlation between H-1' ($\delta_{\rm H}$ 5.39) and C-28 ($\delta_{\rm C}$ 178.0). Consequently, the structure of **1** was determined to be quinovic acid 28-*O*- β -D-glucopyranosyl ester. Compound **1** was reported from *Mussaenda* genus for the first time.

Compound **2** was isolated as a white amorphous powder. The ¹H-NMR spectrum of **2** exhibited the resonant signals: one olefin proton at $\delta_{\rm H}$ 5.64 (br s); four singlet methyl signals ($\delta_{\rm H}$ 0.81, 0.91, 0.94, and 1.00); three doublet methyl signals [$\delta_{\rm H}$ 0.93 (3H, d, J =6.0 Hz), 0.95 (3H, d, J = 6.0 Hz), and 1.25 (3H, d, J =6.5 Hz)]; two anomeric protons [$\delta_{\rm H}$ 4.73 (br s), and 5.40 (d, J = 8.0 Hz)]. The ¹³C-NMR of **2** revealed the signals of 42 carbons, including eight nonprotonated carbons at $\delta_{\rm C}$ 38.0, 40.0, 40.8, 49.8, 57.4, 133.3, 178.0, and 179.0; seventeen methines at $\delta_{\rm C}$ 38.4, 40.3, 48.0, 55.3, 56.7, 69.9, 71.2, 72.5×2, 74.0, 74.1, 78.3, 78.6, 90.4, 95.6, 104.4, and 130.9; ten methylenes at $\delta_{\rm C}$ 19.4, 23.9, 25.8, 26.5, 26.7, 31.2, 37.0, 37.9, 39.8, and 62.6; and seven methyl carbons at $\delta_{\rm C}$ 16.9, 17.0, 17.8, 18.1, 19.2, 21.5, and 28.7. Thus, compound **2** were found to be a ursane-12-ene glycoside.^[5] The ¹H- and ¹³C-NMR data of 2 were similar to those of 1 except for an addition of one sugar moiety. In addition, this sugar moiety with ¹³C-NMR data ($\delta_{\rm C}$ 104.4, 72.5, 72.5, 74.1, 69.9 and 17.8) and multiplicity of H-1' [$\delta_{\rm H}$ 4.73 (br s)] suggested the presence of α -L-rhamnopyranosyl moiety. The α -L-rhamnopyranosyl position at C-3 of aglycone was confirmed by the HMBC correlation from H-1' ($\delta_{\rm H}$ 4.73) to C-3 ($\delta_{\rm C}$ 90.4). Based on the above evidence and comparison the NMR and ESI-MS data of 2 to those reported in the literature,^[5] the structure of 2 was elucidated to be 3-O- α -Lrhamnopyranosylquinovic acid 28-*O*-β-Dglucopyranosyl ester (glycoside A). Compound 2 was also reported from Mussaenda genus for the first time.

The ¹H and ¹³C NMR spectra of **3** (tTable 2) showed similar with those of **1** except for an addition of sugar moiety. The sugar moieties in compound **3** were confirmed to be two β -D-

С		3			4	
	$\delta_{ m C}{}^{*}$	$\delta_{\rm C}{}^a$	$\delta_{\rm H}$ (mult., J in Hz)	$\delta_{\mathrm{C}^{\#}}$	${oldsymbol{\delta}_{ ext{C}}}^{a}$	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)
1	39.0	39.3	1.04 (m)/1.70 (m)	40.0	40.0	1.07 (m)/1.71 (m)
2	26.8	27.0	1.71 (m)/1.94 (m)	26.5	27.2	1.75 (m)/1.98 (m)
3	88.7	90.7	3.16 (dd, 4.5, 11.0)	91.4	91.4	3.19 (dd, 4.5, 11.0)
4	36.4	40.1	-	40.4	40.3	-
5	55.8	56.9	0.76 (d, 11.5)	56.9	56.9	0.77 (d, 11.5)
6	18.6	19.3	1.35 (m)/1.54 (m)	19.3	19.3	1.36 (m)/1.55 (m)
7	37.5	38.0	1.22 (m)/1.65 (m)	37.7	37.7	1.24 (m)/1.65 (m)
8	39.8	40.8	-	40.8	40.7	-
9	47.2	48.0	2.23 (dd, 5.5, 11.0)	48.0	48.0	2.25 (dd, 5.5, 11.0)
10	37.5	37.8	-	38.1	38.0	-
11	23.4	23.9	1.94 (m)/1.96 (m)	23.9	23.9	1.92 (m)/1.99 (m)
12	129.6	130.9	5.64 (br s)	130.3	130.2	5.62 (br s)
13	133.2	133.2	-	133.5	134.1	-
14	56.8	57.3	-	57.3	57.4	-
15	25.5	25.8	1.76 (m)/2.06 (m)	26.4	25.8	1.77 (m)/2.06 (m)
16	26.0	26.4	1.77 (m)/2.10 (m)	25.8	26.6	1.68 (m)/2.05 (m)
17	49.0	49.8	-	49.5	49.6	-
18	54.7	55.3	2.31 (d, 11.0)	55.6	55.6	2.28 (d, 11.0)
19	40.2	40.2	0.99 (m)	40.0	40.4	1.00 (m)
20	39.7	38.2	1.03 (m)	38.4	38.4	1.02 (m)
21	30.3	31.1	1.29 (m)/1.47 (m)	31.3	31.3	1.28 (m)/1.45 (m)
22	37.0	37.0	1.61 (m)/1.72 (m)	37.0	37.8	1.62 (m)/1.66 (m)
23	28.0	28.5	1.04 (s)	28.5	28.4	1.07 (s)
24	17.0	17.1	0.85 (s)	19.1	17.0	0.86 (s)
25	16.6	16.9	0.99 (s)	16.9	16.9	1.00 (s)
26	19.2	19.2	0.90 (s)	18.2	19.1	0.92 (s)
27	178.0	179.1	-	182.0	179.2	-
28	176.5	178.0	-	179.2	179.2	-
29	18.1	18.1	0.92 (d, 6.0)	17.0	18.2	0.92 (d, 6.0)
30	21.2	21.5	0.94 (d, 6.0)	21.5	21.5	0.94 (d, 6.0)
3-0-	Glc			3-0- Glc		
1'	106.0	106.6	4.33 (d, 7.5)	104.5	105.4	4.44 (d, 7.5)
2'	75.8	75.6	3.21 (dd, 7.5, 9.0)	81.1	81.1	3.59 (m)
3'	78.9	77.6	3.26 (m)	78.5	78.5	3.58 (m)
4′	71.3	71.2	3.31 (m)	71.9	71.9	3.40 (m)
5'	78.2	78.2	3.34 (m)	77.7	77.7	3.28 (m)
6'	63.1	62.5	3.69 (dd, 5.5, 12.0	63.1	63.1	3.64 (dd, 5.5, 12.0)
			3.85 (dd, 2.0, 12.0)			3.84 (dd, 2.0, 12.0)
28- <i>0</i> -	-Glc			2'-0-Glc		
1″	95.7	95.6	5.40 (d, 8.0)	105.4	104.5	4.69 (d, 8.0)
2″	74.2	73.9	3.34 (m)	76.3	76.3	3.24 (m)
3″	79.3	78.2	3.43 (t, 9.0)	78.4	77.9	3.37 (m)
4''	71.9	71.6	3.36 (m)	71.6	71.6	3.30 (m)
5″	78.7	78.5	3.37 (m)	77.9	78.3	3.25 (m)
6″	62.4	62.8	3.69 (dd, 5.5, 12.0)	62.9	62.8	3.67 (dd, 5.5, 12.0)
			3.82 (dd, 2.0, 12.0)			3.86 (dd, 2.0, 12.0)

Table 2: NMR data for compounds 3, 4 and reference compounds

^{a)} Measured in CD₃OD; ^{*} δ_{C} of 3-*O*- β -D-glucopyranosylquinovic acid-277.98-*O*- β -D-glucopyranosyl ester in pyridine- d_{5} [5], [#] δ_{C} of quinovic acid-3-*O*- β -D-glucopyranosyl(1 \rightarrow 2)- β -D-glucopyranoside in CD₃OD.^[6]

glucopyranosyl by ¹³C-NMR data ($\delta_{\rm C}$ 106.6, 78.2, 77.6, 75.6, 71.6, 62.8; 95.6, 78.5, 78.2, 73.9, 71.2, 62.5) and multiplicity of H-1' [$\delta_{\rm H}$ 4.33 (d, J=7.5)] and H-1" [$\delta_{\rm H}$ 5.40 (d, J = 8.0)]. Furthermore, the positions of sugar moieties at C-3 and C-28 were confirmed by the HMBC correlations from H-1' ($\delta_{\rm H}$ 4.33) to C-3 ($\delta_{\rm C}$ 90.7); from H-1" ($\delta_{\rm H}$ 5.40) to C-28 ($\delta_{\rm C}$ 178.0). Based on the NMR and ESI-MS data analysis, and comparison the NMR data of **3** to those reported in the literature, the structure of compound **3** was elucidated to be 3-*O*- β -D-glucopyranosylquinovic acid 28-*O*- β -D-glucopyranosyl ester (glycoside B).^[4] This compound was reported by Zhao and coauthors from the *Mussaenda pubescens*.^[7]

The ¹H- and ¹³C-NMR data of compound **4** were similar to those of 3 (table 2). The difference in structure between 4 and 3 is the position of β -Dglucopyranosyl moieties. The sugar linkage of 4 was β -D-glucopyranosyl-(1 \rightarrow 2)- β -Dconfirmed as glucopyranoside by the observation of the HMBC correlation between glc H-1" ($\delta_{\rm H}$ 4.69) and glc C-2' ($\delta_{\rm C}$ 81.1). In addition, this sugar at C-3 of aglycone was proved by the HMBC correlation from glc H-1' $(\delta_{\rm H} 4.44)$ to C-3 ($\delta_{\rm C} 91.4$). Moreover, careful analysis and comparison the NMR and ESI-MS data of 4 with those reported in the literature,^[6] the structure of **4** was determined be quinovic acid 3-*O*-β-Dto glucopyranosyl($1 \rightarrow 2$)- β -D-glucopyranoside. Compound 4 was reported for the first time from *Mussaenda* genus.

Acknowledgment. This research was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 104.01-2016.27.

REFERENCES

- B. Dinda, S. Debnath, B. C. Mohanta, Y. Harigaya. Naturally occurring triterpenoid saponins, *Chemimstry and Biodiversity*, 2010, 7, 2327-2580.
- 2. D. B. Menon, J. M. Sasikumar. Antioxidant and anti inflammatory activities of the root of *Mussaenda glabra*, J. Pharm. Res., **2011**, 4, 3320.
- 3. W.-Y. Kang, J.-S. Wang, X.-S. Yang, X.-J. Hao. Triterpenoid Saponins from *Luculia pincia* Hook, *Chinese Journal of Chemistry*, **2010**, *21*, 1501-1505.
- N. P. Sahu, K. Koike, Z. Jia, B. Achari, S. Banerjee, T. Nikaido. Structures of two novel isomeric triterpenoid saponins from *Anthocephalus cadamba*, *Magn. Resonance Chem.*, **1999**, *37*, 837-842.
- N. P. Sahu, K. Koike, Z. Jia, B. Achari, S. Banerjee, T. Nikaido. Triterpene glycosides from the bark of *Anthocephalus cadamba*, J. Chem. Res., 2000, 1, 22-23.
- M. Lamidi, E. Ollivier, R. Faure, L. Debrauwer, L. Nze-Ekekang, G. Balansard. Quinovic acid glycosides from *Nauclea diderrichii*, *Phytochem.*, 1995, 38, 209-212.
- Z. Weimin, X. Rensheng, Q. Guowei, T. Vaisar, M. S. Lee. Saponins from *Mussaenda pubescens*, *Phytochem.*, **1996**, 42, 1131-1134.

Corresponding author: Phan Van Kiem

Institute of Marine Biochemistry Vietnam Academy of Science and Technology 18, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam E-mail: phankiem@vast.vn.