
Chapter 9
Application of deep learning
techniques for forecasting iron
ore prices: A comparative study
of long short-term memory
neural network
and convolutional neural

network
Hoang Nguyena,b, Yoochan (Eugene) Kimc, and Erkan Topalc
aDepartment of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, Hanoi,

Vietnam, bInnovations for Sustainable and Responsible Mining (ISRM) Research Group, Hanoi

University of Mining and Geology, Hanoi, Vietnam, cDepartment of Mining Engineering and
Metallurgical Engineering, WA School of Mines, Curtin University, Bentley, Perth, WA, Australia
1 Introduction

Iron ore is a fundamental raw material in the steel industry and plays a signif-

icant role in the global economy as a strategic resource. With varying iron

endowments and demand levels around the world, the global supply and

demand for iron ore exhibit significant geographical differences, and it has a

significant effect on the chaos of iron ore prices. Moreover, the spatial scale

and scale effect of iron ore flowing worldwide is undergoing significant

changes due to the ongoing process of global economic integration.

Besides, iron ore prices have been experiencing significant fluctuations in

recent years due to a variety of political and economic factors. Such fluctuations

have impacted companies’ profits and investment plans, particularly those in

downstream enterprises associated with metallurgy, construction, and automo-

tive manufacturing. As a result, accurate and effective forecasting of iron ore

prices has become increasingly vital in managing project risk and developing
profitable investment strategies. With the potential for severe and frequent price
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fluctuations, stakeholders must stay informed and up-to-date on the latest devel-

opments in the iron ore market.

To deal with this problem, previous studies have primarily focused on the-

oretical aspects, such as the mechanisms for trading and pricing iron ore and the

factors that influence its price fluctuations. However, limited attention has been

paid to predicting iron ore market prices accurately although several models

have been introduced to forecast iron ore prices [1,2]. Kim et al. [3] demon-

strated that iron ore price has lagged behind the co-integrating and causal rela-

tionship between 12 different commodity prices integrated, including oil,

copper, gold, liquefied natural gas (LNG), aluminum, nickel, silver, copper,

etc. Pustov et al. [4] modeled long-term iron ore prices using marginal costs

against marginal incentive prices and forecasted $85/t and $124/t, respectively,
considering the depletion of iron ore deposits. In another study, Wang et al. [1]

suggested a combined model EMD (empirical mode decomposition)—NARNN

(non-linear autoregressive neural network)—ARIMA (autoregressive inte-

grated moving average) models for time-series iron ore import price to China

which performed better than NARNN or seasonal autoregressive integrated

moving average (SARIMA) models. Chen et al. [5] also suggested the Copula

(time-varying Copula function), VAR (vector autoregression), BEKK (Baba,

Engle, Kraft, and Kroner), GARCH (Generalized AutoRegressive Conditional

Heteroskedasticity) models to explore the dependence, correlation, and volatil-

ity spillovers between the Baltic Dry Index (BDI), iron ore price and Brent

crude oil price, concluding that iron ore is beginning to emerge its predictive

indicator post-COVID-19. Ewees et al. [6] proposed a chaotic grasshopper

optimization algorithm for the neural network (CGOA-NN) model for monthly

iron ore price, which demonstrated an improvement in the forecasting accuracy

obtained from the classic neural network (NN), Genetic Algorithm for neural

network (GA-NN), particle swarm optimization for neural network

(PSO-NN), and grasshopper optimization algorithm for neural network

GOA-NN models by 60.82%, 32.18%, 16.49%, and 38.71% decrease in mean

square error, respectively. In another study, Kim et al. [7] suggested a prediction

model for iron ore price using the linear (Purelin) model of the Levenberg-

Marquardt Artificial Neural Network, which proved to exhibit the better fore-

cast result with an average accuracy of 5.92% for 1 month ahead, 9.48% for

2 months ahead, 11.21% for 3 months ahead during the time of price fluctuation

in 2020–21, when compared against five other different models Bivariate Non-

Linear Regression (BNLR), Multiple Linear Regression (MLR), Multiple Non-

Linear Regression (MNLR) as well as logsig, tansig, and purelin model of

Levenberg-Marquardt Artificial Neural Network modeling. Lv et al. [8] pro-

posed an improved optimized neural network that had better performance for

indicators like Mean Absolute Error (MAE), relative standard deviation

(RSD),Mean Square Error (MSE), RootMean Square Error (RMSE), and Aver-

age Absolute Relative Deviation (AARD) when compared with basic neural
network, PSO-based, Intelligent Integrated Optimizer, Genetic Neural Network
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(GNN). Tuo and Zhang [9] proposed a hybrid Ensemble Empirical Mode

Decomposition-Gated Orthogonal Recurrent Unit (EEMD-GORU) model

and a novel data reconstruction method to forecast the price index series of

China’s and international iron ore spot markets from the futures market.

In addition to existing neural networks for iron ore price prediction and

development of decision-making support and project risk management refer-

ences for related enterprises, use of deep learning techniques has not been con-

sidered for forecasting iron ore prices. As the iron ore market continues to

evolve, further research in these areas will be crucial to ensure that stake-

holders can make informed decisions and mitigate risks effectively. In recent

years, deep learning techniques have been gaining popularity in the field of

commodity price forecasting [10,11]. Specifically, the long and short-term

memory neural network (LSTM) and convolutional neural network (CNN)

have emerged as promising approaches for predicting metal prices [12–14].
In this book chapter, the feasibility and performance of these techniques

are examined for forecasting iron ore prices, providing new insights into com-

modity price forecasting. With the potential for significant impacts on the

mining and manufacturing industries, accurate and effective forecasting of

iron ore prices is crucial for stakeholders. The insights gained from this

research may pave the way for more advanced and reliable methods of
commodity price forecasting in the future.
2 Methodology

2.1 Long short-term memory neural network (LSTM)

Recurrent Neural Network (RNN) is a deep learning technique that can be used

to process sequence data, and it allows for the handling of sequential changes in

the data [15]. Unlike general neural networks, RNNs are skilled at solving

problems in which a word can have different meanings depending on the

context in which it is used.

Early versions of RNNs faced a challenge known as the vanishing gradient

problem, which caused gradient-based methods to take an excessively long time

to train RNNs. This was because the error gradient, which gradient-based

methods rely on, diminishes as it is transmitted back through the network

[16]. As a result, the first layers in RNNs stop learning, making it difficult

for the network to transfer information from earlier time steps to later ones when

dealing with lengthy sequences. This results in RNNs having poor short-term

memory.

Cell one in a typical RNN architecture can encounter a vanishing error

gradient issue. This phenomenon results in an insufficient gradient signal for

updating the weights, leading to problems in propagating accurate information

through the network. As a consequence, incorrect or diluted information may be
transmitted to subsequent cells, including cell four. This challenge hampers
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the RNN’s ability to capture and retain long-range dependencies in sequential

data. To mitigate this problem, Sepp Hochreiter and J€urgen Schmidhuber devel-

oped a new advanced architecture of RNN called long short-term memory

(LSTM) [17], which are designed to handle and prevent such gradient-related

issues, enabling more effective learning and information retention in

sequential tasks.

The LSTM architecture has evolved over time, but the most common

structure consists of a cell with three gates that regulate the flow of infor-

mation within the cell and control the cell state. The three gates are the

input gate, the output gate, and the forget gate [18]. These cells are then

linked together, with each one serving as a memory module. Fig. 1 shows

the structure of an LSTM model. The architecture of an LSTM cell involves

several components, where Xt represents the input time step, ht is the output,
Ct is the cell state, ft represents the forget gate, it represents the input gate,

and ot represents the output gate. Additionally, there is an internal cell state

represented by Ĉt. The operations that occur within the light red circle are

pointwise.

In the diagram above, the forget, input and output gates are represented by

the symbols ft, it, and ot, respectively. The purpose of each gate is as follows:

▪ The forget gate decides which information in the internal cell state should be

discarded.

▪ The input gate determines which new information should be stored in the

internal cell state.

▪ The output gate produces the filtered version of the internal cell state, which

is the output of the cell.
FIG. 1 Structure of LSTM model.
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f t ¼ σ Wf � ht�1,Xt½ � + bf
� �

it ¼ σ Wi � ht�1,Xt½ � + bið Þ
ot ¼ σ Wo � ht�1,Xt½ � + boð Þ
bCt ¼ tanh WC � ht�1,Xt½ � + bCð Þ

(1)
Then, the internal cell state is computed using Eq. (2) provided.

Ct ¼ it � bCt + f t � Ct�1 (2)
The final output of the cell, or ht, is filtered with the internal cell state as

described in the output Eq. (3).

ht ¼ ot � tanh Ctð Þ (3)
where each gate is associated with weights and biases, which are represented by

the weight matricesWf, bf,Wi, bi,Wo, bo, andWC, bC, respectively. These weight
matrices are used in conjunction with gradient-based optimization to enable the

LSTM cell to learn.

Multiple LSTM cells are linked together, as shown in the diagram below, to

enable the RNN-LSTM network to retain information from previous time steps

and make predictions for time-series data [19]. The use of LSTM cell architec-

ture addresses the issue of vanishing gradient, which was a limitation in earlier

RNN architectures and prevented accurate time-series predictions, like

forecasting iron ore prices.

Several different approaches have been used to forecast commodity prices

(especially non-ferrous metals) using apply deep learning. Liu et al. [20] pre-

sented a novel hybrid deep learning model for forecasting non-ferrous metals

(Zinc, Copper, and Aluminum) by combining the VMD (variational mode

decomposition) method and the LSTM (long short-term memory) network.

Ozdemir et al. [21] also proposed a nickel forecasting model using recurrent

neural networks (RNN) based on long short-term memory (LSTM) and gated

recurrent unit (GRU) networks and concluded that LSTM and GRU networks

are very useful and successful in forecasting the nickel price variations owing to

having average mean absolute percentage error (MAPE) values of 7.060% and
6.986%, respectively.
2.2 Convolutional neural network (CNN)

Convolutional neural networks (CNN) is one of the artificial neural network

architectures widely used in computer vision and image processing related to

artificial intelligence (AI). The initial concept started as simple and complex

cells in 1959 [22]. A simple cell recognizes the orientation of an image and
is followed by a response, as shown by the image in Fig. 2A.



FIG. 2 (A) A simple cell responds to an image by recognizing an image and (B) a complex cell

responds to an image by recognize images.
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However, a complex cell also responds to orientations of images as well, it

also has the capability to complex cells respond to edges and bars at any location

in the scene, this capability is by summing information from multiple simple

cells as shown in Fig. 2B.

Following the work of Hubel D andWiesel T [22], Fukushima [23] designed

a neural network that mimics simple and complex cell functions, which consists

of two types of cells: S-cells, which operate as simple cells, and C-cells that

operate as complex cells. These cells mimic the algorithmic structure of both

simple and complex cells. These Neocognitron capture complex patterns by

applying complex cells that gather their information from other lower-level

complex cells or simple cells that detect simpler patterns. As one of the primary

algorithms for deep learning, CNN has found numerous applications across a

range of fields. Typically, a CNNmodel consists of an input layer, multiple con-
volution layers, several pool layers, several fully connected layers, and an
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output layer. The evaluation of a CNN model is achieved through the use of a

loss function. With their ability to process complex data, CNNs have become

increasingly important in areas such as time series, computer vision, and natural

language processing, however, it has never been used to forecast commodity

price. Song et al. [24] presented the structure of CNN and the role of the layers,
which are presented in Fig. 3.

FIG. 3 Structure of a CNN model for the time-series problems.
3 Dataset used

The intricate dance of economic variables has always been of the utmost impor-

tance to both businesses and policymakers. In this chapter, a comprehensive

dataset spanning from August 1991 to August 2021 has been carefully gathered

and analyzed. This dataset includes a rich tapestry of six different variables,

including the exchange rates between USD and CNY, and AUD, along with

the prices of aluminum, crude oil, gold, and iron ore. By closely examining

the complex interactions between these economic factors over the last 3

decades, we can gain valuable insights into their patterns and behaviors. Armed

with this knowledge, businesses and policymakers can make informed deci-

sions to navigate the uncertain and ever-changing landscape of the global mar-

ket. The datasets are shown in Fig. 4. Herein, 70% of the dataset is used to train

the model, 20% is used for the validation model during training, and the remain-

ing 10% is used for testing the developed LSTM and CNNmodel for forecasting
iron ore prices.



FIG. 4 Time-series dataset of the (A) USD vs CNY exchange rate, (B) USD vs AUD exchange

rate, (C) aluminum price, (D) oil price, (E) gold price, and (F) iron ore price.

(Continued)
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FIG. 4, CONT’D.
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4 Results and discussion

In this book chapter, the main goal is to develop deep learning models for fore-

casting iron ore prices based on multivariate time-series data. To accomplish

this, the first step was to normalize the dataset using the Min-Max scaler

method. As the problem at hand is a time-series problem, the input and output

data for the models were defined using five timesteps in each input sequence.

With the dataset preprocessed, the structures of the LSTM and CNN models

were established. The LSTM model was designed with a single hidden layer

containing 16 neurons. Meanwhile, the CNN model had 32 filters and a kernel

size of three for the Conv1D layer, a pool size of two for the max pooling 1D

layer, and 10 neurons in the hidden layer. The “ReLU” activation function was

applied to the CNN model, and both models were trained using the “Adams”

algorithm.

To prevent overfitting, the early stopping technique was implemented with

the best weights restored during the training of the CNN and LSTMmodels. The

models were trained with 500 epochs and a batch size of 32, using the mean

squared error (MSE) loss function. The optimization results are shown in Fig. 5.

Fig. 5 shows that both the LSTM and CNN models were well-trained and

that the early stopping technique was effective in preventing overfitting. The

training and validation curves exhibit high convergence during training, indicat-

ing that the models can accurately predict the target variable. To further validate

the performance of the developed models, the testing dataset was imported to

perform a peer test. The results of this test are displayed in Fig. 6, which show

that both the LSTM and CNNmodels are capable of accurately forecasting iron

ore prices based on multivariate time-series data.

The results obtained from testing the LSTM and CNN models on the testing

dataset indicate that these models are capable of accurately forecasting iron ore

prices with high accuracy. Despite the large fluctuations in iron ore prices over

the 35months from September 2018 to August 2021, caused by the COVID-19

pandemic and other economic and policy-related factors worldwide, the devel-

oped deep learning models demonstrated robust performance, as shown in

Fig. 6. However, as evidenced by the last sample in Fig. 5, these models

may encounter difficulties in accurately predicting sudden market changes or

disruptions, resulting in decreased accuracy during such periods. To better

understand the accuracy of the models, it is important to evaluate them using

various performance metrics. Therefore, we calculated Root-Mean-Squared

Error (RMSE), Mean Absolute Percentage Error (MAPE), and Variance

Accounted For (VAF), as shown in Table 1. These metrics provide a

comprehensive view of the performance of the models and their ability to
predict iron ore prices accurately.



FIG. 5 (A) Training performance of the LSTM model for forecasting iron ore prices and

(B) training performance of the CNN model for forecasting iron ore prices.
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FIG. 6 (A) The forecasting performance of iron ore prices in the LSTM model and (B) the

forecasting performance of iron ore prices in the CNN model.
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The results of the deep learning models developed in this study have

demonstrated that these techniques are effective in forecasting iron ore prices

with high accuracy, even in times of large fluctuations such as during the

COVID-19 pandemic. The accuracy of the models was evaluated using RMSE,
MAPE, and VAF, which are presented in Table 1.



TABLE 1 Performance metrics of the LSTM and CNN models developed.

Model RMSE MAPE VAF

LSTM 15.826 0.100 86.499

CNN 19.207 0.131 79.136
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According to the results in Table 1, the LSTM model outperformed as com-

pared to the CNNmodel in forecasting iron ore prices, achieving an accuracy of

approximately 86.5% and a MAPE of 10%. In contrast, the CNN model

achieved an accuracy of only 79.136% and a MAPE of 13.1%. These findings

suggest that the deep learning techniques used in this study could be a reliable

solution for forecasting iron ore prices, despite the accuracy of the models

depending on other factors such as the parameters of the topology network

and the structure of data.

It should be noted that the accuracy of the models can also be affected by the

design of the data structure, such as the number of timesteps. While this study

used several timesteps of five, utilizing different numbers of timesteps could

potentially result in even higher accuracy. More investigation into these design

choices could lead to more precise models for predicting iron ore prices.

Furthermore, other types of variables can be included in the model to increase

the accuracy of predictions. Nevertheless, this study has established a funda-

mental basis and uncovered new insights into the possibilities of deep learning
techniques for forecasting iron ore prices.
5 Conclusion

The performance metrics calculated, and testing results of the LSTM and

CNNmodels indicate that these models can be practical solutions for forecast-

ing iron ore prices in the multivariate time-series problem. These models were

able to capture the complex temporal patterns and non-linear relationships

within the data, leading to more accurate predictions than traditional methods.

Accurate predictions of iron ore prices can provide valuable insights for

businesses and policymakers to make informed decisions and manage risks

in the global market. Therefore, deep learning techniques such as the LSTM

and CNN models can be considered useful tools for predicting the prices of

iron ore.

However, there are limitations to these models that should be considered,

such as the requirement for large amounts of data to train the models effectively

and the models may struggle with predicting the sudden changes or disruptions
in the market.
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Based on the obtained results of this work, future works in this area could

focus on improving the models’ ability to handle sudden changes in the market

by incorporating real-time data and external factors such as global pandemics,

and political conflicts in the world. Additionally, the use of hybrid models

combining LSTM and CNN with other forecasting techniques, such as linear

regression or support vector machines, may provide even more accurate
predictions.
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