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1 Introduction

Open-pit mining is known for its safety and efficiency, yet it still has room for

improvement in terms of environmental considerations. To address its impact

on the climate, a green and climate-sensitive approach must be taken [1–3].
Dust pollution is a major environmental concern in open-pit mining, posing

threats to the environment, workers, surrounding ecosystems, and biodiversity

[1,4–6]. The dust consists of particulate matter (PM) particles, which are tiny.

Total suspended particles (TSP), larger than 100μm, settle quickly, but particles

smaller than 100μm (e.g., PM1.0) can stay suspended for longer. PM2.5, which is

less than 2.5μm, contains harmful substances like heavy metals and can cause

irreversible harm to human health by penetrating deep into the lungs [7–10].
Particles smaller than 2.5μm (e.g., PM1.0, PM0.5, to name a few) are much more

dangerous for humans [11,12]. Dust pollution also reduces work efficiency and

causes low visibility, equipment malfunctions, higher maintenance costs, and

lower labor productivity. Therefore, dust pollution in open-pit mining is

extremely serious as it not only carries ordinary small-sized particulate matter
but also toxic substances in the dust that have a serious impact on human health.
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In open-pit mines, many operations can generate dust with small-sized par-

ticulate matter, such as drilling, blasting, shoving/loading/unloading, transport-

ing, etc. [13–15], and the emission level is different. However, it is not easy to

determine and forecast the dust pollution for each operation as they require a lot

of time and specialized equipment suitable for each technological stage. In this

book chapter, we considered the dust pollution in the drilling operations in

open-pit mines and PM2.5 was investigated.

A review of related works shows that most of the previous works are only

focus on the prediction of PM2.5 in the entire space of open-pit mine based on

time-series datasets and artificial intelligence (AI) models without the consid-

eration of rock mass properties [13,16–18]. Meanwhile, the main objectives of

open-pit mines are rock and ore, and they are influenced by factors related to the

mechanical and physical characteristics of rock mass. Regarding to the predic-

tion of dust emissions induced by drilling operations in open-pit mines, Sastry

et al. [19] applied the environmental management plan (EMP) model based on

meteorological data (e.g., wind speed, wind direction, relative humidity, and

temperature) and the geographical data (e.g., distance from the dust source

and emission rate of drilling operation) to predict PM2.5 and PM10 generated

from drilling operations in open-pit mines and they concluded that the intro-

duced model is in close agreement with the field measured values than presently

USEPA model. We also conducted a study on the prediction of PM10 concen-

tration from drilling operations in open-pit mines using the integration of sup-

port vector machine for regression problems (SVR) and particle swarm

optimization (PSO) model, abbreviated as PSO-SVR model. It then was com-

pared to three benchmark AI-based models, including k-nearest neighbors

(KNN), random forest (RF), and classification and regression trees (CART).

Different kernel functions were also considered for the PSO-SVR model during

predicting PM10 concentrations. Finally, we found that AI-based techniques are

potential approach for predicting PM10 concentration from drilling operations

in open-pit mines, and the proposed AI model achieved an accuracy of 95% for

this aim.

In this chapter, we introduced an application of a machine learning

algorithm (i.e., gradient boosting machine—GBM) and two AI-based meta-

heuristic algorithms (i.e., particle swarm optimization—PSO and differential

evolution—DE) for predicting PM2.5 emissions from drilling operations in

open-pit mines, resulting in the PSO-GBM and DE-GBM models, respectively.

The detail of the methodology and results are presented in the next sections.

This work aims to assess the impact of PM2.5 dust emissions from drilling oper-

ations on air pollution in open-pit mines. Additionally, it seeks to evaluate the

feasibility of using new hybrid models that combine GBM models and meta-

heuristic algorithms to estimate PM2.5 levels induced by drilling operations

in such mines. The findings of this study will provide valuable insights into

innovative approaches for promoting sustainable and responsible mining
practices.
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2 Methodology

2.1 Gradient boosting machine (GBM)

Gradient boosting machine (GBM) is one of the machine learning algorithms

that can be applied for both regression and classification problems, and it

was widely applied in a variety of fields including mining and geotechnical

engineering [20–25]. It works by combining the results from several weaker

models to generate a stronger and more accurate prediction [26,27]. This is

achieved through the creation of multiple decision trees in a sequential order,

where each new tree attempts to correct the errors made by the previous

tree [28].

The fundamental concept of gradient boosting involves fitting an additive

model in a step-by-step fashion, where each new tree is developed using infor-

mation gathered from previously grown trees. During each iteration, a new tree

is fit to the negative gradient or residual of the loss function about the current

prediction. The final prediction is then obtained by adding up the predictions

from all the trees.

The GBM comprises several key components, including a loss function, a

weak learner (such as decision trees), and an optimization algorithm (such as

gradient descent) [29,30]. The algorithm reduces the loss function by modifying

the parameters of the weak learner, while the optimization algorithm ensures

that the new tree fits the residuals in a way that minimizes the loss. The details

of the GBM model for predicting PM2.5 emissions induced by drilling opera-

tions in open-pit mines are presented through seven steps in the following sec-

tion. The framework of GBM is shown in Fig. 1.

1. Loss function: The first step is to define a loss function that measures the

difference between the true values and the predicted values of the target var-

iable. Common loss functions used in GBM include mean squared error

(MSE) for regression problems and log loss for classification problems.

2. Weak learner: The next step is to define a weak learner, which is typically a

decision tree model. A decision tree is a type of model that partitions the

input data into regions and makes predictions based on the mean response

value in each region.

3. Initial prediction: The initial prediction of the target variable is made using

the weak learner, typically using the mean response value for regression

problems or the most frequent class for classification problems.

4. Residual computation: The residual is computed as the difference between

the true values and the initial prediction. This residual represents the error

made by the weak learner and is used to guide the fit of the next tree.

5. Tree fitting: The next step is to fit a decision tree model to the residuals. The

tree is fit in a greedy manner, such that it tries to reduce the residual at each

split. The tree is grown until a stopping criterion is reached, such as a max-
imum tree depth or a minimum number of samples in a leaf node.



FIG. 1 Framework of GBM algorithm.

26 Applications of artificial intelligence in mining and geotechnical engineering



Prediction of dust emission in open-pit mines Chapter 3 27
6. Update prediction: The predictionmade by the tree is added to the initial pre-

diction, and the new prediction is used to compute the residual for the next

tree. This process is repeated until a specified number of trees has been fit.

7. Final prediction: The final prediction is obtained by summing up the predic-

tions made by all the trees. The prediction made by each tree is weighted

based on its contribution to the reduction of the residual.

GBM is well-regarded for its excellent performance on a variety of problems,

and is considered to be one of the most powerful machine learning algorithms

available. However, it should be noted that GBM can be computationally inten-

sive, and may also overfit if not properly regulated with too many trees being fit

or the trees are too deep. Regularization techniques to overcome this problem

include early stopping, tree pruning, and shrinkage, which can be used to reduce

the risk of overfitting [31–33]. More details of the GBM algorithm can be found
in the literature [27,34,35].
2.2 Differential evolution (DE) algorithm

Differential evolution (DE) is known as one of the metaheuristic algorithms

used to find the optimal solution to a multi-dimensional, real-valued problem

and it that was designed as a stochastic direct search method [36]. The DE algo-

rithm follows an evolutionary approach, which is inspired by the principles of

natural selection and genetics, to find the best solution from a population of can-

didate solutions.

In DE, each candidate solution is represented as a vector of real numbers.

During each iteration of the algorithm, a new solution is generated by combin-

ing the differences between three randomly selected candidate solutions

[37,38]. This new solution is then compared to the existing solutions, and if

it is found to be better, it replaces one of the existing solutions. This process

repeats until a stopping criterion is reached, such as a maximum number of iter-

ations or a desired level of accuracy [39,40].

DE can strike a balance between exploration and exploitation, by controll-

ing the size of the difference vector used to generate new solutions. A larger

difference vector encourages exploration, while a smaller difference vector

emphasizes exploitation.This featuremakesDEhighly adaptable to various opti-

mization problems [41–43].
DE has been applied successfully to a broad range of optimization problems,

including function optimization, parameter tuning, and feature selection, and is

known for its ability to handle large and complex optimization problems effec-

tively, such as mining and geotechnical engineering-related problems [44–50].
However, one of the most disadvantages of the DE is computationally intensive,

and there is a possibility that it may not converge to the global optimum solution

[51]. To mitigate these limitations, variations of DE have been developed, such
as SaDE, jDE, ADE, SDE, and JADE, that incorporate additional strategies to



FIG. 2 Framework of the DE algorithm.
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enhance the performance of the algorithm [52]. More details of the DE algo-

rithm can be referred to as the literature [53–56]. The framework and

pseudo-code of the DE algorithm are shown in Figs. 2 and 3.

2.3 Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is a metaheuristic optimization algorithm

that is used similar to the DE algorithm. It was first proposed by Kennedy

and Eberhart [57] and has since been widely used in a variety of fields, such

as engineering, computer science, mining, geotechnical engineering, mechan-

ical engineering, solar photovoltaic system, to name a few [58–63].
The PSO algorithm works by representing candidate solutions as particles in

a search space. Each particle represents a potential solution to the optimization

issue. It has its location and velocity within the particle swarm environment.

PSO starts with a randomly generated group of particles and continually updates

based on personal and global extremes, leading to a new set of populations that

continually evolve until the optimal solution is found [64]. In other words, at

each iteration, each particle is updated based on its own experience, the expe-

rience of its neighbors, and the global best solution found by the swarm. The

position and velocity of each particle are updated according to a set of equations

that balance exploration and exploitation. Exploration is encouraged by adding

randomness to the velocity update, while exploitation is encouraged by steering

particles toward the best known solutions. The framework of the PSO algorithm
is shown in Fig. 4 and its pseudo-code is presented in Fig. 5.



FIG. 3 Pseudo-code of the DE algorithm.
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One of the main advantages of PSO is its ease of use, as it only requires a

few parameters to be specified, such as the number of particles and the weight-

ing factors used in the velocity update. It is also computationally efficient and

easy to implement, making it a popular choice for solving optimization

problems.

However, PSO has some limitations, including the sensitivity of its perfor-

mance to the choice of parameters and the risk of getting stuck in local optima.

To overcome these limitations, various modifications to the basic PSO algo-

rithm have been proposed, such as inertia weight, constriction coefficient,

velocity clamping, adaptive PSO, social-only PSO, hybrid PSO (combining

PSO with other optimization algorithms) [65–69]. These variants incorporate

additional strategies to improve the performance of the algorithm and to make

it more robust to the choice of parameters. Therefore, in this book chapter, a

variant of the PSO algorithm with the inertia weight strategy was applied to

overcome the limitations of the basic PSO algorithm for the optimization of
GBM model in forecasting PM2.5 emissions from drilling operations.
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2.4 Integration of DE, PSO and GBM model

The integration of the DE, PSO, and GBM models is motivated by the goal of

finding the optimal parameters for the GBM model, with the aim of improving

its accuracy in forecasting PM2.5 caused by drilling operations in open-pit

mines. While the basic GBM model includes parameters such as the learning

rate, number of weak learners, and depth of decision trees, selecting the best

values for these parameters within a valid range is a challenging task. Normally,

the grid search or random search techniques are often applied to select these

FIG. 4 Framework of the PSO algorithm.
parameters; however, we do not know which grid is the best and it is time
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consuming if we search the best parameters by random search. Furthermore,

compared to the grid search or random search techniques, metaheuristic algo-

rithms offer several advantages, such as:

1. Exploration of a broader search space: Metaheuristic algorithms are

designed to explore a wider range of solutions by utilizing various search

strategies. This allows them to effectively navigate complex and high-

dimensional search spaces, which may not be efficiently covered by a

grid-based approach.

2. Flexibility and adaptability: Metaheuristic algorithms are highly flexible

and adaptable to different problem domains. They can dynamically adjust

their search behavior based on problem characteristics and constraints. In

contrast, the grid search technique relies on a predefined set of grid points,

limiting its ability to adapt to changing problem conditions.

3. Efficient handling of continuous and discrete variables: Metaheuristic algo-

rithms are well-suited for optimization problems with both continuous and

discrete variables. They can handle mixed variable types effectively, allow-

ing for a more comprehensive exploration of the solution space. However,

the grid search technique is primarily suitable for discrete variables and may

struggle with continuous variables due to the limited granularity of the grid.

4. Global optimization capabilities: Metaheuristic algorithms excel at finding

near-optimal or globally optimal solutions, even in multimodal and non-

convex problem landscapes. They can escape local optima and converge

toward better solutions by utilizing strategies such as population-based

search, randomization, and diversification. The grid search technique, on

the other hand, may get stuck in local optima and struggle to identify global

FIG. 5 Pseudo-code of the PSO algorithm.
optima.
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5. Computational efficiency: Metaheuristic algorithms often offer computa-

tional efficiency by using smart search heuristics and adaptive techniques.

They can significantly reduce the number of function evaluations required

to find good solutions compared to exhaustive grid-based methods like grid

search, especially in high-dimensional optimization problems.

Therefore, the DE and PSO algorithms were applied to optimize the param-

eters of the GBM model, and they are then applied to train the GBM model

for forecasting PM2.5 caused by drilling operations at the Coc Sau open-pit

coal mine.

To hybrid the DE-GBM and PSO-GBMmodels, the DE and PSO algorithms

will be used to generate new candidate solutions, and each solution contains a

set of parameters, which are used as input to the GBM model for prediction.

Subsequently, the GBM model generates PM2.5 predictions for each candidate

solution, and the DE and PSO algorithms will update the candidate solutions

based on the prediction errors. This process is repeated until a stopping criterion

is reached, and the best parameters with the lowest error will be defined. Fig. 6

illustrates the flowchart of the DE-GBM and PSO-GBM for estimating PM2.5

in this study. Compared to traditional methods such as grid search or random

search, the DE and PSO algorithms are able to generate a greater number of

solutions with diverse sets of parameters for the GBM model based on the

fitness function. As a result, these algorithms are more effective than traditional
methods, and this claim will be demonstrated in the results section.

FIG. 6 Framework of the PSO-GBM and DE-GBM models for forecasting PM2.5.
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2.5 Performance metrics for evaluation

For assessment of the models’ efficiency, five metrics, including mean absolute

error RMSE, (MAE), determination coefficient (R2), mean absolute percentage

error (MAPE), and variance accounted for (VAF), were used as described in

Eqs. (1)–(3).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

byi � yið Þ2
n

v

u

u

t (1)

R2 ¼ 1�

X

n

i¼1

yi � byið Þ2

X

n

i¼1

yi � yið Þ2
(2)

MAPE ¼ 1

n

X

n

i¼1

yi � byij j
yi

(3)
where n is the total number of datasets used in this book chapter; yi stands for the
ith actual PM2.5; byi denotes the ith predicted PM2.5; yi represents for the mean of

actual PM2.5 values.

3 Data acquisition and preparation

In this chapter, the drilling operations at the Coc Sau open-pit coal mine (Viet-

nam) and their generated PM2.5 were investigated and taken into account. The

Coc Sau open-pit coal mine is one of the deepest open-cast coal mine in Viet-

nam with high production (i.e., 2–3 million t/year, overburden reached 30–40
million m3/year) at the survey period (2018), and its location is shown in Fig. 7.

The Hon Gai formation (T3n-rhg), which consists of various sedimentary

rocks including coal seams, gritstone, conglomerate, sandstone, claystone, silt-

stone, and shale, covered the entireCocSau open-cast coalmine. These sedimen-

tary rocks are generally hard with a Protodyakonov strength index (f) ranging
from8 to 11 [70].As a result, themethod of exploiting coal in theminewas deter-

mined to be fragmentation by drilling-blasting, as it is considered effective.

The mine typically used the CБШ-250, D245S, and DML drills for drilling,

with borehole diameters ranging from 200 to 250mm. The average drilling

speed was between 10 and 15m/h, resulting in a significant amount of PM2.5

concentration. This increased the amount of dust impacting the surrounding

environment and public health, which is especially concerning given the mine’s

proximity to residential areas (approximately 0.42miles or 700m away). The

employees working in the mine are particularly at risk of occupational hazards.

Fig. 7 illustrates the extent of the impact of dust, particularly the PM2.5
concentration.
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At the Coc Sau open-pit coal mine, the CБШ-250, D245S, and DML were

used to drill boreholes with diameters ranging from 200 to 250mm. To forecast

PM2.5, the following parameters were collected: the diameter of the boreholes

(d), the penetration rate of the drill (P), the moisture content (Wtn), the silt con-

tent (S), the density of the rock mass (ρ), the compressive strength (σc), and the
rebound hardness number (R), as previously mentioned. The KANOMAX dig-

ital dust monitor model no. 3442 was used to measure PM2.5 induced by drilling

operations in this study. It is important to mention that wind direction and wind

speed are also taken into consideration when monitoring and forecasting PM2.5

levels caused by drilling operations. However, since this study focuses solely on

the PM2.5 dust emission from drilling operations, the wind direction was deter-

mined before establishing measurement stations at a distance of 30–50m. Fig. 8

shows the data collection progress and Table 1 presents the characteristics of the
dataset used.

FIG. 8 Data collection and devices used in this study.



TABLE 1 Characteristics of the inputs and PM2.5 values collected

in this study.

d P Wtn S

Min.: 200.0 Min.: 0.1600 Min.: 0.29 Min.: 15.20

First Qu.: 200.0 First Qu.: 0.2100 First Qu.: 7.84 First Qu.: 24.70

Median: 230.0 Median: 0.2500 Median: 11.38 Median: 27.60

Mean: 227.3 Mean: 0.2558 Mean: 11.57 Mean: 27.58

Third Qu.: 250.0 Third Qu.: 0.2900 Third Qu.: 15.39 Third Qu.: 30.10

Max.: 250.0 Max.: 0.4100 Max.: 28.12 Max.: 39.20

ρ σc R PM2.5

Min.: 1.220 Min.: 13.00 Min.: 16.00 Min.: 0.1373

First Qu.: 1.230 First Qu.: 15.00 First Qu.: 20.00 First Qu.: 0.3051

Median: 1.240 Median: 16.00 Median: 22.00 Median: 0.4396

Mean: 1.243 Mean: 15.98 Mean: 21.63 Mean: 0.4602

Third Qu.: 1.260 Third Qu.: 17.00 Third Qu.: 23.00 Third Qu.: 0.5991

Max.: 1.270 Max.: 19.00 Max.: 27.00 Max.: 1.2112
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4 Results and discussion

Before developing the models, the dataset should be preprocessed and it was

divided into two parts with 80% of the whole dataset was applied for training

the model and the remaining 20% of the dataset was used for testing the devel-

oped model. The input data was also normalized using the Min-Max scaling

method to reduce the error of the models during training. Furthermore, 10-folds

cross-validation technique was also applied to evaluate the models during train-

ing aiming to avoid the bias evaluations.

Once the dataset was preprocessed, the PSO’s parameters including swarm

size, maximum iterations, local coefficient, global coefficient, and Min-Max

weights of the swarms were setup as 300, 1000, 1.2, 1.2, 0.4, and 0.9, respec-

tively. Subsequently, the parameters of the GBMmodel were initialized, includ-

ing learning rate, the number of weak learners, and the depth of the decision

trees. In the next step, the population of particles with random positions and

velocities in the search space of GBM hyperparameters were initialized. Then,
the RMSE was used as the fitness function to evaluate the fitness of each
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particle by training the GBM model using the training dataset and calculating

the RMSE on the validation dataset. Based on the fitness of each particle, the

personal best solution and the global best solution were updated. The PSO algo-

rithm then updated the velocity and position to obtain the best solution. In this

phase, each population is considered a solution with a set of GBM’s parameters

was generated in their feasible range that were generated by the PSO algorithm,

and the GBMmodel was then trained with the generated parameters by the PSO

and evaluated through the RMSE values calculated. The progress was repeated

in 1000 iterations until the maximum number of iterations is reached or the

convergence criterion is met.

For the DE-GBM model, similar steps were performed to develop the

DE-GBM model for forecasting PM2.5 induced by drilling operations. How-

ever, the parameters of the DE algorithm is different from the PSO algorithm

except the population size (i.e., 300) and maximum iterations (i.e., 1000). The

training processes of the PSO-GBM and DE-GBM models are shown in Fig. 9,

and the prediction results are shown in Fig. 10. In addition, the summary of the

performances is shown in Table 2.

Fig. 9 shows that both models converge well, indicating that they have over-

come the overfitting problem during training and testing. This result may be

attributed to the preprocessing of the dataset and the use of the 10-fold

cross-validation technique for model evaluation during training.

Fig. 10 shows that both the DE-GBM and PSO-GBM models accurately

forecasted PM2.5 levels induced by drilling operations. It is difficult to deter-

mine which model performed better, as both achieved high accuracy. This indi-

cated that the parameters optimized by the DE and PSO algorithms are in line

with the forecast of PM2.5 induced by drilling operations at the Coc Sau open-pit

coal mine. For further assessment of the obtained results by the DE-GBM and

PSO-GBM models, performance metrics such as RMSE, R2, and MAPE were

calculated, as listed in Table 2.

Based on the metrics computed in Table 2, it is clear that both models per-

form well, with MAPE values in the range of 10%–11%. However, upon closer

examination of Table 2, we can observe that the DE-GBM model outperforms

the PSO-GBMmodel slightly, but the difference is not significant. These results

showed that machine learning algorithms (i.e., GBM model) and metaheuristic

algorithms are potential approaches to forecast air pollution (i.e., dust emis-

sions) generated by drilling operations in open-pit mines. Fig. 11 shows the

regression between the measured and forecasted PM2.5 by the developed

models.

Observing the datasets in Fig. 11, it is clear that most of the forecasted data-

sets are close to the measured datasets, and both models exhibit a high degree of

similarity when it comes to data points lying outside the regression line, even
though their exact positions may vary slightly. Overall, the results demonstrated



FIG. 9 Optimization performance of the PSO-GBM and DE-GBMmodels. (A) PSO-GBMmodel

and (B) DE-GBM model.
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the potential application of AI for forecasting PM2.5 levels resulting from dril-

ling operations in open-pit mines, as well as for predicting air pollution in future

studies that utilize AI techniques. This represents one of the pathways to achiev-
ing green mining as quickly as possible in the future.



FIG. 10 Comparison of the measured and predicted PM2.5. (A) Training datasets and (B) testing

dataset.

TABLE 2 Performance of the PSO-GBM andDE-GBMmodels for forecasting

PM2.5 induced by drilling operations.

Model

Training dataset Testing dataset

RMSE R2 MAPE RMSE R2 MAPE

PSO-GBM 0.053 0.931 0.092 0.055 0.929 0.110

DE-GBM 0.053 0.931 0.084 0.055 0.930 0.102
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FIG. 11 Regression analysis of the developed models for forecasting PM2.5 induced by drilling
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5 Conclusion

Dust pollution in open-pit mining is one of the barriers on the road to achieving

green mining. Therefore, predicting dust pollution, especially PM2.5 dust, with

the support of AI in this study is a breakthrough in reaching this goal. This study

demonstrated the effective application of AI in forecasting PM2.5 caused by

drilling operations in open-pit mines, while also uncovering and clarifying

the relationships between drilling parameters, soil moisture, and the amount

of dust generated during the drilling process. Finally, two optimized models,

that is, DE-GBM and PSO-GBM, were proposed to address this issue and they

have achieved promising results.

While the results obtained suggest that the GBMmodel, optimized using DE

and PSO algorithms, shows promise in predicting and mitigating PM2.5 dust

emissions from drilling operations in open-pit mines, several limitations war-

rant further research in future studies. These limitations include:

1. Inclusion of meteorological conditions: Future research should delve into

operations. (A) Training dataset and (B) testing dataset.
considering the impact of meteorological conditions on PM2.5 emissions
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from drilling operations. This will enhance the comprehensiveness of the

models and provide a more accurate understanding of the contributing

factors.

2. Real-time measurement device and time-series analysis: It is crucial to

employ a real-time measurement device capable of capturing PM2.5 levels

in real time. Additionally, the issue of time-series analysis should be taken

into account to effectively address the temporal aspects of PM2.5 emissions.

3. Expansion to different areas: To ensure consistent evaluations of the pro-

posed models in practical engineering scenarios, it is necessary to survey

and consider different areas. This will provide a broader perspective and

account for potential variations in the performance of the models.

By addressing these limitations in future research, we can enhance the applica-

bility and robustness of the proposed models in predicting and mitigating PM2.5
dust emissions from drilling operations in open-pit mines.
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[40] S. Ji, J. Karlovšek, Optimized differential evolution algorithm for solving DEM material cal-

ibration problem, Eng. Comput. (2022) 1–16.

[41] G. Sun, G. Xu, N. Jiang, A simple differential evolution with time-varying strategy for con-

tinuous optimization, Soft. Comput. 24 (2020) 2727–2747.

[42] A.K. Qin, V.L. Huang, P.N. Suganthan, Differential evolution algorithm with strategy adap-

tation for global numerical optimization, IEEE Trans. Evol. Comput. 13 (2) (2008) 398–417.

[43] N. Ye, et al., Radial basis function-assisted adaptive differential evolution using cooperative

dual-phase sampling for high-dimensional expensive optimization problems, Struct. Multidis-

cip. Optim. 65 (9) (2022) 241.

[44] A. Khan, C. Niemann-Delius, A differential evolution based approach for the production

scheduling of open pit mines with or without the condition of grade uncertainty, Appl. Soft

Comput. 66 (2018) 428–437.

[45] K. Chen, et al., Optimization of air quantity regulation in mine ventilation networks using the

improved differential evolution algorithm and critical path method, Int. J. Min. Sci. Technol.

25 (1) (2015) 79–84.

[46] W.B. de Melo, Optimization of truck allocation in open pit mines using differential evolution

algorithm, Int. J. Innov. Res. 9 (8) (2021) 338–350.

[47] S.K. Das, et al., Classification of slopes and prediction of factor of safety using differential

evolution neural networks, Environ. Earth Sci. 64 (2011) 201–210.

[48] P.G.A. Njock, et al., Artificial neural network optimized by differential evolution for predict-

ing diameters of jet grouted columns, J. Rock Mech. Geotech. Eng. 13 (6) (2021) 1500–1512.

[49] S. Vardakos, M. Gutierrez, C. Xia, Parameter identification in numerical modeling of tunnel-

ing using the differential evolution genetic algorithm (DEGA), Tunn. Undergr. Space Technol.

28 (2012) 109–123.

[50] J.-S. An, et al., Analysis for applicability of differential evolution algorithm to geotechnical

engineering field, J. Korean Geotech. Soc. 35 (4) (2019) 27–35.

[51] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art, IEEE Trans.

Evol. Comput. 15 (1) (2010) 4–31.

[52] L. Tang, Y. Dong, J. Liu, Differential evolution with an individual-dependent mechanism,
IEEE Trans. Evol. Comput. 19 (4) (2014) 560–574.



44 Applications of artificial intelligence in mining and geotechnical engineering
[53] K.P. Wong, Z.Y. Dong, Differential evolution, an alternative approach to evolutionary algo-

rithm, in:Proceedings of the 13th International Conference on, Intelligent Systems Application

to Power Systems, IEEE, 2005.

[54] A.K. Qin, P.N. Suganthan, Self-adaptive differential evolution algorithm for numerical opti-

mization, in: 2005 IEEE Congress on Evolutionary Computation, IEEE, 2005.

[55] U.K. Chakraborty, Advances in Differential Evolution, vol. 143, Springer, 2008.

[56] P.N. Suganthan, Differential evolution algorithm: recent advances, in: Theory and Practice of

Natural Computing: First International Conference, TPNC 2012, Tarragona, Spain, October

2–4, 2012. Proceedings 1, Springer, 2012.

[57] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95-

international conference on neural networks, IEEE, 1995.

[58] K.E. Parsopoulos, M.N. Vrahatis, Particle Swarm Optimization and Intelligence: Advances

and Applications, IGI Global, 2010.

[59] M.N.K. Kulkarni, et al., Particle swarm optimization applications tomechanical engineering—

a review, Mater. Today Proc. 2 (4–5) (2015) 2631–2639.

[60] A. Khare, S. Rangnekar, A review of particle swarm optimization and its applications in solar

photovoltaic system, Appl. Soft Comput. 13 (5) (2013) 2997–3006.

[61] A.G. Gad, Particle swarm optimization algorithm and its applications: a systematic review,

Arch. Comput. Methods Eng. 29 (5) (2022) 2531–2561.

[62] M. Hajihassani, D. Jahed Armaghani, R. Kalatehjari, Applications of particle swarm optimi-

zation in geotechnical engineering: a comprehensive review, Geotech. Geol. Eng. 36 (2018)

705–722.

[63] X. Zhang, et al., Novel soft computing model for predicting blast-induced ground vibration in

open-pit mines based on particle swarm optimization and XGBoost, Nat. Resour. Res. 29

(2020) 711–721.

[64] F. Yang, T. Yu, T.Q. Bui, Morphogenesis of free-form surfaces by an effective approach based

on isogeometric analysis and particle swarm optimization, Structure 47 (2023) 2347–2353.

[65] A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part I: back-

ground and development, Nat. Comput. 6 (2007) 467–484.

[66] Z.-H. Zhan, et al., Adaptive particle swarm optimization, IEEE Trans. Syst. Man Cybern. B

Cybern. 39 (6) (2009) 1362–1381.

[67] E.H. Houssein, et al., Major advances in particle swarm optimization: theory, analysis, and

application, Swarm Evol. Comput. 63 (2021) 100868.

[68] J.C. Vazquez, F. Valdez, P. Melin, Comparative study of particle swarm optimization variants

in complex mathematics functions, Recent Adv. Hybrid Intell. Syst. (2013) 223–235.

[69] M. Isiet, M. Gadala, Self-adapting control parameters in particle swarm optimization, Appl.

Soft Comput. 83 (2019) 105653.

[70] M. Protodiakonov, et al., Rock Strength Passports and Methods for Their Determination,

Nauka, Moscow, 1964.


