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A B S T R A C T   

Landslides are natural hazards that cause significant damage to both property and human lives. This study 
employs potential machine learning models such as Random Forest (RF), Gradient Boosting (GB), and Support 
Vector Machine (SVM) to assess landslide susceptibility in Van Yen District, Yen Bai Province, Vietnam, that 
experiences a higher frequency of landslides compared to other localities in the region. The study incorporates 
thirteen input variables, including elevation, slope angle, aspect, plan curvature, profile curvature, Topographic 
Wetness Index (TWI), distance to faults, lithology, distance to roads, distance to rivers, land cover, rainfall, and 
Normalized Difference Vegetation Index (NDVI). To construct the models, landslide statistics reports were uti
lized, consisting of 302 landslide points collected through field surveys and 52 landslide points determined using 
Radar Sentinel-1 images. The Google Earth Engine cloud computing platform is utilized for constructing the 
landslide susceptibility models. The outcome of the research is a landslide susceptibility map with five levels: 
very low, low, moderate, high, and very high. The Area Under the Curve (AUC) is used as a metric to evaluate the 
performance of all three models. The findings indicate that, besides similarities observed in landslide suscepti
bility maps for previously occurred landslides, the Random Forest model demonstrates a favorable performance 
compared to the other models, with an AUC of 0.883.   

1. Introduction 

Landslides are a highly dangerous form of natural hazards, causing 
numerous fatalities and extensive property damage each year (Froude 
and Petley, 2018). They can be triggered by various factors such as high 
accumulation of rainfall, earthquakes, or volcanic activity. Additionally, 
lithology, morphology, and triggers such as prolonged heavy rain and 
earthquakes contribute to landslide occurrences (Reichenbach et al., 
2018). In Southeast Asia, the occurrence of landslides is often linked to 
rapid urbanization, including activities like road construction, defores
tation, economic development, population growth, land use changes, 
and more recently, climate change (Petley, 2010). In recent times, 
landslides have been increasing in intensity, frequency, and scale, 
resulting in severe impacts on human lives, infrastructure, and economic 

development within these countries (He et al., 2021). 
As a result, numerous studies have focused on landslide susceptibility 

mapping. However, selecting an appropriate method for each study area 
and ensuring high accuracy poses a challenge. Among the commonly 
used algorithms, machine learning algorithms have emerged as the most 
prominent due to their superior accuracy compared to conventional 
statistical methods. These machine-learning algorithms can be catego
rized based on their complexity. Classical methods such as Logistic 
Regression (LR) and Bayesian models are simple machine learning al
gorithms rooted in statistics. Meanwhile, Support Vector Machines 
(SVM) and Decision Trees (DT) represent examples of the first simple 
models. Noteworthy studies include Saito et al. (2009), who applied the 
decision tree DT, and Heckmann et al. (2013), who employed LR for 
landslide susceptibility determination. Furthermore, there have been 
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studies comparing different simple machine-learning algorithms. For 
instance, Kalantar et al. (2018) compared Artificial Neural Networks 
(ANN), LR, and SVM in one of their studies. 

In a study conducted by Chang et al. (2023), Random Forest (RF) and 
multi-layer perceptron (MLP) machine learning models were applied to 
construct landslide hazard maps in Chongyi County, China. These 
models demonstrated promising results in landslide mapping 
applications. 

The first neural network applied to landslides was the Artificial 
Neural Network (ANN), as studied by Lee et al. (2003) in their work on 
landslide identification in Boun, Korea. Subsequently, improvements 
were made to neural networks, resulting in nested structures with 
increased complexity, such as Convolutional Neural Networks (CNN) 
and Recurrent Neural Networks (RNN), also referred to as deep neural 
networks or deep learning (LeCun et al., 2015; Shin et al., 2016). 

In a case study conducted by Chen et al. (2017) in Shaanxi, China, 
Logical Model Trees (LMT), Random Forest (RF), and Classification and 
Regression Trees (CART) were compared using a standard dataset of 171 
landslides. The study found that RF outperformed the other models. 

Ensemble Learning Methods (ELM) involve combining multiple in
dividual machine learning algorithms. Pham et al. (2019) combined 
different ELM algorithms to create four new hybrid prediction models, 
which were then evaluated over a test site of approximately 250 square 
kilometers in the Indian Himalayas. The results were positive, with the 
algorithm named Bagging based Reduced Error Pruning Trees (BREPT) 
demonstrating the highest reliability. Additionally, Fang et al. (2021) 
implemented four ELMs that consisted of components like CNN and 
RNN, combined with Support Vector Machines (SVM) and Logistic 
Regression (LR). They also analyzed the correlation between various 
geomorphological parameters and landslide susceptibility. The results 
indicated that Ensemble Machine Learning (ELM) outperformed indi
vidual algorithms, as confirmed by Yordanov et al. (2021). 

In this study, our objective is to utilize three machine learning 
methods, namely Support Vector Machine, Random Forest, and Gradient 
Boosting, to predict landslide susceptibility in the Van Yen, Yen Bai 
province. This research area experiences a higher annual frequency of 
landslides compared to other regions in the mountainous provinces of 

Northern Vietnam. The study selected representative models from sim
ple to advanced, to assess their applicability and identify the best per
forming model for application in the research area. While previous 
studies have indicated that ensemble machine learning models tend to 
exhibit superior performance, the results still reveal varied assessments 
across regions. This study contributes to elucidating the suitability of 
these models for areas with high landslide frequency, such as Van Yen 
district, Yen Bai province, Vietnam. Additionally, we intend to leverage 
the processing tools and available data sources on the Google Earth 
Engine cloud computing platform to develop the fastest and most 
effective predictive model. This platform proves convenient for data 
mining and supports various machine-learning algorithms for con
structing prediction models. 

Due to the high annual frequency of landslides in the study area, the 
locations of the landslide survey sites were mainly taken along the roads, 
so in this study, we also propose to use additional landslides points made 
from SAR time series images by Persistent Scattering Interferometric 
Synthetic Aperture Radar (PSInSAR) method. These supplementary 
points will enhance the modeling process, while the field survey points 
will serve as a means to assess accuracy. Furthermore, the study area is 
characterized by complex terrain and notable variations in land cover, 
which are the primary factors contributing to landslides. Our research 
comprehensively evaluates the process of selecting an effective landslide 
prediction model to support land use management and reduce landslide 
risks. 

2. Study area and data used 

2.1. Study area 

Van Yen district is a mountainous district located in the northern part 
of Yen Bai province, with geographical coordinates ranging from 
104◦20′17″ to 104◦47′38″ East longitude and 21◦39′57″ to 22◦12′12″ 
North latitude. The eastern border shares with Luc Yen and Yen Binh 
districts, the western border with Van Chan district, the southern border 
with Tran Yen district, and the northern border with Van Ban and Bao 
Yen district of Lao Cai province (Thanh Thi Pham et al., 2020). 

Fig. 1. Location of the study area and the landslide inventory map.  
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This region features complex terrain characterized by hills and 
mountains within the Red River valley. The Con Voi mountain range 
stands in the northeast of the district, with its highest peak reaching 
1450 m. The district has diverse topographies, including high moun
tains, interlaced valleys, and a dense network of rivers and streams. In 
the northwest of the district, there are several moderately high moun
tains with rugged terrain and high slopes (Tran et al., 2021). 

Van Yen district is influenced by a tropical monsoon climate with an 
annual average rainfall ranging from 2200 to 2400 mm, particularly 
concentrated during the rainy season from June to September annually. 
This district experiences the highest frequency of landslides compared to 
the northern mountainous region and Yen Bai province, resulting in 
significant losses to human lives, infrastructure, and property (Ha et al., 
2018). 

2.2. Determination of the inventory points of landslide 

Landslide inventory data plays a critical role in predictive modeling, 
together with landslide controlling factor layers throughout the land
slide modeling process. As mentioned above, in order to increase the 
number of landslide inventory points, we processed a series of Radar 
Sentinel-1 images. Details of this image processing have been presented 
in the article of Tran V.A. et al. (2021). Here we only want to describe 
briefly the method of determining these landslide points. 

The PSInSAR method, proposed by Ferretti et al. (2001), relies on 
using a series of multitemporal SAR images taken at the same location to 
identify permanent scattering points. These points are instrumental in 
detecting terrain deformation. The PSInSAR method has been employed 
for landslide monitoring by several researchers, including Colesanti 
et al. (2003), Colesanti and Wasowski (2006), Oliveira et al. (2014), 
Ciampalini et al. (2016), and Yazici and Tunc Gormus (2022). The 
availability of archived SAR images, along with highly frequent acqui
sitions, provides PSInSAR with the capability to measure and monitor 
terrain changes both in the past and the present. In our study, we utilized 
Sentinel-1 images acquired from January 1, 2019, to January 1, 2021 
(Tran et al., 2021). Landslide points are recognized as PS (persistant 
scattering points), with over 50 thousand PS points having been 

detected in the region. Despite their abundance, we specifically choose 
PS points situated on slopes exceeding 10◦ and possessing negative 
values. 

Field surveys were conducted in 2013, 2015, and 2017, resulting in a 
total of 302 landslide points. Due to some difficult areas remaining 
unexplored during the field survey, 52 landslide points were selected 
from the processed Radar Sentinel-1 satellite images, representing 52 
landslide events synthesized from PS points. These points were verified 
through fieldwork and cross-checked on Google Earth before being 
incorporated into the inventory dataset (Fig. 2). Consequently, the 
current number of identified landslide points stands at 354. (Fig. 1). 

2.3. Landslide susceptibility model input data 

The input data for the landslide susceptibility model consists of 
various variables and parameters that are used to assess and predict the 
susceptibility of landslides. These data elements play a crucial role in the 
accuracy and effectiveness of the prediction model (Chen et al., 2017). 
The vector data layers are rasterized using ArcMap 10.8 software, fol
lowed by standardizing their resolution to 12.5 m to facilitate the data 
integration process for the model. The key input data typically include:  

- Topographic data: This includes information such as elevation, slope 
angle, aspect, and curvature of the terrain. These factors influence 
the stability of slopes and are essential in evaluating landslide sus
ceptibility (Pham et al., 2019). In this study, we used a Digital 
Elevation Model (DEM) derived from ALOS PALSAR with 12.5 m 
spatial resolution in 2020, which was used to create layers of 
elevation (Fig. 1), slope angle (Fig. 3(a)), aspect (Fig. 3(b)), plan 
curvature (Fig. 3(c)), and profile curvature (Fig. 3(d)).  

- Topographic Wetness Index (TWI): TWI is an index that describes the 
process of hydrological flow based on the basin area and specific 
topographic slope characteristics (Bui et al., 2023). The TWI is used 
to assess the spatial distribution of soil moisture, which can be 
transformed from a digital elevation model according to the equation 
(Fig. 3(e)): 

Fig. 2. Locations of several landslide points identified through PSInSAR and the validation process (photo by authors).  
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Fig. 3. Conditioning factors of the study area. (a)Slope Angle; (b)Aspect; (c)Plan Curvature; (d)Profile Curvature; (e)TWI; (f)Distance to Faults; (g)Lithology; (h) 
Distance to Road; (i)Distance to River; (k)Land Cover; (l)Rainfall; (m)NDVI. 
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TWI=
As

tan β
(1)  

where As is the specific basin area (m2/m) and β is topographic slope 
angle.  

- Geological data: The geological map (Fig. 3(g)) of Van Yen District, 
along with distances to faults (Fig. 3(f)), were both established using 
a 1:200,000 scale geological map and fault data provided by the 
Vietnam Institute of Geosciences and Mineral Resources in 2018. The 
geological map includes five lithology groups, ranging from group 1 
to group 5, based on increasing hardness.  

- Distance to roads and distance to rivers: The distance to roads and 
distance to rivers maps were constructed based on the road and river 
map of the OpenStreetMap source in 2022. Roads can affect landslide 
occurrence in multiple ways. Construction and excavation activities 
associated with road development can alter the stability of slopes and 
increase the likelihood of landslides (Ha et al., 2022). Moreover, 
roads can act as a conduit for water, channeling rainfall and 
increasing water infiltration into the soil, which can contribute to 
slope instability. The proximity of slopes to roads may also indicate 
the level of human activity and potential disturbance, further influ
encing landslide susceptibility. For the study area, the distance to 
roads (Fig. 3(h)) is buffered with distances of 50 m, 100 m, 200 m 
and greater than 500 m. Rivers and water bodies can significantly 
impact landslides. Water flowing along rivers can erode and under
mine slopes, reducing their stability and triggering landslides (Abe
dini et al., 2019). The proximity of slopes to rivers may indicate areas 
susceptible to erosion and increased water pressure, which can 
weaken the soil and contribute to slope failures (Ha et al., 2022). 
River valleys often have specific geological and geomorphological 
characteristics that can increase landslide susceptibility. In the case 
of Van Yen District, the distance to rivers (Fig. 3(i)) is buffered with 

distances of 25 m, 50 m, 100 m, 200 m, 500 m, and greater than 500 
m.  

- Rainfall: Precipitation plays a significant role in triggering landslides 
by saturating the soil, increasing pore water pressure, and reducing 
soil strength. The rainfall map (Fig. 3(l)) was interpolated using 
Kriging method from the average data of 10 years (2012–2022) from 
six stations located within and surrounding the study area (Bui et al., 
2023). The rainfall data from these stations is provided by National 
Centre for Hydrometeorological Forecasting under the Ministry of 
Natural Resources and Environment of Vietnam.  

- Land cover and vegetation density: The type of land cover, such as 
forests or urban areas, and the density of vegetation can influence 
slope stability. Vegetation plays a crucial role in enhancing slope 
stability by reinforcing soil cohesion and reducing the risk of land
slides. In this research, a land cover map (Fig. 3(k)) was generated by 
classifying seven sub-classes using a classification method based on 
Sentinel-2 satellite imagery with a spatial resolution of 10 m. Addi
tionally, a Normalized Difference Vegetation Index (NDVI) (Fig. 3 
(m)) data layer represents vegetation density with a resolution of 10 
m was created from this image. 

3. Research methods 

3.1. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a machine learning algorithm 
commonly used for binary classification tasks. SVM constructs an 
optimal hyperplane to separate different samples by maximizing the 
distance between them. It can handle both linearly separable and non
linearly separable data (Cortes and Vapnik, 1995; Drucker et al., 2003). 

In the case of linearly separable data, SVM seeks a hyperplane that 
maximizes the distance between two groups of samples and the closest 
samples from each group. However, in practice, data is often not linearly 

Fig. 4. Random Forest formation.  
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separable, so SVM is used for nonlinear data. In this scenario, relaxation 
variables are introduced to allow for some misclassifications, and pen
alty factors are used to balance the trade-off between maximizing the 
margin and minimizing misclassification errors (Abedini et al., 2019; 
Huang and Zhao, 2018; Kamran et al., 2021). 

To solve the optimization problem, we use the method of Lagrange 
multipliers, leading to the dual formulation of the problem with a kernel 
function that enables SVM to operate in high-dimensional feature 
spaces. The commonly used kernel functions include linear, polynomial, 
Gaussian radial basis, and sigmoid kernels. Among these kernels, the 
Gaussian radial basis kernel is popular due to its ability to optimize 
model parameters and perform well with both large and small datasets. 

3.2. Random Forest 

Random Forest is an algorithm that consists of numerous individual 
decision trees functioning collectively (Breiman, 2001). Each decision 
tree in the Random Forest predicts the class, and the class with the 
highest number of votes is chosen as the model’s final prediction (Fig. 4). 
The Random Forest model is highly effective for image classification 
because it utilizes a multitude of smaller models with diverse rules to 
make the ultimate decision. Although each sub-model may differ and be 
weak, the classification result is more accurate compared to using a 
single model due to the “wisdom of the crowd” principle. Random Forest 
employs a technique known as bagging, which means that during each 
split of the tree, only a limited subset of features is considered rather 
than all the features of the model. 

As its name suggests, Random Forest (RF) is based on two key con
cepts: (1) Randomness, indicating the utilization of randomness, and (2) 
Forest, representing the presence of multiple decision trees (Sun et al., 
2020; Zhou et al., 2021). 

3.3. Gradient boosting 

Gradient Boosting (GB) is based on the idea of creating a sequence of 
weak models that complement each other’s shortcomings (Friedman 
et al., 2000). In Boosting, subsequent models strive to minimize the 
errors made by the previous models. The concept of gradient boosting 
involves three key steps. Firstly, a suitable differentiable loss function is 
chosen based on the problem at hand. One advantage of the gradient 
boosting model is that it can accommodate different loss functions 
without requiring new algorithms. It only requires selecting an appro
priate loss function and incorporating it into the gradient boosting 
framework. Secondly, a weak learner is constructed to make predictions. 
In gradient boosting, decision trees are commonly used as weak learners. 
Specifically, regression trees are employed, generating continuous 
output for splits that can be aggregated. This allows the combination of 
outputs from different models, leading to improved predictions by 
progressively refining the residuals. The trees are built in a greedy 
manner, often subject to certain constraints to ensure they remain weak 
learners and can still be constructed using a greedy approach (Fig. 5). 
Finally, an additive model is created by aggregating the predictions of 
the weak learners to minimize the loss function. This process of adding 
trees occurs incrementally, one tree at a time. The output generated by 
each new tree is added to the outputs of the previously constructed 
sequence of trees, enhancing the final model’s output. This iterative 
process continues until the optimized value for the loss function is 
achieved, signaling the completion of the gradient boosting process 
(Iban and Bilgilioglu, 2023; Sahin, 2022). 

Fig. 5. Diagram of the Gradient Boosting model.  

Table 1 
Landslide conditioning factors and their classification.  

Factor Classification Classification 
method 

Elevation (m) (1) [0–169.55], (2) [169.55–370.94], (3) 
[370.94–587.24], (4) [587.24–840.84], (5) 
[840.84–1176.49], (6) >1176.49 

Natural Breaks 

Slope angle 
(degree) 

(1) 0–10, (2) 10–20, (3) 20–30, (4) 30–40, (5) 
40–50, (6) > 50 

Manual 
Classification 

Aspect (1) Flat (− 1), (2) North (0–22.5), (3) 
Northeast (22.5–67.5), (4) East (67.5–112.5), 
(5) Southeast (112.5– 
157.5), (6) South (157.5–202.5), (7) 
Southwest (202.5–247.5), (8) West 
(247.5–292.5), (9) Northwest 
(292.5–337.5), (2) North (337.5–360) 

Azimuth 

Plan 
Curvature 

(1) [(-1.6) - (− 0.136)], (2) [(-0.136) - 
(0.026)], (3) [(-0.026) - 0.015)], (4) 
[(0.015–0.111], (5) [0.111–1.919] 

Natural Breaks 

Profile 
Curvature 

(1) [(-1.121) - (− 0.009)], (2) [(-0.009) - 
(− 0.004)], (3) [(-0.009) - 0.002)], (4) 
[(0.002–0.007], (5) [0.007–0.177] 

Natural Breaks 

TWI (1) [3.711–7.367], (2) [7.367–8.564], (3) 
[8.564–10.159], (4) [10.159–12.087], (5) 
[12.087–20.663] 

Natural Breaks 

Distance to 
faults 

(1) [0–50], (2) [50–100], (3) [100–200], (4) 
[200–500], (5) >500 

Manual 
Classification 

Lithology (1) Group 1, (2) Group 2, (3) Group 3, (4) 
Group 4, (5) Group 5 

Lithology 
categories 

Distance to 
road 

(1) [0–50], (2) [50–100], (3) [100–200], (4) 
[200–500], (5) >500 

Manual 
Classification 

Distance to 
river 

(1) [0–25], (2) [25–50], (3) [50–100], (4) 
[100–200], (5) [200–500], (6) >500 

Manual 
Classification 

Land cover (1) Water, (2) Build-up, (3) Paddy field, (4) 
Terrace, (5) Non-forest vegetable, (6) Forest, 
(7) Bare land/others 

Land cover 
categories 

Rainfall (1) [1284–1324], (2) [1324–1357], (3) 
[1357–1388], (4) [1388–1416], (5) 
[1416–1445], (6) [1445–1476], (7) 
[1476–1527] 

Natural Breaks 

NDVI (1) [(-0.555)-0.100], (2) [0.100–0.402], (3) 
[0.402–0.555], (4) [0.555–0.664], (5) 
[0.664–0.755], (6) [0.755–0.897] 

Natural Breaks  
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minCn = 1 : N,wn = 1 : N
L

((

y,
∑N

n=1
CnWn))

(2)  

where:  

• L: loss function value  
• y: label  
• cn: is the weight of the n weak learner  
• wn: n weak learner 

3.4. Tool for processing 

The Google Earth Engine (GEE) cloud computing platform is utilized 
as the tool for constructing the predictive model. GEE combines 
numerous satellite images and geospatial data from diverse sources to 
serve as input data for the model. This approach allows for reducing 
desktop data preparation, thereby reducing data preparation time for 

model input. Table 1 and Fig. 3 provide a summary of the datasets, 
including those prepared on the desktop and obtained from the cloud. 

The training set consists of 248 landslide points and 248 no landslide 
points, from which values for elevation, slope, aspect, NDVI, LULC, TWI, 
rainfall, plan curvature, profile curvature, lithology, distance to roads, 
distance to rivers, distance to fault, and landslide location are extracted. 
The values are labeled as either 1 (slides) or 0 (no landslide). The 
flowchart in Fig. 6 illustrates the process of image processing and 
building the predictive model using three methods: SVM, RF, and GB. 

4. Modelling prediction and performance 

The performance of a predictive model is evaluated using the ROC 
curve and the area under the ROC curve (AUC). The ROC curve illus
trates the relationship between Sensitivity and (1-Speccificity) for both 
landslide and non-landslide positions. The AUC serves as a compre
hensive performance metric for land subsidence prediction models. A 

Fig. 6. Flow chart of image processing and building predictive models by methods SVM, RF and GB.  

Fig. 7. Multicollinearity assessment results based on VIF and Tolerance Values.  
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higher AUC value indicates a more effective model. 
The sensitivity is computed using the following formula: 

Sensitivity=
TP

(TP + FN)
(3)  

where TP represents the count of True Positives, and FN denotes the 
number of False Negatives. 

Specificity can be computed using the formula below: 

Specificity=
TN

(TN + FP)
(4)  

where TN corresponds to the true negatives, and FP represents the count 
of false positives. 

The overall accuracy (OA) is calculated based on all four indices: 
True Positives (TP), True Negatives (TN), False Positives (FP), and False 
Negatives (FN). The formula for computing the overall accuracy (OA) is 
given as follows: 

OA=
TP + TN

(TP + TN + FP + FN)
(5) 

The ROC, AUC, and OA curves are valuable tools for evaluating 
landslide models. The ROC curve enables the assessment of model per
formance based on sensitivity and specificity. Sensitivity represents the 
proportion of predicted landslides that are correctly identified as land
slides, while specificity denotes the proportion of non-landslide areas 
that are accurately classified as such. Moreover, OA provides a measure 
of the model’s overall accuracy by comparing correct scores with the 
total number of testing points. 

These assessment methods not only help verify the reliability of re
sults but also facilitate model comparison and selection for landslide 
prediction purposes. Researchers can use ROC and AUC curves to gain 
insights into model performance and make informed decisions when 
choosing the most suitable model for their specific landslide prediction 
needs. 

5. Results and discussions 

5.1. Multicollinearity analysis 

Multicollinearity is a phenomenon in which factors within a model 
are correlated and influence each other, leading to a reduction in the 
explanatory power of variables. In statistical research, multicollinearity 
is considered to occur when the Variance Inflation Factor (VIF) exceeds 
10 or when the tolerance is less than 0.1. Fig. 7 illustrates the values of 
Tolerance and VIF in assessing multicollinearity for 13 factors in the 
landslide model within the study area (Daviran et al., 2023). 

The Tolerance values indicate a low degree of correlation among the 
factors, as all of them are greater than 0.1 (Fig. 7(a)). Conversely, the VIF 
values for the factors range from 1.07 (Distance to Faults) to 3.47 
(Topographic Wetness Index), ensuring that they are all less than 10 
(Fig. 7(b)). This suggests the absence of severe multicollinearity among 
the factors in the model. Consequently, all the landslide conditioning 
factors in this case are retained to construct the landslide susceptibility 
prediction model. 

5.2. Landslide susceptibility models 

The landslide susceptibility zoning map demonstrates consistency 
and similarity in classifying the landslide sensitivity levels among all 
three models. Particularly, areas with high and very high landslide 
sensitivity tend to be concentrated along transportation routes. Based on 
Fig. 8, it can be observed that areas with high and very high landslide 
susceptibility tend to be in close proximity to transportation routes, such 
as along the national road CT05 and the provincial road DT163. Addi
tionally, significant landslide-prone areas are identified in Chau Que Ha, 

Fig. 8. Landslide susceptibility map predicted by models: (a) Support Vector 
Machine, (b) Random Forest, (c) Gradient Boosting. 
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Phong Du Ha, and Phong Du Thuong, which are characterized by high 
slopes beside transportation road. 

Fig. 9(a) illustrates the percentage distribution of susceptibility level 
classes for all three models: Support Vector Machine (SVM), Gradient 
Boosting (GB), and Random Forest (RF). The results show that the 
models tend to distribute the susceptibility levels differently. Specif
ically, for the “Very Low” class, the percentages are 24.62% for SVM, 
43.13% for GB, and 29.34% for RF. Conversely, for the “Very High” 
class, the percentages are 0.74% for SVM, 15.94% for GB, and 16.74% 
for RF. It can be observed that SVM has the highest percentage of area 
for the “Very Low” susceptibility level and the lowest percentage for the 
“Very High” susceptibility level. GB demonstrates a higher capability of 
predicting samples in the “Very Low” susceptibility level compared to 
SVM, but this decreases as it predicts samples in the “Very High” sus
ceptibility level. On the other hand, RF shows a higher capability of 
predicting samples in the “High” susceptibility level compared to GB, 
with percentages of 17.85% and 11.35%, respectively. 

Fig. 9(b) displays the percentage distribution of landslide survey 
points in the testing dataset across susceptibility level classes for all 
three models: Support Vector Machine (SVM), Gradient Boosting (GB), 

and Random Forest (RF). The results present the percentages of survey 
points allocated to each susceptibility class, such as “Very Low,” “Low,” 
“Moderate,” “High,” and “Very High.” The findings clearly indicate 
differences in the distribution of points among the models. SVM tends to 
predict samples into the “Low,” “Moderate,” and “High” classes the 
most, with distribution percentages of 13.33%, 23.81%, and 57.14%, 
respectively. GB exhibits the highest percentage of points allocated to 
the “Very High” class, with a distribution rate of 54.29%, while the RF 
model also demonstrates a similar tendency, with 50.48% of points 
distributed to the “Very High” class. 

The distribution percentages also highlight distinctions between the 
models, as evidenced by SVM having the lowest percentage in the “Very 
High” class at 0.95%, whereas GB and RF both have higher percentages 
at 54.29% and 50.48%, respectively, in the same class. These distribu
tion patterns indicate the forecasting performance of the models for 
landslide occurrences. Landslide points are more likely to occur in areas 
with “High” susceptibility levels when predicted using SVM, whereas 
they tend to occur in the “Very High” susceptibility class when predicted 
with GB and RF models. 

Fig. 9. Distribution charts (a) percentage of susceptibility level classes, (b) percentage of landslide survey points in the testing dataset by three models.  
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5.3. Variables contribution analysis 

The results from both models Gradient Boosting and Random Forest 
provide insights into the importance of factors in predicting landslide 
occurrences. The Gradient Boosting model reveals that Elevation and 
Slope are the two most significant factors, with importance values of 
5.429 and 1.094, respectively (Fig. 10(a)). This highlights the strong 
influence of terrain elevation and slope on the likelihood of landslides. 
Additionally, factors such as Distance to Roads, NDVI, Aspect, and TWI 
also contribute significantly, with importance values ranging from 0.387 
to 1.079. In contrast, Plan Curvature and Distance to Rivers have the 
lowest importance values and contribute minimally to the prediction 
model. 

Fig. 10. Variable importance with models: (a) Random Forest, (b) Gradient Boosting.  

Table 2 
Model performance assessment parameters.   

Gradient 
Boosting 

Random 
Forest 

Support Vector 
Machine 

TP 82 75 64 
TN 82 93 92 
FP 24 13 14 
FN 23 30 41 
Overall 

Accuracy 
0.777 0.796 0.739 

Sensitivity 0.781 0.714 0.610 
Specificity 0.774 0.877 0.868 
AUC 0.861 0.883 0.815  
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Random Forest model identifies Elevation and Distance to Roads as 
the two most important factors, with corresponding importance values 
of 1.259 and 1.121 (Fig. 10(b)). Overall, the importance values of 
Random Forest tend to be lower compared to Gradient Boosting. This 
difference might arise from how Random Forest operates by creating 
multiple independent decision trees and combining their results. Factors 
such as NDVI, Slope, TWI, Aspect, and Rainfall make substantial con
tributions, displaying importance values within the range of 
0.719–1.060. Among these factors, Plan Curvature and Land Cover 
exhibit the lowest levels of importance. 

Although there are variations in the order and degree of importance 
of factors between the two models, both models agree that Elevation and 
Slope are crucial in evaluating landslide sensitivity. These discrepancies 
may be attributed to the different ways the two models process data and 
determine the importance of factors. This emphasizes the necessity of 
employing multiple models in assessments to arrive at reliable conclu
sions and support effective decision-making in landslide risk manage
ment and prediction. 

5.4. Model quality assessment 

In this study, three machine learning models, namely Support Vector 
Machine (SVM), Gradient Boosting, and Random Forest, were compared 
for predicting landslides using the Overall Accuracy, Sensitivity, Speci
ficity, and Area Under the Curve (AUC) for testing dataset (Table 2). The 
results indicate that Gradient Boosting and Random Forest out
performed SVM in prediction accuracy. The overall accuracy of SVM was 
0.777, while that of Gradient Boosting and Random Forest was 0.739 
and 0.796, respectively. This demonstrates that both Gradient Boosting 
and Random Forest achieved higher prediction accuracy compared to 
SVM. 

Table 2 shows that the Random Forest model has a sensitivity of 
0.714, which is lower than Gradient Boosting (0.781) but higher than 
SVM (0.610). However, all three models showed good performance in 
detecting landslides. The specificity of the Random Forest model was 
0.877, higher than both Gradient Boosting (0.774) and SVM (0.868). 
This indicates that Random Forest had a better ability to detect non- 
landslide cases compared to the other two models. 

Finally, to assess the overall model performance, we used the Area 
Under Curve (AUC). The results showed that Random Forest had the 

highest AUC of 0.883, followed by Gradient Boosting with an AUC of 
0.861, and SVM had the lowest AUC of 0.815 (Fig. 11). This indicates 
that Random Forest performed best among the three tested models in 
terms of prediction accuracy. 

6. Conclusion 

The study utilized data from 13 classes of factors influencing land
slides, along with field survey data on landslides combined with PS- 
InSAR analysis from Sentinel-1 images to create landslide susceptibil
ity maps using Support Vector Machine (SVM), Random Forest (RF), and 
Gradient Boosting (GB) machine learning models. The research revealed 
that high landslide susceptibility occurred in areas along major trans
portation routes and roads in Chau Que Ha, Phong Du Ha, and Phong Du 
Thuong communes. The results demonstrated that the application of 
combined models yielded more optimized effectiveness in generating 
landslide susceptibility maps, with the Random Forest model showing 
the best performance compared to the Gradient Boosting and the Sup
port Vector Machine, with AUC values of 0.883, 0.861, and 0.815, 
respectively. Furthermore, the GEE cloud-based tool proves highly 
effective by harnessing numerous available cloud-based data sources 
and leveraging highly efficient machine learning algorithms for con
structing predictive models. 
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