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Signatures of the excitonic insulator in the mass-imbalance extended Falicov-Kimball model with the electron-
phonon correlation are investigated. Based on the unrestricted Hartree-Fock approximation, we derive a set of
self-consistent equations specifying the excitonic insulator order parameter and then construct the complex phase
diagram of the excitonic insulator states. For a given intermediate Coulomb interaction, the excitonic insulator
states at nearly zero temperature are found if the electronic hybridization-phonon coupling is sufficiently large.
The window of the excitonic insulator states expands as suppression of the mass anisotropy. The influence of the
mass imbalance and electron-phonon correlations on the nature of the BCS-BEC crossover of the condensation
states is also addressed in the signatures of the optical conductivity. The preformed excitonic bound states in
the normal semiconducting side are inspected in the features of the imaginary part of the dynamical excitonic
susceptibility function. By increasing the electronic hybridization-phonon coupling or suppressing the mass
imbalance, we find the dominance of the excitonic coherent bound states. The compact influence of the mass
imbalance and electron-phonon correlations on the whole picture of the excitonic insulator state thus has been
discussed.
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I. INTRODUCTION

The condensation state of bosonic quasiparticles is always
one of the most interesting subjects in many-particle physics
[1,2]. In a semiconductor (SC) or a semimetal (SM), due to
the Coulomb attraction, the conduction band electrons and the
valence band holes may couple to each other to form a bosonic
quasiparticle so-called exciton. At sufficiently low tempera-
tures, a large number of the excitons might spontaneously
condense into a single quantum coherent state as proposed
by the Bose-Einstein condensation (BEC) theory. Unlike the
Cooper pairs in superconductivity, excitons are neutral quasi-
particles so the excitonic condensation state is an insulator
and that condensate is termed as an excitonic insulator (EI)
state. The EI state in a material was proposed theoretically
since the early 1960s [3–5] and, recently, the field of study-
ing the EI state has been focused due to its observations in
experiments [6–11]. In the experimental observations, one
has been released that the Coulomb interaction is not a pure
partner mediating the coupling between the conduction elec-
trons and valence holes. In that situation, the electron-phonon
correlations also significantly impact on the stability of the
EI state [6–11]. The separation which interaction is relevant
in driving the EI state is indeed impossible [11]. On the
theoretical side, the excitonic condensation state driven by
both Coulomb interaction and electron-phonon correlations
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has been intentively studied [11–16]. In these studies, the
Coulomb interaction is considered in the Falicov-Kimball
form so the electronic model describing the EI state in the
system is called the extended Falicov-Kimball model (EFKM)
in which the valence hole band is not completely localized
as in the original version [17]. In the framework of the pure
EFKM, depending on the Coulomb attraction, the EI state
has been described likely either as superconductivity in the
theory of Bardeen–Cooper–Schrieffer (BCS) or the BEC of
preformed excitons. The BCS-BEC crossover of the EI state
has been then addressed and exhibits many interesting phe-
nomena [18,19].

In the EFKM, the valence electrons are assumed to be
flexible, i.e., they can hop between the lattice sites and
their effective mass is finite. The EFKM is thus able to de-
scribe in more realistic the excitonic condensation states in
the semimetal-semiconducting transition materials [20,21].
In these materials, the valence holes are heavier than the
conduction electrons and the hopping amplitude between
nearest neighbors of the valence holes |t f | is smaller than
that of the conduction electrons |t c| [12–16,18,19]. In the
other systems such as the double layer structures fabricated
by graphene or quantum wells, the general features of the
EFKM can also be utilized in investigating the interlayer
hybridizations [22–24]. In such systems, the effective mass
of the conduction and valence electrons are almost equal [25].
These evidents release that the EFKM has opened a widely
ranged application in inspecting the physical signatures in the
semimetal/semiconducting systems by varying the difference
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between the hopping amplitudes or the mass imbalance of
the conduction and valence electrons [26]. Investigating the
mass imbalance in the EFKM impacting on the excitonic
instability thus is an essential issue. However, as addressed
above, the EFKM alone is a purely electronic model that is
thus inconsistent with some experimental observations in real
materials, for instance, in the transition metal dichalcogenides
Ta2NiSe5 in which the electronphonon correlations play
important roles in the formation of the excitonic condensation
state [8–10,27,28]. Inspecting the impression of the electron-
phonon correlations and also the mass imbalance thus is an
important issue in undertanding the nature of the EI instability
in the semimetal/semiconducting materials, in general.

In the present work, the influence of the mass imbalance
and electron-phonon correlations on the EI state is exam-
ined in the framework of the EFKM involving the electronic
hybridization-phonon coupling. By utilizing the unrestricted
HartreeFock (UHF) approximation, we can find a set of
self-consistent equations determining the EI order parameters
when both the electron-phonon and the Coulomb interactions
are treated on an equal footing. In the UHF approximation, all
fluctuations are suppressed. However, in low and especially in
the zero-temperature limitations, the UHF approximation has
verified itself as an applicable method applying even for some
strongly correlated electron systems by comparing with other
more effective methods such as the dynamical mean-field
theory—one of the best theoretical approaches sucessfully
applied to the strongly correlated electron systems [29,30], the
unbiased constrained path Monte Carlo simulation [31,32],
or the density matrix renormalization group [33,34]. In the
present work, by adapting the UHF approximation we con-
struct the ground-state phase diagram of the EI state and also
its BCS-BEC crossover by analyzing the momentum distribu-
tion of the EI order parameters. In the Kubo linear response
theory, we estimate the real part of the optical conductivity.
Signatures of the EI state in both BCS and BEC types in the
presence of external optical excitation are addressed. In the
normal semiconducting state, we also evaluate the dynamical
excitonic susceptibility function. By increasing the electron-
phonon correlations or suppressing the mass imbalance, its
imaginary part releases the resonance signatures indicating
the excitonic coherent bound state even in the semiconducting
state. That is evidence of the “halo” phase specifying the
preformed excitons existing outside the EI state.

This paper is organized as follows. In Sec. II, we
present the Hamiltonian of the EFKM including electronic
hybridization-phonon coupling written in the momentum
space. The analytical calculations specifying the set of self-
consistent equations evaluating the EI order parameters are
outlined. The numerical results and discussion are addressed
in Sec. III. The last section summarizes our present work.

II. MODEL AND THEORETICAL CALCULATION

To inspect the impact of the mass imbalance and electron-
phonon correlations on the instability of the excitonic
insulator state in semimetal semiconductor transition mate-
rials, in our work, we use the spinless EFKM involving the
electron-phonon correlation that is described below by the

FIG. 1. Sketched Feynman diagrams of the common electronic
hybridization-phonon coupling (a) and the conduction-valence elec-
tronic hybridization-phonon interaction (b).

Hamiltonian written in the momentum space,

H =
∑

k

(
εc

kc†
kck + ε

f
k f †

k fk

) + U

N

∑
kk′q

c†
k+qck f †

k′−q fk′

+
∑
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ω0 p†
k pk + g√

N

∑
kq

[c†
k+q fk(p†

−q + pq) + H.c.],

(1)

where c(†)
k , f (†)

k , and p(†)
k are respectively the annihilation (cre-

ation) operators of the spinless conduction, valence electrons,
and the phonons with the momentum k. The first two terms
in Eq. (1) express the kinetic energy of the conduction and
valence electrons with respect to their dispersion relations
εc

k and ε
f
k . In the tight-binding approximation, the dispersion

relations read

ε
c/ f
k = εc/ f − 2t c/ f γk − μ. (2)

Here t c/ f is the hopping integral of the c/ f electron with its
onsite energy εc/ f , γk ≡ cos kx + cos ky for a two-dimensional
hypercubic lattice, and μ is the chemical potential. The am-
plitude of the hopping integral t c/ f is inversely dependent
on the effective mass of the c/ f electron. The difference
between t c and t f thus delivers the mass imbalance of the
electron-hole system. The second term in Eq. (1) describes the
localized Coulomb interaction or the Falicov-Kimball inter-
action between the conduction and valence electrons written
in the momentum space. The first line in Eq. (1) thus is the
Hamiltonian of the EFKM [26,35,36]. Its mass-imbalance
effects on the EI instability in the semimetal-semiconducting
transition materials have been recently discussed [26]. The
second line in Eq. (1) specifies a phononic correlation with
the electrons in the system. The phonon here is assumed
dispersionless being described by the Einstein model with
a constant energy ω0. The coupling between the electronic
system and phonons is expressed in the last term in Eq. (1).
Both U and g in Eq. (1) thus release the strengths of the
Coulomb interaction and the conduction-valence electronic
hybridization-phonon coupling, respectively, expressing the
correlations in the electronic-phononic system. Note that the
electronic hybridization-phonon coupling here is different to
the common electron-phonon coupling as in the literatures.
Indeed, the common electron-phonon interaction considers
the process of the annihilation and creation of an electron
on the same band with respect to the absorption or emis-
sion of phonons [Fig. 1(a)]. In the meanwhile, the electronic
hybridization-phonon coupling specifies the process of the
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annihilation of an electron (or the creation of a hole) on the
valence band and the creation of the electron on the con-
duction band with the absorption or emission of phonons
[Fig. 1(b)]. The exciting electron-hole pair with phonon in-
teraction here can be considered as the excitation of exciton
mediated by the lattice displacement [37]. In general, the other
potentials such as the common electron-phonon coupling or
the Coulomb repulsions between electrons on the same band
should be involved. However, these interactions do not di-
rectly affect on the excitonic condensate signatures and they
are left in the present study.

The Hamiltonian written in Eq. (1) is a complex model
formulating the many-body problems. It probably could not
be solved exactly and one has to find some approximations.
In our present work, we use the UHF approach to solve the
Hamiltonian by ignoring all its fluctuation parts. By depleting
all fluctuations, the UHF approximation generally is con-
sidered as a crude approach. However, in low or especially
in the zero-temperature limitations, the UHF approximation
surprisingly releases the equivalent solutions to other more
effective methods such as the dynamical mean-field theory—
one of the best theoretical approaches successfully applied
to the strongly correlated electron systems [29,30], the un-
biased constrained path Monte Carlo simulation [31,32], or
the density matrix renormalization group [33,34]. That rea-
son stimulates us to utilize the UHF approach in solving the
Hamiltonian written in Eq. (1), its effective Hamiltonian reads

HUHF =
∑

k

(
ε̄c

kc†
kck + ε̄

f
k f †

k fk
) + δ

∑
k

(c†
k fk + H.c.)

+
∑

q

ω0 p†
q pq +

√
Nη(p†

−q + pq)δq,0. (3)

Here the dispersion relations of the conduction and valence
electrons have been renormalized by the contribution of the
Coulomb interaction in the UHF approach that are given by

ε̄
c/ f
k = ε

c/ f
k + Un f /c, (4)

where nc = ∑
k〈c†

kck〉/N and n f = ∑
k〈 f †

k fk〉/N are respec-
tively the conduction and valence electronic densities. Unc/ f

in Eq. (4) so can be called the Hartree shifts due to the
contribution of the Coulomb interaction. In Eq. (3) δ and η

are the additional fields that read

η = g

N

∑
k

〈c†
k fk + f †

k ck〉, (5)

δ = g√
N

〈p†
−q + pq〉δq,0 − U

N

∑
k

〈c†
k fk〉, (6)

and play the role of the EI order parameters. In that manner,
the nonzero of these order parameters indicates the stability
of the excitonic condensate in the system. Note here that, in
our situation, we have assumed the system as the direct semi-
conductors, i.e., the top of the valence band and the bottom of
the conduction band are located at the center of the Brillouin
zone. The bound state should be promoted mainly by coupling
between the conduction and valence electrons with the same
momentum. In that situation, only zero-momentum phonons
contribute to mediate the excitonic bound states.

The effective Hamiltonian written in Eq. (3) can be simply
diagonalized by using the Bogoliubov transformation. Defin-
ing new fermionic operators in the forms

ϕ
†
k = ukc†

k + vk f †
k , (7)

ψ
†
k = −vkc†

k + uk f †
k , (8)

with uk and vk are chosen such that u2
k + v2

k = 1, the
electronic part [the first line in Eq. (3)] of the effective Hamil-
tonian can be diagonalized as

He
dia =

∑
k

(E+
k ϕ

†
kϕk + E−

k ψ
†
kψk ), (9)

where the Bogoliubov fermionic quasiparticle energies are
given by

E±
k = ε

f
k + εc

k

2
∓ sgn

(
ε

f
k − εc

k

)

2
	k, (10)

with

	k =
√(

εc
k − ε

f
k

)2 + 4|δ|2. (11)

The phononic part [the second line in Eq. (3)] can also be
diagonalized by defining a new phonon operator,

P†
q = p†

q +
√

N
η

ω0
, (12)

and one finds

Hph
dia =

∑
q

ω0P†
q Pq. (13)

From the diagonal form of the electronic part in Eq. (9),
we can evaluate the the expectation values to close the set of
self-consistent equations, such as

nc = 1

N

∑
k

[
u2

k f (E+
k ) + v2

k f (E−
k )

]
,

n f = 1

N

∑
k

[
v2

k f (E+
k ) + u2

k f (E−
k )

]
,

η = −2gδ

N

∑
k

sgn
(
ε̄c

k − ε̄
f
k

)

	k
[ f (E+

k ) − f (E−
k )], (14)

where f (E±
k ) = 1/[1 + eβE±

k ] is the Fermi-Dirac distribution
function with β = 1/T and T is the temperature.

The diagonalized form of the phononic part delivered in
Eq. (13) permits us to evaluate the rest expectation value in
Eq. (6); it reads

〈p†
−q + pq〉δq,0 = −2

√
Nh

ω0
. (15)

From the expressions in Eqs. (4)–(6), (14), and (15), we
find a set of self-consistent equations that can be solved by
numerical methods to evaluate the expectation values and
renormalized quasiparticle energies.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the numerical results dis-
cussing the effects of the mass imbalance and the electronic
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FIG. 2. EI order parameter δ as a function of the electronic
hybridization-phonon coupling g for different hopping amplitudes of
the valence electrons |t f | at U = 3.5.

hybridization-phonon coupling on the properties of the EI
state in the EFKM at very low temperature T ≈ 0. The self-
consistent Eqs. (4)–(6), (14), and (15) are solved numerically
for the two-dimensional square lattice with N = 500 × 500
lattice sites. In the numerical calculation, we set t c = 1 as the
unit of energy and fix the separation between the c and the
f bands as εc − ε f = 2.0. In this situation, the two nonin-
teracting bands are overlapped and the system settles in the
semimetallic side. The chemical potential μ in the Hamilto-
nian or in Eq. (4) is adjusted to specify the half-filling band
case, i.e., the total electronic density: nc + n f = 1. In the
previous studies, we have confirmed that the physical scenario
in both the adiabatic limit and the antiadiabatic limit is not
significantly different [14,15,38]. In this paper, the phonon
frequency ω0 = 2.0, therefore, is chosen as a special case of
the antiadiabatic situation.

In order to address the impacts of the mass imbalance and
electron-phonon correlations on the EI state, we first present
in Fig. 2 the dependence of the EI order parameter δ [evaluated
in Eq. (6)] on the electronic hybridization-phonon coupling
with different hopping amplitudes of the valence electrons |t f |
at an intermediate Coulomb interaction U = 3.5. At |t f | = 0,
i.e., when the valence band is flat or the mass of the va-
lence electrons is infinite, the EI does not exist if there is no
electron-phonon correlation, because of the Elitzur’s theorem
[39]. Indeed, in the limited cases, the Hamiltonian given in
Eq. (1) recovers the original Falicov-Kimball model (FKM)
[17] it, therefore, possesses a local U (1) symmetry related to
the localized valence electrons. Following the Elitzur theorem,
there should be no spontaneous hybridization between the
valence and conduction electrons [40]. The EI in the situation
is found only if the electronic hybridization-phonon coupling
is sufficiently large that impresses the significant role of the
electron-phonon correlations in establishing and stabilizing
the EI state in the systems. This signature is unchanged if
the effective mass of valence electron is finite but still large
or its hopping term is lightly increased, for instance up to

FIG. 3. Magnitude of the EI order parameter dk depending on
momentum k in the first Brillouin zone in the ground state for
different values of |t f | with g = 0.2 (top) and g = 0.6 (bottom) at
U = 3.5.

|t f | = 0.2. However, the scenario is completely changed if
the hopping term of the valence electrons is further increased.
Indeed, at |t f | � 0.4, one finds the stability of the EI state
even without the electronic hybridization-phonon coupling.
The Coulomb interaction only in this situation is sufficient to
form and stabilize the excitonic condensation state. Enlarging
the electronic hybridization-phonon coupling plays the role of
reinforcing the stability of the EI state. The difference of |t f |
and |t c| or the masses between the valence and conduction
electrons thus significantly affects the stability of the excitonic
condensation state. Indeed, in case of large mass difference,
the valence electrons would be much more localized than
conduction partners, the conduction and valence electrons
thus are hard to hybridize, and one finds the difficulty in the
formation of the excitonic coherent state. The hybridization
is reinforced once the mass of the valence electrons becomes
comparable with that of the conduction electrons. The valence
electrons in this condition would be more flexible and, as a
consequence, the excitonic coherent state can be established
at small or even without the electronic hybridization-phonon
coupling.

To inspect the nature of the excitonic condensation states,
we show in Fig. 3 the momentum dependence of the EI order
parameter dk = 〈c†

k fk〉 by varying the hopping term of the
valence electrons |t f | and the electronic hybridization-phonon
coupling g for a given intermediate Coulomb interaction
U = 3.5. Our results release that at a given low electronic
hybridization-phonon coupling, the EI stability is found only
if the mass of valence electrons becomes comparable with
that of the conduction electrons. Indeed, Fig. 3 shows us that
signature of the dk is only visible if |t f | � 0.2 [see Fig. 3(b)
and 3(c)]. Inspecting profoundly the signature of the momen-
tum dependence of the EI order parameter one finds that at
low |t f |, for instance at |t f | = 0.2, dk shows a sharp peak
at zero momentum, indicating the BEC type of the excitonic
condensation state. In this case, the Hartree shift due to the
presence of Coulomb interaction has moved the system to
the semiconducting situation. With a large mass imbalance
of the conduction and valence electrons, the less flexible va-
lence electrons make a separation between the conduction and
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FIG. 4. The phase diagram of the EI in the (U, g) plane for
different values of the valence transfer integral |t f |. The EI state
being in BCS type and BEC type are indicated by the orange and
green region, while the SM and SC state are pointed out by the pink
and yellow region, respectively.

valence bands. The excitonic bound-state formation in this
situation is strong like a natural atom and as a consequence,
they might condense following the BEC theory. That feature
is completely changed in case of a smaller mass imbalance.
Indeed, in case of increasing |t f | for instance up to |t f | = 0.4,
one finds the outspread of the dk; however, it gets maximum at
finite momentum. In this situation, due to the lowering mass of
the valence electrons, the two conduction and valence bands
overlap each other and thus the Fermi level plays an important
role in establishing the formation of the excitonic bound state.
That scenario looks like the feature proposed by the BCS
theory explaining the coherent bound state of the Cooper
pairs in the superconducting theory. The excitons in this case
thus might condense to form the EI state in the so-called
BCS type. By increasing the electronic hybridization-phonon
coupling, the BCS-BEC crossover signature of the EI state
is unaltered, except that it might happen at the smaller mass
imbalance of the conduction and valence electrons (see low
panels of Fig. 3). Moreover, with the help of the strengthened
electron-phonon correlations, the large mass valence electrons
are able to get a coupling to the conduction ones establishing
the excitonic bound state.

To summarize the effect of the mass imbalance in the
presence of both the electronic hybridization-phonon coupling
and the Coulomb interaction on the stability of the EI in
the ground state we show in Fig. 4 the phase diagram in
(U, g) plane for different values of |t f |. The boundary of the
EI instability is established from the EI order parameter at
which it becomes neglectable. The critical can be also eval-
uated by the divergence of the static excitonic susceptibility
function. Both these results are equilvalent [38]. The BCS-
BEC crossover of the EI stability is released in the signature
of the momentum distribution of the EI order parameter dk
as addressed in Fig. 3. The SC or SM states are specified
through the renormalized band structure [19,41]. The phase
diagram shows us that at a given set of small electronic
hybridization-phonon coupling and large mass imbalance one
always finds a window of the EI stability settled between
two critical values of the Coulomb interaction Uc1 and Uc2.
At a given mass imbalance, i.e., for fixed |t f |, by increasing

the electron-phonon correlations, the EI window is expanded.
The EI stability even can be found without of the Coulomb
interaction if the electronic hybridization-phonon coupling
is sufficiently large. In that case, the large electron-phonon
correlations alone can establish the stability of the coherent
bound state of the excitons in the system. At a small Coulomb
interaction, one finds the SM-EI in BCS type transition, in
the meanwhile, in a large Coulomb interaction range, the
SC-EI in BEC type transition is addressed by increasing
the electronic hybridization-phonon coupling. Reinforcing the
electron-phonon correlations in one way enlarges the EI state,
the other way it expands rapidly the BEC-EI stability at
an intermediate value specifying the significant roles of the
electron-phonon correlations in establishing the stability of
the EI state. From Figs. 4(a)–4(f), we find that as lowering
the mass imbalance between the conduction and the valence
electrons, the EI stability window also expands in the same
arrangements of the electronic hybridization-phonon coupling
and the Coulomb interaction. Lowering the mass imbalance
apparently raises the hybridization possibility between the va-
lence and the conduction electrons. In that sense, it promotes
the stability of the EI in the BCS type. At |t f | = 0, i.e., the
valence band is completely localized, we find that the BEC-EI
state in the original FKM cannot be established without the
sufficiently large electron-phonon correlation [cf. Fig. 4(a)].
However, that scheme is significantly changed in the case of
finite valence bandwidth, especially, once the mass of valence
electrons and its of conduction ones becomes comparable,
when we find the BEC-EI stability even at zero electronic
hybridization-phonon coupling (see the left panels of Fig. 4).
That scenario once more specifies the important role of the
mass imbalance in establishing the phase structure of the EI
state in the system.

In order to describe in more detail the signatures of the
EI states in the influence of the mass anisotropy and the
electron-phonon correlations we address, hereafter, the dy-
namical properties of the system at the given intermediate
Coulomb interaction U = 3.5. To do this, we first examine
the real part of the optical conductivity σ (ω) that might be
evaluated in the framework of the Kubo linear response theory
[42]. In that manner, one finds

σ (ω) = πe2

ωN

∑
k

u2
kv

2
k

(∇εc
k − ∇ε

f
k

)2
[ f (E+

k ) − f (E−
k )]

× [δ(ω + E+
k − E−

k ) − δ(ω − E+
k + E−

k )], (16)

where ∇ε
c/ f
k is the grad of the dispersion relation of original

noninteracting c/ f electron that delivers the role of the ve-
locity of the noninteracting conduction/valence electrons in
the system [16,26,43]. With the solution of the self-consistent
equations above, one can easily evaluate the real part of the
optical conductivity in Eq. (16).

In Fig. 5 we show the real part of the optical conductivity
σ (ω) at |t f | = 0.2 for different electronic hybridization-
phonon couplings g. For all g values, one always finds a
single-peak structure at frequency ωc = 2δ of the optical con-
ductivity spectrum. The peak indicates the resonance state
due to the hybridization of the electron in the conduction
band and the hole in the valence band corresponding to the
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FIG. 5. The real part of the optical conductivity σ (ω) for dif-
ferent values of the electronic hybridization-phonon coupling g at
|t f | = 0.2 and U = 3.5.

boundary of the excitonic coherent state. Below ωc, the optical
conductivity is significantly suppressed due to the absence
of available electronic states for absorption. That signature
of the optical conductivity signifies the energy gap with re-
spect to the stability of the excitonic condensation. Above
the resonance frequency ωc, the optical conductivity exhibits
the Drude form releasing the normally excited quasiparticles
settling above the excitonic condensation gap. The position
and height of the Drude peak structure significantly change by
varying the electronic hybridization-phonon coupling. Indeed,
as increasing the electronic hybridization-phonon coupling,
initially, one finds a gradual increase in the height with mov-
ing to the higher energy of the Drude peak. The moving to the
higher energy of the Drude peak specifies the increasing of
the EI order parameter while increasing its height releases a
development of the electronic excited probability contributing
to the formation of the bound excitonic condensate. Signatures
of the optical conductivity spectra have thus specified the
significant impact of the electronic hybridization-phonon cou-
pling in the stability of the EI state as addressed in the phase
diagram in Fig. 4. The low and blunter peak in the left panel
of Fig. 5 specifies a low probability of excited electronic states
and weak absorption light of the electronic excited states. In
that situation, only some excited states around the center of
the Brillouin zone contribute to the optical transitions. That
signatures indicate the semiconducting state with the strongly
bound state of the electron and hole, or the system stabilizes in
the BEC type of the EI state. Increasing further the electronic
hybridization-phonon coupling to g > 0.6, the right panel of
Fig. 5 shows us that the Drude peak continuously shifts to the
right. Its spectral weight rapidly increases with much more
sharper at energy ω = ωc. The sudden increase of the spectral
weight indicates the high probability of the excited electronic
states contributing to the optical transitions. In that situa-
tion, the sufficiently large electronic hybridization-phonon
coupling has driven the system to the semimetal state with
the overlap of the bared electronic band structure. The Fermi
surface thus plays an important role establishing the coher-
ent state of the electron-hole pairs. The sharped Drude peak
observed in the optical conductivity spectrum has specified
that signature. The EI state in this case thus is signified in the
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FIG. 6. The real part of the optical conductivity σ (ω) for dif-
ferent values of the electronic hybridization-phonon coupling g at
|t f | = 0.6 and U = 3.5.

BCS type as a superconducting state described by the BCS
theory. In the case of |t f | = 0.6, one observes the signature
of the optical conductivity spectrum for all values of the
electronic hybridization-phonon coupling (see Fig. 6). Indeed,
by lowering the mass anisotropy between the conduction and
valence electrons, the intermediate Coulomb interaction alone
can stabilize the system in the BCS-EI state. Increasing the
electronic hybridization-phonon coupling remains the nature
of the EI state but reinforces the hybridization between the
conduction and valence electrons hence the EI becomes more
stable.

To detect dynamical signatures of the excitonic fluctua-
tions before its transition to the EI state in the influence
of the mass imbalance and electronic hybridization-phonon
coupling, continuously we evaluate the imaginary part of the
dynamical excitonic susceptibility function for the Hamilto-
nian written in Eq. (1). In the randome phase approximation,
the dynamical excitonic susceptibility function depending on
momentum q and frequency ω, χ (q, ω), results in

χ (q, ω) = − 1

[χ0(q, ω)]−1 + U − g�q
, (17)

where χ0(q, ω) is the bare excitonic susceptibility function,
that reads

χ0(q, ω) = 1

N

∑
k

f
(
ε̄c

k

) − f
(
ε̄

f
k+q

)

ω + i0+ − ε̄
f
k+q + ε̄c

k

, (18)

and

�q = 2gω0

(ω + i0+)2 − ω2
0 − 2g2ω0χ0b(q,ω)

1+Uχ0b(q,ω)

, (19)

with

χ0b(q, ω) = 1

N

∑
k

f
(
ε̄

f
k−q

) − f
(
ε̄c

k

)

ω + i0+ − ε̄c
k + ε̄

f
k−q

, (20)

where the single particle energies taking into account the
Hartree shifts ε̄

c/ f
k are given in Eq. (4). With the solutions of

the self-consistent equations above, one can simply deliver the
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FIG. 7. The imaginary part of the dynamical excitonic suscepti-
bility function at zero momentum, Imχ (ω), for different values of
|t f | at g = 0.2 and U = 3.5. The inset shows |t f | as a function of the
resonance frequency ωc for some values of g at U = 3.5.

results of χ (q, ω) written in Eq. (17). Moreover, in the direct
band-gap situation considering in our present work, the zero
momentum excitons are favored [38] and we simplify in our
calculation below for the q = 0.

In Fig. 7 we address the imaginary part of the dynamical
excitonic susceptibility function at zero momentum, Imχ (ω),
for different values of |t f | at g = 0.2 and U = 3.5. In this
set of parameters, the system settles in the semiconduct-
ing state for low |t f |, |t f | < 0.25. For a given low value
of |t f | one always finds the single sharp peak structure in
the imaginary part of the dynamical excitonic susceptibility
spectra, indicating the preformed coherent bound state of the
excitonic fluctuations before the transition to the EI state.
The “halo” phase has been mentioned in discussing the sta-
bility of the EI in the original EFKM [41]. Increasing |t f |
or suppressing the mass imbalance between the conduction
and valence electrons, the peak shifts to the left with low-
ering energy but its width seems to be unchanged. Varying
the mass anisotropy thus does not impact on lifetime of the
resonance state; however, its correlation length is raised by
lowering the mass imbalance. That signature specifies the
tendency to stabilize the EI state by increasing the |t f | for a
given electronic hybridization-phonon coupling (e.g., see the
phase diagram in Fig. 4). Suppressing the mass imbalance
between the conduction and valence electrons thus plays an
important role in establishing and reinforcing the excitonic
fluctuations on the semiconductor side. For a given electronic
hybridization-phonon coupling, the resonance peak energy ωc

shifts linearly to the left as suppressing the mass anisotropy
(see the inset). The inset also shows us that as increasing
the electronic hybridization-phonon coupling the linear line
moves to the left signifying the reinforcement of the pre-
formed excitonic bound states on the semiconducting side.
The results addressed in Fig. 7 have thus specified the sig-
nificant impacts of the phonon correlation and also the mass
imbalance in the stability of the preformed excitonic coherent
state or the EI fluctuations even in the semiconducting state.

IV. CONCLUSION

To conclude, in the present work, we have addressed
the important impacts of the electron-phonon correlations
and the mass imbalance of the electrons and holes on the
formation and stability of the excitonic insulator states in
semimetal/semiconducting materials. In the framework of the
unrestricted Hartree-Fock approach, we have found a set of
self-consistent equations determining the excitonic insulator
order parameter for the extended Falicov-Kimball model in-
volving the electronic hybridization-phonon coupling. The
complex phase diagram of the excitonic insulator states
in the influence of the mass imbalance and the electronic
hybridization-phonon coupling then has been discussed. For
a given intermediate Coulomb interaction, one finds the sta-
bility of the excitonic insulator states in case of sufficiently
large electronic hybridization-phonon coupling. The conden-
sation window expands if the mass imbalance is suppressed.
The influence of the mass imbalance and electron-phonon
correlation on the nature of the BCS-BEC crossover of the
condensation state is also addressed in the signatures of the
optical conductivity. In the features of the dynamical excitonic
susceptibility function, the excitonic bound states preformed
before the transition to the excitonic insulator state are in-
spected. That “halo” state in the semiconducting side has been
specified by the appearance of a sharp peak in the imaginary
part of the dynamical excitonic susceptibility function. By
increasing the electronic hybridization-phonon coupling or
suppressing the mass imbalance, we find a shift to the lower
energy of the peak position indicating the dominance of the
preformed bound state. Inspecting the impact of the electronic
hybridization-phonon coupling and the mass imbalance in the
nature of the excitonic insulator state by taking into account
the quantum fluctuations out of the Hartree-Fock approxima-
tion would be valuable for our future studies.
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