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1 Introduction

Over the last few decades, heavymetal pollution has become a widespread envi-

ronmental concern due to the surge in industrialization across the world. Some

of the most toxic heavy metals include copper, cadmium, nickel, chromium,

arsenic, mercury, lead, and others, which pose a threat to human health and

aquatic ecosystems [1]. These metals have a persistent presence in the environ-

ment as they are non-biodegradable and do not break down over time. Devel-

oping countries are particularly susceptible to heavy metal pollution from

various industrial activities, such as mining, smelting, and tanning, which

can release these harmful substances into the environment [2–4]. Consequently,
exposure to heavymetals through drinking water and the food chain is a concern

for human health.

Many researchers have studied the issue of heavy metal absorption or
removal in water, wastewater, and soils, with a focus on water as it makes
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up only 2.5% of the earth’s freshwater and is crucial for human daily life [5–7].
To absorb heavy metals from water, several biochar systems and materials have

been proposed and tested, including graphene oxide and its composites, poly-

acrylamide oxide hydrogel grafted sodium alginate, thiosemicarbazide nano-

composite, electrospun nanofibrous membranes, and thiol-functionalized

cellulose nanofiber membranes. These materials have shown promising results

in removing heavy metals such as Cd2+, Cu2+, Ni2+, Pb2+, and Cu2+. More infor-

mation on these materials can be found in the literature [8–10].
Of those heavy metals, Cd2+ was recommended as one of the most danger-

ous heavy metals and it has been studied, evaluated, and removed by many

researchers with different materials. Indeed, a study has been conducted to eval-

uate the effectiveness of a hydrogel made of polyacrylamide/carboxymethyl

guar gum (PAM/CMG) containing meta-benziporphodimethene (meta-BPDM)

ligand for the selective removal of Zn2+, Cd2+, and Hg2+ ions from water [11].

Batch adsorption experiments were conducted to investigate the effects of pH,

initial metal ion concentration, and contact time on the removal of metal ions.

The maximum removal of metal ions was observed at pH6.5, and the sorption

equilibrium was achieved in 8h, 12h, and 6h contact time for Zn2+, Cd2+, and

Hg2+ ions, respectively. The hydrogel exhibited a higher adsorption capacity

and selectivity compared to other adsorbents studied. In a separate study, immo-

bilized Turbinaria ornata biomasses were used for the biosorption of Cd2+ ions

from aqueous solutions, with immobilized cells exhibiting a higher maximum

removal efficiency compared to free cells [12]. The biosorption data were ana-

lyzed using Langmuir, Freundlich, and Temkin isotherm models. The immobi-

lized algal biomass showed a maximum biosorption capacity of 29.6mgg�1

compared to 23.9mgg�1 for free cells. A covalent organic framework (COF)

made of a nitrogen-oxygen-rich porphyrin-based material was also prepared,

which showed a high adsorption capacity for Cd2+ [13]. The resulting optical

signal changes enabled ratiometric detection of Cd2+. The porphyrin COF-

based carbon fiber (CF) membrane was demonstrated to effectively remove

and enrich Cd2+ from soil and water samples. Finally, the simultaneous removal

of Pb2+, Cd2+, and Hg2+ from aqueous solutions was investigated using porous

geopolymers made from volcanic ash [14].

Researchers have used advanced techniques to measure the heavy metal

absorption ability of various materials with different methods. Singh et al.

[15] applied radial basis function neural networks (RBFNs) and multilayer per-

ceptron neural networks (MLPNs), support vector machine, and gene expres-

sion programming to predict the absorption of chlorophenol. The MLPN and

RBFN models performed better than the other models. Fawzy et al. [16] also

developed an artificial neural network (ANN) model to estimate the removal

efficiency of Cd2+. Their study showed a high fit with an R2 of 0.923. Dolata-

badi et al. [17] used an artificial neural network and adaptive neuro-fuzzy infer-

ence system model to predict the removal of heavy metals from an aqueous
solution using sawdust. The models were promising simulation techniques
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for heavy metal removal processes. Fan et al. [18] conducted a review of

machine learning algorithms like ANN, genetic algorithm (GA), and particle

swarm optimization (PSO) in terms of modeling heavy metal removal pro-

cesses. They concluded that GA-ANN and PSO-ANN models can successfully

model the removal of heavy metals with accurate results. Lu et al. [19] built an

artificial neural network and support vector machine models to simulate heavy

metal concentrations with a promising result. Rahnama et al. [20] developed

radial basis function and adaptive neuro-fuzzy inference system-based models

to predict the sodium absorption rate of an aqueous solution. The radial basis

function model was found to be an appropriate model for sodium absorption

prediction. El Hanandeh et al. [21] used artificial neural networks and multi-

input multi-output models to predict the heavy metal absorption capacity onto

biochar with a promising result (R2¼0.99). Rodrı́guez-Romero et al. [22] used

pyrolysis and ZnCl2 activation to remove As2+ from water and modeled the

absorption kinetics and isotherms results using an artificial neural network

model. Similar studies can be found in the literature [23–31].
Many researchers have used various materials and artificial intelligence

techniques to study heavy metal removal and predict the absorption efficiency

of different materials. In this study, the authors focused on the use of nanotube-

type halloysite from weathered pegmatites for absorbing heavy metals. Cd2+

was selected as a case study due to its negative health effects as warned by

the World Health Organization. In this chapter, the authors proposed and com-

pared three novel hybrid models based on the ANN model and metaheuristic

optimization algorithms, including PSO, Differential Evolution (DE), and

Slime Mold Algorithm (SMA), called PSO-ANN, DE-ANN, and SMA-ANN

models. The detail of the methodology and dataset as well as obtained results
are presented and discussed in the following sections.
2 Materials description

The halloysite sample was obtained from the LangDong, Thach Khoan, and Phu

Tho kaolin mines after the screening process. The samples were mixed and fil-

tered evenly using the wet sieving method with a 32μmmesh size. The material

under the sievewas dried and filtered, then dried again at 60°C.The dried sample

was used for testing and analysis in the subsequent steps.

In this study, the ability of halloysite in adsorbing Cd2+ was investigated by

adding a predetermined amount of halloysite to a 50mL container of a simu-

lated waste solution containing Cd2+ ions. The simulated waste solution was

prepared by dissolving Cd(NO3)2.4H2O salts in water at different concentra-

tions in the laboratory, and the pH of the solution was adjusted using 0.01M

HCl or 0.01M NaOH solution. The adsorption process was found to be influ-

enced by various factors, including contact time (CT), pH, amount of adsorbent

(AW), and initial concentration of Cd2+ in the solution (Cdinitial), as shown in
Table 1.



TABLE 1 The adsorption process of halloysite samples.

Cdinitial pH AW CT Cdoutput

45 6.3 0.6 45 24.334

45 6.3 0.6 55 22.638

45 6.3 0.6 70 22.952

45 6.3 0.6 90 22.347

80 6.3 0.4 45 60.89

80 6.3 0.4 55 60.143

80 6.3 0.4 70 60.127

80 6.3 0.4 90 51.875

70 6.3 0.6 45 40.617

70 6.3 0.6 55 38.138

70 6.3 0.6 70 36.347

70 6.3 0.6 90 34.114

45 6.8 0.6 45 22.087

45 6.8 0.6 55 20.756

45 6.8 0.6 70 22.239

45 6.8 0.6 90 19.299

80 6.8 0.4 45 60.619

80 6.8 0.4 55 59.261

80 6.8 0.4 70 58.344

80 6.8 0.4 90 56.645

70 6.8 0.6 45 41.667

70 6.8 0.6 55 41.171

70 6.8 0.6 70 40.999

70 6.8 0.6 90 39.256

46 6.2 0.5 10 46

46 6.2 0.5 20 22.93

46 6.2 0.5 30 21.154

46 6.2 0.5 40 20.68

46 6.2 0.5 50 18.076
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TABLE 1 The adsorption process of halloysite samples—cont’d

Cdinitial pH AW CT Cdoutput

46 6.2 0.5 60 17.852

46 6.2 0.5 70 17.746

46 6.2 0.5 80 17.089

46 6.2 0.5 100 17.076

46 6.2 0.5 120 17.036

46 2.95 0.5 50 25.263

46 4 0.5 50 24.113

46 4.95 0.5 50 21.036

46 5.5 0.5 50 19.733

46 6 0.5 50 18.905

46 6.5 0.5 50 18.55

46 7 0.5 50 17.574

46 8 0.5 50 16.527

46 8.8 0.5 50 10.263

46 6.5 0.3 50 23.521

46 6.5 0.5 50 18.55

46 6.5 0.7 50 17.905

46 6.5 0.8 50 17.574

46 6.5 0.9 50 16.431

46 6.5 1 50 14.406

20 6.5 0.8 50 2.132

30 6.5 0.8 50 4.108

40 6.5 0.8 50 10.5

50 6.5 0.8 50 17.603

60 6.5 0.8 50 22.101

70 6.5 0.8 50 32.636

80 6.5 0.8 50 37.963
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Tostudy the abilityof halloysite to adsorbCd2+, a sample ofhalloysiteminerals

was collected from the Lang Dong, Thach Khoan, and Phu Tho kaolin mines and

then subjected to wet sieving using a 32μm mesh size. The resulting sample was

dried at 60°C and used for subsequent testing and analysis. The experiment

involved adding a certain amount of the halloysite material to a 50mL container

containing a simulated waste solution with Cd2+ ions at varying concentrations.

The pH level of the solution was adjusted using 0.01M HCl or 0.01M NaOH,

and the adsorption process was studied based on several factors, including contact

time,pH,amountofadsorbent,and initial concentrationofCd2+ in thesolution.The

mixturewasstirredwithan800RPMstirrer forvaryingadsorptiontimes,pHlevels,

and amounts of halloysite powder. After adsorption, the solid matter was filtered

out, and the remaining Cd2+ ions in the solution were quantified using ICP-MS.

Overall, the results of the study provide insight into the potential use of halloysite

as an effective adsorbent for Cd2+ ions in waste solutions. Fig. 1 shows the halloy-
site minerals and the progress to analyze halloysite for environmental purposes.
3 Artificial neural network

An ANN is made up of interconnected units, which can be single or multiple

layers. The input data is fed into input neurons (synapses) where it is assigned

a weight by the software. This weighted sum is then processed by an activation

function, and the output data is passed on to other neurons within the network

[32]. The neurons are connected in such a way that the activation values can

contribute to the final result or be used as input for a subsequent model. The

connection weights are adjusted during the training to improve the accuracy

of the model. The network is trained by exposing it to a series of training pat-

terns and modifying the weights until the desired level of accuracy is achieved

[33]. A visual representation of a simplified ANN is shown in Fig. 2.

In the current study, a multi-layer perceptron (MLP) network with backward

propagation (BP) was selected because it is effective in modeling nonlinear mul-

tivariate systems [34]. TheMLP network has an input layer that receives the input

data and an output layer that produces the output vector. Additionally, it has hid-

den layers that do not receive direct input and do not contribute directly to the

output. The input signals are transformed as they move in a forward direction

toward the output layer. The activation function for neurons in an MLP network

can be linear or non-linear, using functions such as logarithmic, linear, hyperbolic

tangent, and sigmoidal, among others [35]. For this study, the hyperbolic tangent

function was used in the analysis and adjustment of equations because it is the

most commonly used function in an MLP configuration (as shown in Eq. (1)).
tanh xð Þ ¼ ex � e�x

ex + e�x
,

where e is Euler’s number (approximately 2.71828), and x is the input value.
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FIG. 1 Various aspects of halloysite minerals. (A) A sample of halloysite minerals, (B) an SEM

image of the sample with rod-shaped halloysite minerals overlaid onto a matrix, (C) the identifica-

tion of elements in the halloysite mineral through the EDS pattern, (D) the results of FT-IR analysis,

and (E) a TEM image showing the tubular structure of halloysite minerals.
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4 Optimization algorithms used

4.1 Slime mold algorithm

The SMA is an optimization algorithm inspired by the behavior of the Phy-
sarum polycephalum, a type of slime mold [36]. It models the behavior of

the slime mold as it moves toward food sources in its environment.

In the SMA, the optimization problem is represented as a graph, with nodes

representing potential solutions and edges representing the feasibility between

solutions. The algorithm begins by initializing the position of a virtual “slime
mold” on the graph. The slimemold then moves from node to node, based on the



FIG. 2 Structure of an ANN model for predicting Cd2+ absorption.
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intensity of the “smell” or attraction at each node, until it reaches the node with

the highest smell intensity [37].

At each iteration, the slime mold’s position is updated based on a combina-

tion of its current position and the positions of other “particles” in the optimi-

zation search space. The algorithm also includes a random exploration

component, allowing the slime mold to move away from the current optimal

solution and search for better solutions.

The algorithm continues until a stopping criterion is met, such as reaching a

maximum number of iterations or finding a solution with a sufficient level of

fitness. The final solution is the node with the highest smell intensity, which
represents the best solution found by the algorithm.
4.2 Particle swarm optimization

The PSO algorithm is a population-based and intelligent optimization method

that simulates the behavior of complex adaptive systems [38]. It consists of a set

of particles that move in a multidimensional search space and adapt their move-

ment based on their experience and the experience of other particles in the

swarm. The basic mechanism of the PSO algorithm is presented through the

six following steps:

(Step 1) Initialization: The positions and velocities of the particles in the
swarm are initialized randomly within a defined search space.
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(Step 2) Fitness calculation: The fitness of each particle is evaluated using a

predefined objective function.

(Step 3) Velocity and position update: Based on the current fitness values

and the historical best positions of the particles, the velocities and positions

of the particles are updated.

(Step 4) Global best update: The best position among all particles in the

swarm is updated and used to guide the movement of other particles.

(Step 5) Terminal condition check: The algorithm terminates when a prede-

fined stopping criterion is met, such as a maximum number of iterations or a

desired level of accuracy.

(Step 6) Output: The particle with the best fitness value is returned as the

solution to the optimization problem.

The PSO algorithm repeatedly updates the positions and velocities of the

particles in the swarm, seeking the global optimal solution to the optimization

problem. Further detail of the PSO algorithm can be found in the literature
[39–42].
4.3 Differential evolution

The DE algorithm is a stochastic, population-based optimization method. It

works by iteratively adjusting the values of candidate solutions in a population

toward the best solution [43,44]. The algorithm is operated through the follow-

ing five steps:

(Step 1) Initialization: A population of candidate solutions is randomly gen-

erated and each solution is represented by a vector of real numbers.

(Step 2) Mutation: A new candidate solution is generated by combining the

values of three randomly selected solutions in the population. The new candi-

date is created by adding a weighted difference between two randomly selected

solutions to a third solution.

(Step 3) Crossover: A random number is generated for each component of

the new candidate solution. If the number is below a predefined probability, the

value of the component is replaced with the corresponding component from the

new candidate solution.

(Step 4) Selection: The fitness of the new candidate solution is evaluated and

compared with the fitness of the original solution. If the new candidate has bet-

ter fitness, it is accepted as the new solution.

(Step 5) Iteration: Steps 2–4 are repeated until a stopping criterion is met,

such as a maximum number of iterations or a satisfactory level of solution

quality.

The DE algorithm is known for its ease of implementation, its ability to han-

dle multi-modal and nonlinear optimization problems, and its robustness in the
presence of noise [45,46].
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5 Framework of optimized artificial neural networks

In this book chapter, the ANNmodel is used as the primary model for predicting

Cd2+ absorption by the halloysite. Normally, the ANN model is often trained

by back-propagation algorithm. However, it might be stuck in the local optimal

and lead to low convergence and accuracy [47–49].
To overcome this disadvantage, metaheuristic algorithms are considered a

potential approach that can provide more optimal solutions with optimized

weights of the ANN model. In other words, the weights of the ANN model

can be optimized by metaheuristic algorithms by their global optimization

mechanisms. Herein, the PSO, SMA, and DE algorithms were used to deal with

this problem.

In this way, both the PSO, SMA, and DE algorithms generated a variety of

solutions based on the initial populations, and each population acted as a solution

with a set of weights that will be optimized to minimize the loss of the fitness

function (i.e., MSE). The optimized weights were then transferred to the ANN

model and its performance was calculated and evaluated through the stopping

conditions, such as the number of iterations and error. Finally, the best weights

with the lowest MSE will be selected as the best parameters of the ANN model,

and they will be applied to predicting Cd2+, named PSO-ANN, SMA-ANN, and
DE-ANN models. The framework of these models is presented in Fig. 3.
6 Estimation of Cd2+ adsorption efficiency of halloysite

For estimation of the Cd2+ adsorption efficiency of halloysite, the dataset con-

taining pH, CT, AW, and Cdinitial parameters were used to explain the relation-

ship between these input parameters and Cd2+ adsorption efficiency of

halloysite. The dataset was divided into two parts including the training dataset

(containing 70% of the whole dataset) and the testing dataset (containing the

remaining 30% of the dataset). Whereas the training dataset was applied to

develop the PSO-ANN, SMA-ANN, and DE-ANN models, the testing dataset

was applied to evaluate the performance of the developed models. It should be

noted that this task was randomly separated.

Before training the ANN model, a network topology with a single hidden

layer containing ten hidden nodes were designed. The “ReLU” activation

function was used to transfer data between the layers, and the dropout tech-

nique with a value of 0.2 was applied to prevent the overfitting of the model.

The metaheuristic algorithms were set up based on their parameters, with var-

ious populations (20, 100, 150, 200, 250, 300) computed for 500 iterations.

The MSE function was used as the loss function during the training of the

ANN model by the PSO, SMA, and DE algorithms with various parameters,

as mentioned before. The 5-fold cross-validation technique was also applied to

evaluate the models during the training process for more objectives. Their per-
formance is shown in Fig. 4.



FIG. 3 The framework of the PSO-ANN, SMA-ANN, and DE-ANN models for predicting Cd2+

absorption by halloysite.
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Based on the errors of the models presented in Fig. 4, we can determine the

optimal population size for each model as follows: The DE-ANN model

requires 250 populations, the PSO-ANN model requires 200 populations, and

the SMA-ANN model requires 300 populations. However, to fully evaluate

the performance of the models, we should consider the testing loss to determine

whether they are overfitting or not. Additionally, in Fig. 5, we compared the

training and testing convergences. The detail of the results is discussed in

the following section.

Once the best models were defined, they were used to predict the Cd2+

absorption efficiency of halloysite on the testing dataset. It should be noted that

the testing dataset has not been used during the training of the DE-ANN,

PSO-ANN, and SMA-ANN models, and it can be evaluated as an unseen data-

set. The predictions are shown in Tables 2 and 3. Then, they were used to com-

pute the performance metrics of the models based on the Root Mean Squared

Error (RMSE), Mean Absolute Error (MAE), and R-squared (R2) functions, as
shown in Table 4. Finally, the testing results are illustrated in Fig. 6.
7 Discussion

Tables 2–4 show the predicted values of Cd2+ absorption efficiency by the

developed models (i.e., DE-ANN, PSO-ANN, and SMA-ANN) on both the

training and testing datasets, as well as the performance metrics of the models
for estimating Cd2+ absorption by halloysite.



FIG. 4 Training performance of the models with various population sizes. (A) DE-ANN model.

(B) PSO-ANN model. (C) SMA-ANN model.



FIG. 5 Training and testing losses of the AI-based models in estimating Cd2+ absorption by hal-

loysite. (A) Convergence of the DE-MLP model. (B) Convergence of the PSO-MLP model.

(C) Convergence of the SMA-MLP model.



TABLE 2 Resulting of the Cd2+ absorption efficiency prediction by the

developed models on the training dataset.

Actual Cd2+

absorption

efficiency

Predicted Cd2+

absorption

efficiency by the

DE-ANN model

Predicted Cd2+

absorption

efficiency by the

PSO-ANN model

Predicted Cd2+

absorption

efficiency by the

SMA-ANN

model

39.256 38.604 39.640 39.149

17.036 21.671 16.882 29.528

10.5 13.355 9.552 18.864

17.852 20.289 20.471 24.074

24.334 18.294 16.838 19.143

22.239 17.831 15.642 19.427

18.905 20.967 21.061 23.812

17.603 16.975 14.806 20.739

17.746 20.201 20.164 24.699

36.347 39.996 41.294 38.790

22.347 17.932 15.699 20.895

22.93 24.193 21.732 21.666

23.521 27.842 27.713 31.164

16.431 13.641 10.522 20.282

20.756 17.950 16.012 18.862

18.55 20.353 20.366 22.932

60.127 54.844 52.804 52.074

18.55 20.353 20.366 22.932

17.905 17.270 14.578 19.589

19.733 21.911 21.773 24.710

60.619 55.389 53.304 50.606

56.645 54.277 51.755 52.267

10.263 20.113 17.397 21.166

4.108 10.068 6.733 17.130

41.171 40.801 41.101 36.867

17.574 20.203 19.688 22.072
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TABLE 2 Resulting of the Cd2+ absorption efficiency prediction by the

developed models on the training dataset—cont’d

Actual Cd2+

absorption

efficiency

Predicted Cd2+

absorption

efficiency by the

DE-ANN model

Predicted Cd2+

absorption

efficiency by the

PSO-ANN model

Predicted Cd2+

absorption

efficiency by the

SMA-ANN

model

17.076 20.972 18.459 26.622

25.263 26.400 25.635 32.307

51.875 54.331 51.962 52.748

40.999 39.871 40.590 37.854

34.114 38.732 40.125 40.063

41.667 41.410 41.439 36.202

38.138 40.923 41.852 37.816

32.636 30.984 33.971 27.480

18.076 20.650 20.781 23.458

17.089 20.289 19.861 25.333

19.299 17.820 15.162 20.400

21.154 22.973 21.412 22.253

24.113 24.934 24.002 28.951

TABLE 3 Resulting of the Cd2+ absorption efficiency prediction by the

developed models on the testing dataset.

Actual Cd2+

absorption

efficiency

Predicted Cd2+

absorption

efficiency by the

DE-ANN model

Predicted Cd2+

absorption

efficiency by the

PSO-ANN model

Predicted Cd2+

absorption

efficiency by the

SMA-ANN

model

39.256 55.434 53.536 51.165

17.036 18.030 16.263 18.870

10.5 15.433 12.345 19.972

17.852 8.068 5.490 15.545

24.334 12.083 9.110 20.007

Continued
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TABLE 4 Performancemetrics of the intelligencemodels for estimating Cd2+

absorption by halloysite.

Model

Training dataset Testing dataset

MAE RMSE R2 MAE RMSE R2

DE-MLP 2.855 3.442 0.936 4.279 6.118 0.887

PSO-MLP 3.528 4.472 0.892 5.344 6.588 0.869

SMA-MLP 5.064 6.017 0.805 6.326 8.474 0.783

TABLE 3 Resulting of the Cd2+ absorption efficiency prediction by the

developed models on the testing dataset—cont’d

Actual Cd2+

absorption

efficiency

Predicted Cd2+

absorption

efficiency by the

DE-ANN model

Predicted Cd2+

absorption

efficiency by the

PSO-ANN model

Predicted Cd2+

absorption

efficiency by the

SMA-ANN

model

22.239 55.205 53.250 51.537

18.905 54.795 52.552 51.559

17.603 22.992 22.575 25.994

17.746 40.818 44.262 35.525

36.347 18.092 16.196 20.047

22.347 19.907 18.386 21.423

22.93 55.158 53.011 50.996

23.521 41.531 42.183 37.159

16.431 18.213 16.578 19.489

20.756 22.293 23.233 22.747

18.55 25.448 22.371 21.089

60.127 21.791 21.095 22.850
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Looking at Table 2, we can see that the predicted Cd2+ absorption efficiency

values by the DE-ANN, PSO-ANN, and SMA-ANN models on the training

dataset are close to the actual values. However, some of the predicted values
deviate from the actual values by a large margin, such as the second row where



FIG. 6 The accuracy of the developed models for estimating Cd2+ absorption by halloysite.

(A) DE-ANN model, (B) PSO-ANN model, and (C) SMA-ANN model.
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the actual value is 17.036 while the predicted value by the PSO-ANN model is

16.882. Overall, the three models seem to perform reasonably well on the train-

ing dataset.

Whereas Table 2 shows the performance of the developed models on the

training dataset, Table 3 shows the predicted values of Cd2+ absorption effi-

ciency by the same models on the testing dataset. We can see that the predicted

values deviate from the actual values by a larger margin compared to the train-

ing dataset, and this can also see in Fig. 6. For example, in the first row, the

actual value is 39.256 while the predicted value by the DE-ANN model is

55.434. The performance of the models on the testing dataset is further dis-

cussed in Table 4.

Table 4 provides the performance metrics of the developed models for esti-

mating Cd2+ absorption by halloysite. The metrics used are MAE, RMSE, and

R2. The models were evaluated on both the training and testing datasets. We can

see that the differential evolution multi-layer perceptron (DE-MLP) model has

the lowest MAE and RMSE values on both the training and testing datasets,

indicating that it has the best performance. However, the R2 value of the

DE-MLP model is lower than the other two models on the testing dataset, indi-

cating that it has a weaker correlation between the predicted and actual values.

In conclusion, the developed models show reasonable performance in pre-

dicting the Cd2+ absorption efficiency by halloysite on the training dataset.

However, their performance on the testing dataset is not as good, indicating that

the models may have to overfit the training data. This problem occurred due

to the small dataset used. To avoid this problem and achieve better performance

on the testing dataset, a larger dataset is required in future works. The DE-MLP

model has the best performance on both datasets, but its R2 value on the testing

dataset suggests that it may not be the best model for predicting Cd2+ absorption

efficiency by halloysite.

Although the obtained results are as good, however, there are some limita-

tions of this study, including:

- The developed models were only tested on one type of clay mineral (halloy-

site), and their performance on other types of clay minerals may be different.

- The study only considered the Cd2+ absorption efficiency, and the models

may not perform as well in predicting the absorption efficiency of other

heavy metals or pollutants.

- The dataset used for training and testing the models was relatively small,
which may limit the generalizability of the results.
8 Conclusion

The present study investigated the ability of three different ANNs models,

namely, DE-ANN, PSO-ANN, and SMA-ANN, to predict the efficiency of
Cd2+ absorption by halloysite. The results of the study show that all three
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models can effectively predict the Cd2+ absorption efficiency with high accu-

racy. However, the DE-ANN model exhibited the highest prediction accuracy

on the training dataset, while the PSO-ANN model performed the best on the

testing dataset.

The performance metrics of the models, as presented in Table 4, demon-

strate that the DE-ANN model outperforms the other models in terms of the

MAE, RMSE, and R2 on the training dataset. However, the PSO-ANN model

showed better performance on the testing dataset with lower MAE, RMSE,

and R2 values than the other models.

Overall, the study highlights the potential of using ANN models for predict-

ing the Cd2+ absorption efficiency by halloysite, and the results suggest that

these models can provide accurate and reliable predictions for this application.

However, further research is needed to investigate the generalizability of these

models to different datasets and conditions.

Based on the obtained results as well as the limitations provided, future

works are necessary to enhance the results of this study, as follows:

- The developed models can be further validated using a larger dataset and

different types of clay minerals to test their performance and

generalizability.

- The study only considered the Cd2+ absorption efficiency and future studies

can investigate the potential of the developed models for predicting the

absorption efficiency of other heavy metals or pollutants.

- Other machine learning algorithms, such as decision trees, support vector

machines, extreme gradient boosting machines, extreme learning machines,

and other metaheuristic algorithms can be explored to develop more accurate
models for predicting the Cd2+ absorption efficiency by clay minerals.
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M. González-Rodrı́guez, A. Bonilla-Petriciolet, C.J. Duran-Valle, K.I. Camacho-Aguilar,

Preparation of a new adsorbent for the removal of arsenic and its simulation with artificial

neural network-based adsorption models, J. Environ. Chem. Eng. 8 (2020) 103928.

[23] A. Das, N. Bar, S.K. Das, Pb(II) adsorption from aqueous solution by nutshells, green adsor-

bent: adsorption studies, regeneration studies, scale-up design, its effect on biological indicator

and MLR modeling, J. Colloid Interface Sci. 580 (2020) 245–255.

[24] M. Fawzy, M. Nasr, S. Adel, H. Nagy, S. Helmi, Environmental approach and artificial intel-

ligence for Ni(II) and Cd(II) biosorption from aqueous solution using Typha domingensis bio-

mass, Ecol. Eng. 95 (2016) 743–752.

[25] L.T. Popoola, Nano-magnetic walnut shell-rice husk for Cd(II) sorption: design and optimiza-

tion using artificial intelligence and design expert, Heliyon 5 (2019) e02381.

[26] J. Qi, Y. Hou, J. Hu, W. Ruan, Y. Xiang, X. Wei, Decontamination of methylene blue from

simulated wastewater by the mesoporous rGO/Fe/Co nanohybrids: artificial intelligence

modeling and optimization, Mater. Today Commun. 24 (2020) 100709.

[27] E. Salehi, J. Abdi, M.H. Aliei, Assessment of cu(II) adsorption from water on modified mem-

brane adsorbents using LS-SVM intelligent approach, J. Saudi Chem. Soc. 20 (2016) 213–219.

[28] T. Shojaeimehr, F. Rahimpour, M.A. Khadivi, M. Sadeghi, A modeling study by response sur-

face methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimiza-

tion using light expended clay aggregate (LECA), J. Ind. Eng. Chem. 20 (2014) 870–880.

[29] P.R. Souza, G.L. Dotto, N.P.G. Salau, Artificial neural network (ANN) and adaptive neuro-

fuzzy interference system (ANFIS) modelling for nickel adsorption onto agro-wastes and com-

mercial activated carbon, J. Environ. Chem. Eng. 6 (2018) 7152–7160.

[30] M. Zafar, N. Van Vinh, S.K. Behera, H.-S. Park, Ethanol mediated As(III) adsorption onto Zn-

loaded pinecone biochar: experimental investigation, modeling, and optimization using hybrid

artificial neural network-genetic algorithm approach, J. Environ. Sci. 54 (2017) 114–125.

[31] L. Zhao, T. Dai, Z. Qiao, P. Sun, J. Hao, Y. Yang, Application of artificial intelligence to

wastewater treatment: a bibliometric analysis and systematic review of technology, economy,

management, and wastewater reuse, Process Saf. Environ. Prot. 133 (2020) 169–182.

[32] S. Agatonovic-Kustrin, R. Beresford, Basic concepts of artificial neural network (ANN)

modeling and its application in pharmaceutical research, J. Pharm. Biomed. Anal. 22

(2000) 717–727.

[33] A. Shrestha, A.Mahmood, Review of deep learning algorithms and architectures, IEEEAccess

7 (2019) 53040–53065.

[34] Z. Zhao, S. Xu, B.H. Kang,M.M.J. Kabir, Y. Liu, R.Wasinger, Investigation and improvement

of multi-layer perceptron neural networks for credit scoring, Expert Syst. Appl. 42 (2015)

3508–3516.

[35] T.G. Tan, J. Teo, P. Anthony, A comparative investigation of non-linear activation functions in

neural controllers for search-based game AI engineering, Artif. Intell. Rev. 41 (2014) 1–25.

[36] S. Li, H. Chen, M. Wang, A.A. Heidari, S. Mirjalili, Slime mould algorithm: a new method for

stochastic optimization, Futur. Gener. Comput. Syst. 111 (2020) 300–323.

[37] H. Gao, G. Liang, H. Chen, Multi-population enhanced slime mould algorithm and with appli-

cation to postgraduate employment stability prediction, Electronics 11 (2022) 209.

[38] D. Wang, D. Tan, L. Liu, Particle swarm optimization algorithm: an overview, Soft. Comput.
22 (2018) 387–408.



96 Applications of artificial intelligence in mining and geotechnical engineering
[39] S. Rana, S. Jasola, R. Kumar, A review on particle swarm optimization algorithms and their

applications to data clustering, Artif. Intell. Rev. 35 (2011) 211–222.

[40] X. Zhang, H. Nguyen, X.-N. Bui, H. Anh Le, T. Nguyen-Thoi, H. Moayedi, V. Mahesh, Eval-

uating and predicting the stability of roadways in tunnelling and underground space using arti-

ficial neural network-based particle swarm optimization, Tunn. Undergr. Space Technol. 103

(2020) 103517.

[41] X.-N. Bui, P. Jaroonpattanapong, H. Nguyen, Q.-H. Tran, N.Q. Long, A novel hybrid model

for predicting blast-induced ground vibration based on k-nearest neighbors and particle swarm

optimization, Sci. Rep. 9 (2019) 1–14.

[42] H. Nguyen, H.-B. Bui, X.-N. Bui, Rapid determination of gross calorific value of coal

using artificial neural network and particle swarm optimization, Nat. Resour. Res. 30 (2021)

621–638.

[43] M. Georgioudakis, V. Plevris, A comparative study of differential evolution variants in con-

strained structural optimization, Front. Built Environ. 6 (2020) 102.

[44] S. Prabha, R. Yadav, Differential evolution with biological-based mutation operator, Eng. Sci.

Technol. Int. J. 23 (2020) 253–263.

[45] S. Li, W. Gong, L. Wang, X. Yan, C. Hu, Optimal power flow by means of improved adaptive

differential evolution, Energy 198 (2020) 117314.

[46] K. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global

Optimization, Springer Science & Business Media, 2006.

[47] S.M. Karazi, M. Moradi, K.Y. Benyounis, Statistical and numerical approaches for modeling

and optimizing laser micromachining process-review, in: Reference Module in Materials

Science and Materials Engineering, Elsevier, 2019.

[48] B.K. Lavine, T.R. Blank, 3.18 – Feed-forward neural networks, in: S.D. Brown, R. Tauler,

B. Walczak (Eds.), Comprehensive Chemometrics, Elsevier, Oxford, 2009, pp. 571–586.

[49] B.G.M. Vandeginste, D.L. Massart, L.M.C. Buydens, S. De Jong, P.J. Lewi, J. Smeyers-

Verbeke, Chapter 44: Artificial neural networks, in: B.G.M. Vandeginste, D.L. Massart, L.

M.C. Buydens, S. De Jong, P.J. Lewi, J. Smeyers-Verbeke (Eds.), Data Handling in Science

and Technology, Elsevier, 1998, pp. 649–699.


