SOCAR Proceedings No.4 (2023) 065-071

) SOCAR Proceedings

) Reservoir and petroleum engineering

SOCAR

journal home page: http://proceedings.socar.az

RCES |
CITATION
\ , INDEX _, 4

o, &4
b 7SoN RV

‘Scopus

PREDICTING PRODUCTION FLOW RATES USING ARTIFICIAL
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ABSTRACT

Oil production flow rate prediction is a critical aspect of oil and gas exploitation operations. Currently, flow rate forecasting is often

estimated using theoretical or empirical models. Theoretical and empirical models have limitations. This study applies an Artificial

neural network (ANN) for prediction flow rate. The study considered 256 datasets collected from six wells in the HST Field, Cuu Long

basin. The predicted results obtained from the ANN model with eight neurons and back-propagation algorithm achieved high pre-
dictability with a strong correlation coefficient of 0.964 and a low RMSE of 32.612 bbl/d. Therefore, the developed ANN models have
been promised as an effective tool in production flow rate forecasting in oilfields.

Keywords: Artificial neural network; backpropagation algorithm; flow rate prediction; multivariate regression method; gas-lift.
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Introduction

Forecasting the oil production flow rate is a critical aspect
of oil and gas exploitation operations. It enables timely
monitoring of the well’s condition and planning for drilling,
repairs, and interventions necessary to ensure and maintain
production. The inability to forecast the oil production rate
can result in difficulties in determining how long a producing
hydrocarbon facility will last and anticipating its profitabili-
ty. Creating a flow forecasting model for exploiting wells is
a complex and challenging task due to various production
parameters and field conditions such as wellhead pressure,
choke size, gas oil ratio, water cut, gas injection rate, and gas
injection pressure. In order to assist with this, different theo-
retical and practical approaches have been developed.

Tangren et al. (1949) presented the first theoretical study
on a two-phase flow regime across the choke constraints [1].
However, their approach was only effective when the liquid
was in the continuous phase. Following Tangren et al. meth-
od, Gilbert (1954) proposed the empirical relation based on
production well-test data and analyzed 268 data sets from Ten
Section Kern County QOil fields of California for different choke
sized to predict production rates at critical flow conditions [2].

The relation is given by:

g-Pus M)
aR*

where: Q is the critical-flow liquid rate (STBD); P,y is the well-
head pressure (psia); S is the choke size (1/64 inch); R is the
gas-liquid ratio (SCF/STB); a, b and ¢ are empirical constants.
Several studies were developed similar relations with
different empirical constants for different fields [3-5]. These

relations are tabulated in table 1.

*E-mail: nguyenminhhoa@humg.edu.vn
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Al-Attar and Abdul-Majeed (1988) gathered data from
approximately 150 wells from East Baghdad oil field (Iraq)
[6]. This dataset includes various parameters such as gas-lig-
uid ratio, wellhead pressure, choke size, production rate, and
API oil gravity. To determine the most suitable correlation
for estimating rates, the researchers conducted a sensitivity
analysis. The findings revealed that Gilbert’s correlation pro-
vided a relatively accurate prediction of the wellhead rates
with an average error of 6.19%. Al-Attar (2008) developed
an algorithm to forecast choke performance under subcrit-
ical conditions utilizing 97 datasets obtained from 3 wells
of gas-condensate reservoir in the Middle East with various
choke sizes [7].

Beiranvand et al. (2012) developed a new formula for
predicting the liquid flow rate with a parameter which was
not included in the Gilbert’s correlation: free water, sediment

and emulsion [8]. .,
Pwh 'Sb (1 - leﬁtovv]
Q= aR*
where: BS&W is basic sediment and water (%); a, b, c and d are
the coefficients calculated based on sufficient data is available
for specific reservoir with 2=0.0382, b=2.151, ¢=0.5154, and
d=0.5297.

@)

Table 1
Empirical constants for different correlations
. Empirical constants
Correlations
a b c
Gilbert 0.1 1.89 0.546
Baxendell 0.1046 1.93 0.546
Ros 0.574 2 0.5
Achong 0.2618 1.88 0.65
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Fig. 1. Red rectangle shows the study area

Espinoza (2015) developed an adjusted empirical correla-
tion to estimate and forecast the liquid rate in oilfields featur-
ing consistent water-cut and naturally flowing wells [9]. This
method relies on choke size, upstream wellhead pressure, and
oil-gas ratio. He modified the forms of existing correlation by
Gilbert and Ros. Additionally, a novel empirical coefficient
was introduced to the equation to match with the historical
production rate data from studied field in the Caspian Sea.
However, it is important to note that this coefficient requires
recalculation whenever a new test becomes accessible.

Ghorbani et al. (2018) introduced an equation that has
been validated for its effectiveness in comparison to mod-
els proposed by other authors. In contrast to Beiranvand’s
approach of utilizing coefficient a, b, ¢, and d, Ghorbani et al.
derived and suggested eigenfactors by analyzing 182 datasets
obtained from Reshadat oil field, Lavan Island [10].

Due to the restricted of data employed in the study, the
aforementioned empirical models have limitations. Each
model was created for a certain area of research, which limits
the range of applications for them. Because these modes fre-
quently lacked accuracy when used in other fields, they were
not widely employed.

In order to address the flaws and restrictions of both
theoretical and empirical correlation methodologies, several
researchers have recently turned to the application of artifi-
cial neural network (ANN) to forecast oil and gas production
rates. The previous studies on using ANN to forecast liquid

flow rate are presented in table 2.

The above studies show the superiority of ANN in
predicting production flow rates around the world. These
ANN models give results in forecasting production flow
rates with high accuracy. However, in Vietnam, current
studies only on traditional methods to forecast flow rate
or ANN [20] to estimate production such as: utilizing the
Arp equation [21] or Logistic growth model [22-24]. There
has been no published study addressing the challenge of
forecasting production flow rate for hydrocarbon wells based
on production parameters and reservoir conditions.

In this study, the authors propose to application ANN
with a back-propagation algorithm to improve prediction
production flow rates of gas-lift oil wells at HST Field, Cuu
Long basin (Vietnam). The forecast results will be compared
with experimental equations of other published authors to
evaluate the superiority of the ANN model.

Field description

The HST Field is located in south-central part of block
15-2/01 within the oil prone Cuu Long basin offshore of
Vietnam. It lies approximately 120 km east of Vung Tau.
The HST Field consists of a number individual stacked
oil reservoir in Lower Miocene and upper part of Upper
Oligocene. In general, the lithostratigraphic system is a sand
dominated clastic system of fluvio-deltaic complex channel
system, and lacustrine setting deposits. The quality of the oil
reservoir in the Miocene is quite good with effective porosity
from 15-23%, and permeability from 10-1000 mD. The test
results at the HST1 well confirmed that the Miocene reservoir
is a very good reservoir. HST Field is now being exploited
at a flow rate of roughly 2950 bbl/d, with an average water
content of about 85%.

Materials and methodology

In this study, 256 datasets were collected from six wells
that are located in the HST Field. The available parameters
included production flow rate, choke size, wellhead pressure,
gas liquid ratio, basic sediment and water, injected gas-lift
rate, injected gas-lift pressure (tab. 3).

The whole dataset from 2019 to 2020 that is collected is
separated into the following three subsets: 60% of data is
used for training model, 20% of data for testing model, and
20% of data for validation.

Table 2
Several machine learning applications for forecasting oil flow rate
Authors Machine learning method R? I;hg?,%//lx[gg/
Gorjaei et al. (2015) [11] Least squares support vector machine-fuzzy logic 0.976 0.8
Al-Ajmi et al. (2015) [12] Fuzzy logic 0.94 1392
Choubineh et al. (2017) [13] ANN 0.981 714
Ghorbani et al. (2018) [10] Genetic algorithm and Excel’s solver optimizer 0.997 303.1-562.52
Khan et al (2018) [14] Support vector machine (SVM) and ANN 0.96-0.99 | 2.5618-3.7496
Barjouei et al. (2021) [16] Deep learning, 0.9969 196
Ibrahim et al. (2021) [16] Random forests and SVM 0.94-0.98
Azim’s study (2022) [17] ANN 0.96 0.02
Somorotin et al. (2023) [18] ANN 0.873
Kaleem et al. (2023) [19] |Extra trees, Random Forest, Gradient Boosting, Decision trees... >0.97 >60.8729
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An outlier is a data point that differs significantly from
other measured values. An outlier may be due to fluctuations
in the measurement or it may be an indication of meter error.
Finding outliers is essential because they can impair the per-
formance of ANN model, induce overfitting or poor generali-
zation. In order to clean and prepare the data for training and
to ensure the validity of the ANN model’s results, it is crucial
to find outliers. In this study, to identify outliers, we use the
z-score algorithm. The z value is determined by equation:

7= Xi _Xmean

D ®)

where, X; is a value, X, is the mean value of the analyte
obtained by the participants results, SD is the standard devi-
ation of the data. According to Tripathy et al. (2013), when
a data point has a z-score of greater than three or less than
three, it is generally regarded as an outlier [1].

Selecting input parameters determines the accuracy and
processing time in the ANN model’s prediction. According
to theoretical studies conducted by above authors, the initial
six input parameters (tab. 3) affect the output parameter rate
flow. However, to validate this, an analysis of the literature
primarily relies on the correlation coefficient R? to assess the
impact of these input parameters on the output parameter
(fig. 2). This enables the accurate selection of input parame-
ters for training ANN model.

It is observed that the correlation coefficient values for
the production parameters and flow rate are all less than 0.6.
This indicates that to construct a highly accurate flow rate
prediction model, a comprehensive set of input parameters
comprising various factors is required. Therefore, all produc-
tion parameters can be utilized as an input, and regarded as
contributing equally to the forecast model.

Before using the above parameters, it is necessary to
standardize them to a value range from 0 to 1 according to
the normalized formula:

Y-Y,,
Y — min 4
o Ymﬂ.‘( - Ymin ( )

where: Y is the original data; Yy, — normalized data, Y, —
minimum data value, Y, — maximum data value.

ANN is a computational model designed to imitate
the transmission of signals between biological neurons. It
consists of multiple interconnected neural units that work
together to process information. A typical ANN usually has
three layers as follows: Input, Hidden and Output.

e Input layer: information to be processed is fed into
the ANN through the input layer. The input node
receives, classifies, analyzes the data and then passes
the data to the next layer.

e Hidden layer: data is transferred from the input
layer to the hidden layer, or from one hidden layer to
another. ANN can have one or more hidden layers.
Each of them analyzes the output data from the pre-
vious layer, processes it further, and passes the data
to next layer.

® Output layer: the output layer returns the final
results of all data previously processed by ANN. This
class can have one or more nodes.

The ANN model to predict flow rate for gas-lift wells

in this study uses the backpropagation algorithm [14] and
the production parameters will be considered as input for

Table 3
Data of 6 study wells
Parameters First Second
dataset dataset
(2019-2020) (2021)
Number of samples 228 28
. Minimum value 95.40 198.24
Production
flow rate, Maximum value 1092.50 880.16
STB/day Mean value 526.51 549.46
Standard error 270.16 226.04
Minimum value 104.00 137.00
Choke ﬁizer Maximum value | 157.00 157.00
inc
Mean value 140.46 149.94
Standard error 16.55 9.70
Wellhead Minimum value 2439.00 2757.00
pressure, Maximum value 3361.00 3074.00
kPag Mean value 2942.37 2905.88
Standard error 150.51 79.33
L Minimum value 140.97 417.58
Gas liquid
ratio, Maximum value 875.70 890.66
SCF/STB Mean value 514.89 615.23
Standard error 138.24 144.68
Basic Minimum value 75.27 82.00
Sedirgent Maximum value 99.44 96.00
an
water, % Mean value 90.05 89.23
Standard error 5.51 4.44
. Minimum value 1.46 1.80
Injected -
gas-lift rate, Maximum value 4.00 4.00
MMSCEFd Mean value 2.83 3.27
Standard error 0.54 0.94
. Minimum value 9275.80 9865.00
Injected
gas-lift Maximum value 12085.00 11283.00
Plifls)surer Mean value 10755.62 10630.09
& Standard error 575.65 486.83

network training and the flow rate will be the output. In
particular, the flow rate will be the output of the network,
with the mining parameters serving as the input data. The
neural network has two processes: forward and backward
propagation phases. While the forward step sends impulses
via neurons to calculate output targets, the backward step
is used to generate the error vector between the actual and
goal values. The network’s weighted connections are modi-
fied using this error value. Until the error value hits a prede-
termined minimum threshold or a predetermined number
of cycles have been completed, the propagation process
iteratively continues. As a result, the neural network grad-
ually converges towards producing an output that closely
resembles the desired target output.

One factor that affects the precision and processing
speed of ANN model’s predictions is the quantity of
neurons in the hidden layer (No). It is essential to carefully
choose this number to ensure accurate predictions that align
well with the desired output. It's crucial to use caution
in order to avoid overfitting brought on by an excessive
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Fig. 2. Correlation coefficient R* between production parameters and flow rate
ANN model development for forecasting oil production flow rates
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Table 4
Summary the results of R and RMSE
from different ANN models
R? RMSE
=] =]
| £ 2| 2| F 2| g
g 3 = g g Z
el 5| & E| S| &
a > a >
4 0.948 | 0939 | 0.933 | 52.412 | 66.387 | 61.712
5 0953 | 0944 | 0.941 | 48.324 | 58.365 | 63.923
6 0.958 | 0.941 | 0.954 | 43.774 | 54.123 | 57.673
7 0.961 0.951 0.954 32.623 | 46.212 | 51.598 Input Layer e R HiddenLayer e R* Output Layer e R!
8 0.964 | 0953 | 0.957 | 32.612 | 44.198 | 45.743
9 0.963 | 0954 | 0.959 | 32.324 | 45.586 | 46.894 Fig.3. Structure of ANN
10 | 0961 | 0.949 | 0951 | 31.854 | 45.286 | 46.412

number of neurons in the hidden layer. Table 4 provide the
results obtained from different models employing varying
number of neurons in the hidden layer. When comparing
R? and Root Mean Square Error (RMSE) values in table 2
between these models, it is clear that as the number of
neurons in hidden layer increases from 4 to 7, the model’s
accuracy tends to steadily improve. However, when the

68

number of neurons in hidden layer is increased further from
7 to 10, the results are not particularly noteworthy and even
exhibit evidence of declining accuracy (10-neuron model).
Thereby, the authors assert that ANN used for predicting
the flow rate of gas-lift wells at the HST field should employ
8 neurons in hidden layer to simplify the model while still
maintaining high accuracy in forecasting.
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Results and discussions

To assess how successful the resulting ANN models
are, the authors compared the prediction accuracy with the
traditional method (The multivariate regression method)
on the same dataset. This method is expressed through

equation 5:
Q, =x,Dg, + x,P,;, + x;GLR + x,BS & W +
+25Qci + XsPoin +y

®)

where: xi, X5, X3, X4, X5, X5, and y — empirical parameters

Although the production history of wells HST5 and
HST6 in 2021 has not been used in the training process but
the history matching results between the forecast results
by the ANN model and the actual data still demonstrate a
high match, and the future flow rate forecast curve tends
to align with the actual data. This highlights the potential
effectiveness and versatility of the ANN model for predicting
oil production flow rate beyond the training dataset.

(table 5). Table 5
The correlation coefficients when predicting flow rate Coefficients of Equation 5
using the multivariate regression method and the ANN model Parameters Coefficients
with the actual flow rate values are presented in figure 4.. . Intercept (1) 1463.79
Figure 4 demonstrates that the ANN model’s prediction N 1078
accuracy is higher than that of the multivariate regression ! -
model. Although the ANN model provides very high *2 0.144
accuracy results when using the dataset (2019-2020), however, X3 0.313
to confirm the effectiveness and superiority of this model for X4 -25.717
future forecasts or for other wells, the authors decided to use X5 66.628
th1§ moc.lel to predict the second dataset (2021) includes 28 . -0.0027
points (fig. 5, 6).
Multivariate Regression Model ANN model
=, 1200 3, 1400
s y =0.7834x +106.91 8 00 | _v=09614x +23314
I 1000 Ri— 08844 3 S R2=0.9854
= 800 . ‘K = 1000
S ° =
s < 800 s
600 . xQ 4
= 5 60 4
% 400 T 400 2
§ 200 "§ 200
~ 0 ~ 0
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Actual Q (bbl/day) Actual Q (bbl/day)
Fig. 4. Coefficient correlation R? of predicted values from ANN model and
Multivariate regression model compared to actual values
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Fig. 5. Comparison between the results of Fig. 6. Comparison between the results of
the ANN model (predicted Q) and the actual the ANN model (predicted Q) and the actual
test data (actual Q) of well HST5 test data (actual Q) well HSTé6
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Conclusions
In this study, we addressed ANN method to predict oil production flow rate of gas lift for real data of HST
Field. From the results obtained, it can be concluded that:

e  The developed ANN model with a backpropagation algorithm including 8 neurons at the hidden layer
gives flow rate prediction results with high accuracy compared to the reality (R*=96% and a low RMSE
of 32.612 bbl/d);

e The built ANN model not only accurately predicts the oil production flow rate of each well, but also
accurately reflects the changing trend of the production flow rate over time. This proves that ANN
model accurately represents the relationship between production parameters and flow rate. Therefore,
the ANN model has been promised as an effective tool in production flow rate forecasting in oilfields;

e  Forecasting the oil production flow rate at HST field is critical for monitoring the condition of the
wells and developing timely intervention plans to maintain and ensure output. Furthermore, the ANN
model also assists in determining reasonable production parameters to adjust flow, maintain output,
and improve enhanced oil recovery;

e The authors propose changing the values of production parameters (choke size, gas injection rate, gas
injection pressure...) at the same time to determine the optimal parameters to achieve desired flow rate
within the range of values obtained from actual production data. These datasets are then fed back into
the built ANN model. Production parameters are determined when the average production flow rate
of the wells reaches the values set out.

® To enhance the precision of the ANN model, additional datasets from previous years, along with
updated data, are required for further training.

This work was supported by Hanoi University of Mining and Geology under grant number T22-15.
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ITpornosuposanme 4e0MTOB 400BIBAIONIVIX CKBAXKMH C VICIIOAb30BaHMEM
MCKYCCTBEHHOJ HeMpOHHOI ceTu — Ha nnpuMepe mectopoxaenms HST

Hzyen Tuen Xyne, Hzyen Munwv Xoa, By Xonz 3vionz

XaHOMCKUIT YHUBEPCUTET TOPHOTO Aeaa U reoaorun, XaHol, BretHam
Pedepar

ITporaosuposanne gedurta HepTU ABASIETCA Ba>KHENIIMM acIIeKTOM OIlepaIuii o 400LI9e yI1eBoj0po-
A0B. B HacToOsIIIEE BpeMsI, ITPpOTHO3MpOBaHMe 4e01Ta 9acTo OIIeHNBAeTCs IT0 TEOPeTUIEeCKUM AN DMITUpITIe-
ckuM MogeasM. OaHaKo, TeopeTdecKie ¥ SMIMpPUIecKre MoAeA UMeIOT orpaHndeHus. B asTom nccaeso-
BaHUU ITPUMeHseTCs MCKyccTBeHHas HelipoHHas ceTs (VIHC) aaa mpornosuposanms 4ebnra ckBakK1H. brrao
paccmoTpeno 256 HabOpOB AaHHEIX, COOpaHHEBIX I3 IIIeCTH CKBaskKMH Ha MecTtopoxxaenun HST Krryaonrckoro
OacceriHa. [Tpornosupyemsle pe3yabTaThl, TTOAydeHHEIe ¢ TTomoIbio Mogean VIHC ¢ Bocempio HelipoHaMu
U aATOPUTMOM OOpPaTHOTO PacHpOCTpaHeHNUs OIMMOKM, AOCTUTAM BBICOKON ITPeACcKa3yeMOCTU C BBICOKIM
kodgPunuentom Koppeasnum 0.964 u HU3KUM CpejHeKBaspaTUUeCcKMM 3HaueHmeM 32.612 Oappeaeir B
cytku. Taknm obpasom, paspadboTtannsie modean VIHC moryT ctath 9pPeKTUBHBIM MHCTPYMEHTOM ITPOTHO-
3upoBaHNA 4ebuTa A00b9M Ha HePTIHBIX MECTOPOKACHIAX.

Katouesvie caosa: mcKyccTBeHHas! HeMpOHHAs CeTh; aATOPUTM OOPATHOTO pacIpOCTpPaHEeHIT OITMOKIY;
IIPOTHO3MpPOBaHMe AeD1Ta; MeTO MHOTOMEPHOI perpeccuis; rasanudr.

Siini neyron sabakasindan istifadsa edarak hasilat quyularinin
debitlarinin proqnozlasdirilmasi — HST yataginin niimunasinda

Nquyen Tiyen Xunq, Nquyen Min Xoa, Vu Xonqg Zionq
Hanoy Madan ve Geologiya Universiteti, Hanoy, Vyetnam

Xiilasa

Neft debitinin prognozlasdirilmas: karbohidrogen hasilati amsliyyatlarinin an vacib aspektidir. Hal-
hazirda, debit progqnozu ¢ox vaxt nazeri ve ya empirik modellarlo giymatlandirilir. Lakin nazari ve empirik
modellarin mahdudiyystleri var. Bu tedqgiqatda quyularin debitini prognozlasdirmaq {iclin siini neyron
sobakasi (SNS) totbiq olunur. Kiulong hovzasinin HST yatagindak: alt1 quyudan toplanan 256 malumat dasti
nazarden kegcirilmisdir. Sekkiz neyron ve sehvin oks yayilmasi alqoritmi olan SNS modeli ilo alda edilon
proqnozlasdirilan naticalar yiiksak korrelyasiya amsal1 0.964 ve asag1 orta kvadratik giymati giine 32.612 barel
olan yiiksak prognozlasdirmaya nail olmusdur. Belslikls, islonmis SN$ modellari neft yataglarinda debitin
prognozlasdirilmasi tigiin effektiv vasita ola bilar.

Acar sozlar: stini neyron sebokasi; sehvin geriye yayilmasi alqoritmi; debitin progqnozlasdirilmasi; ¢ox-
0Olciilii reqressiya metodu; qazlift.
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