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Introduction
Forecasting the oil production flow rate is a critical aspect 

of oil and gas exploitation operations. It enables timely 
monitoring of the well’s condition and planning for drilling, 
repairs, and interventions necessary to ensure and maintain 
production. The inability to forecast the oil production rate 
can result in difficulties in determining how long a producing 
hydrocarbon facility will last and anticipating its profitabili-
ty. Creating a flow forecasting model for exploiting wells is 
a complex and challenging task due to various production 
parameters and field conditions such as wellhead pressure, 
choke size, gas oil ratio, water cut, gas injection rate, and gas 
injection pressure. In order to assist with this, different theo-
retical and practical approaches have been developed.

Tangren et al. (1949) presented the first theoretical study 
on a two-phase flow regime across the choke constraints [1]. 
However, their approach was only effective when the liquid 
was in the continuous phase. Following Tangren et al. meth-
od, Gilbert (1954) proposed the empirical relation based on 
production well-test data and analyzed 268 data sets from Ten 
Section Kern County Oil fields of California for different choke 
sized to predict production rates at critical flow conditions [2]. 
The relation is given by:
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where: Q is the critical-flow liquid rate (STBD); Pwh is the well-
head pressure (psia); S is the choke size (1/64 inch); R is the 
gas-liquid ratio (SCF/STB); a, b and c are empirical constants.

Several studies were developed similar relations with 
different empirical constants for different fields [3-5]. These 
relations are tabulated in table 1. 

Al-Attar and Abdul-Majeed (1988) gathered data from 
approximately 150 wells from East Baghdad oil field (Iraq) 
[6]. This dataset includes various parameters such as gas-liq-
uid ratio, wellhead pressure, choke size, production rate, and 
API oil gravity. To determine the most suitable correlation 
for estimating rates, the researchers conducted a sensitivity 
analysis. The findings revealed that Gilbert’s correlation pro-
vided a relatively accurate prediction of the wellhead rates 
with an average error of 6.19%. Al-Attar (2008) developed 
an algorithm to forecast choke performance under subcrit-
ical conditions utilizing 97 datasets obtained from 3 wells 
of gas-condensate reservoir in the Middle East with various 
choke sizes [7]. 

Beiranvand et al. (2012) developed a new formula for 
predicting the liquid flow rate with a parameter which was 
not included in the Gilbert’s correlation: free water, sediment 
and emulsion [8].

(2)
1

100
&. .

d
b

wh

c

BS WP S
Q

aR

 
− 

 =

where: BS&W is basic sediment and water (%); a, b, c and d are 
the coefficients calculated based on sufficient data is available 
for specific reservoir with a = 0.0382, b = 2.151, c = 0.5154, and 
d = 0.5297.
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Table 1
Empirical constants for different correlations

Correlations
Empirical constants

a b c
Gilbert 0.1 1.89 0.546

Baxendell 0.1046 1.93 0.546
Ros 0.574 2 0.5

Achong 0.2618 1.88 0.65
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Espinoza (2015) developed an adjusted empirical correla-
tion to estimate and forecast the liquid rate in oilfields featur-
ing consistent water-cut and naturally flowing wells [9]. This 
method relies on choke size, upstream wellhead pressure, and 
oil-gas ratio. He modified the forms of existing correlation by 
Gilbert and Ros. Additionally, a novel empirical coefficient 
was introduced to the equation to match with the historical 
production rate data from studied field in the Caspian Sea. 
However, it is important to note that this coefficient requires 
recalculation whenever a new test becomes accessible.

Ghorbani et al. (2018) introduced an equation that has 
been validated for its effectiveness in comparison to mod-
els proposed by other authors. In contrast to Beiranvand’s 
approach of utilizing coefficient a, b, c, and d, Ghorbani et al. 
derived and suggested eigenfactors by analyzing 182 datasets 
obtained from Reshadat oil field, Lavan Island [10]. 

Due to the restricted of data employed in the study, the 
aforementioned empirical models have limitations. Each 
model was created for a certain area of research, which limits 
the range of applications for them. Because these modes fre-
quently lacked accuracy when used in other fields, they were 
not widely employed.  

In order to address the flaws and restrictions of both 
theoretical and empirical correlation methodologies, several 
researchers have recently turned to the application of artifi-
cial neural network (ANN) to forecast oil and gas production 
rates. The previous studies on using ANN to forecast liquid 

flow rate are presented in table 2.
The above studies show the superiority of ANN in 

predicting production flow rates around the world. These 
ANN models give results in forecasting production flow 
rates with high accuracy. However, in Vietnam, current 
studies only on traditional methods to forecast flow rate 
or ANN [20] to estimate production such as: utilizing the 
Arp equation [21] or Logistic growth model [22-24]. There 
has been no published study addressing the challenge of 
forecasting production flow rate for hydrocarbon wells based 
on production parameters and reservoir conditions. 

In this study, the authors propose to application ANN 
with a back-propagation algorithm to improve prediction 
production flow rates of gas-lift oil wells at HST Field, Cuu 
Long basin (Vietnam). The forecast results will be compared 
with experimental equations of other published authors to 
evaluate the superiority of the ANN model.  

Field description
The HST Field is located in south-central part of block 

15-2/01 within the oil prone Cuu Long basin offshore of 
Vietnam. It lies approximately 120 km east of Vung Tau. 
The HST Field consists of a number individual stacked 
oil reservoir in Lower Miocene and upper part of Upper 
Oligocene. In general, the lithostratigraphic system is a sand 
dominated clastic system of fluvio-deltaic complex channel 
system, and lacustrine setting deposits. The quality of the oil 
reservoir in the Miocene is quite good with effective porosity 
from 15-23%, and permeability from 10-1000 mD. The test 
results at the HST1 well confirmed that the Miocene reservoir 
is a very good reservoir. HST Field is now being exploited 
at a flow rate of roughly 2950 bbl/d, with an average water 
content of about 85%.

Materials and methodology
In this study, 256 datasets were collected from six wells 

that are located in the HST Field. The available parameters 
included production flow rate, choke size, wellhead pressure, 
gas liquid ratio, basic sediment and water, injected gas-lift 
rate, injected gas-lift pressure (tab. 3).

The whole dataset from 2019 to 2020 that is collected is 
separated into the following three subsets: 60% of data is 
used for training model, 20% of data for testing model, and 
20% of data for validation. 

Table 2
Several machine learning applications for forecasting oil flow rate

Authors Machine learning method R2 RMSE/MSE/
AAPE/ARE

Gorjaei et al. (2015) [11] Least squares support vector machine-fuzzy logic 0.976 0.8
Al-Ajmi et al. (2015) [12] Fuzzy logic 0.94 1392

Choubineh et al. (2017) [13] ANN 0.981 714
Ghorbani et al. (2018) [10] Genetic algorithm and Excel’s solver optimizer 0.997 303.1 - 562.52

Khan et al (2018) [14] Support vector machine (SVM) and ANN 0.96 - 0.99 2.5618 - 3.7496
Barjouei et al. (2021) [16] Deep learning, 0.9969 196
Ibrahim et al. (2021) [16] Random forests and SVM 0.94 - 0.98
Azim’s study (2022) [17] ANN 0.96 0.02

Somorotin et al. (2023) [18] ANN 0.873
Kaleem et al. (2023) [19] Extra trees, Random Forest, Gradient Boosting, Decision trees… > 0.97 > 60.8729

Fig. 1. Red rectangle shows the study area
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An outlier is a data point that differs significantly from 
other measured values. An outlier may be due to fluctuations 
in the measurement or it may be an indication of meter error. 
Finding outliers is essential because they can impair the per-
formance of ANN model, induce overfitting or poor generali-
zation. In order to clean and prepare the data for training and 
to ensure the validity of the ANN model’s results, it is crucial 
to find outliers. In this study, to identify outliers, we use the 
z-score algorithm. The z value is determined by equation: 

(3)i meanX Xz
SD
−

=

where, Xi is a value, Xmean is the mean value of the analyte 
obtained by the participants results, SD is the standard devi-
ation of the data. According to Tripathy et al. (2013), when 
a data point has a z-score of greater than three or less than 
three, it is generally regarded as an outlier [1]. 

Selecting input parameters determines the accuracy and 
processing time in the ANN model’s prediction.  According 
to theoretical studies conducted by above authors, the initial 
six input parameters (tab. 3) affect the output parameter rate 
flow. However, to validate this, an analysis of the literature 
primarily relies on the correlation coefficient R2 to assess the 
impact of these input parameters on the output parameter 
(fig. 2). This enables the accurate selection of input parame-
ters for training ANN model. 

It is observed that the correlation coefficient values for 
the production parameters and flow rate are all less than 0.6. 
This indicates that to construct a highly accurate flow rate 
prediction model, a comprehensive set of input parameters 
comprising various factors is required. Therefore, all produc-
tion parameters can be utilized as an input, and regarded as 
contributing equally to the forecast model.

Before using the above parameters, it is necessary to 
standardize them to a value range from 0 to 1 according to 
the normalized formula:

(4)min
Nor

max min

Y YY
Y Y

−
=

−

where: Y is the original data; YNor – normalized data, Ymin – 
minimum data value, Ymax – maximum data value. 

ANN is a computational model designed to imitate 
the transmission of signals between biological neurons. It 
consists of multiple interconnected neural units that work 
together to process information. A typical ANN usually has 
three layers as follows: Input, Hidden and Output. 

•	 Input layer: information to be processed is fed into 
the ANN through the input layer. The input node 
receives, classifies, analyzes the data and then passes 
the data to the next layer. 

•	 Hidden layer: data is transferred from the input 
layer to the hidden layer, or from one hidden layer to 
another. ANN can have one or more hidden layers. 
Each of them analyzes the output data from the pre-
vious layer, processes it further, and passes the data 
to next layer. 

•	 Output layer: the output layer returns the final 
results of all data previously processed by ANN. This 
class can have one or more nodes. 

The ANN model to predict flow rate for gas-lift wells 
in this study uses the backpropagation algorithm [14] and 
the production parameters will be considered as input for 

network training and the flow rate will be the output. In 
particular, the flow rate will be the output of the network, 
with the mining parameters serving as the input data. The 
neural network has two processes: forward and backward 
propagation phases. While the forward step sends impulses 
via neurons to calculate output targets, the backward step 
is used to generate the error vector between the actual and 
goal values. The network’s weighted connections are modi-
fied using this error value. Until the error value hits a prede-
termined minimum threshold or a predetermined number 
of cycles have been completed, the propagation process 
iteratively continues. As a result, the neural network grad-
ually converges towards producing an output that closely 
resembles the desired target output. 

One factor that affects the precision and processing 
speed of ANN model’s predictions is the quantity of 
neurons in the hidden layer (№). It is essential to carefully 
choose this number to ensure accurate predictions that align 
well with the desired output. It’s crucial to use caution 
in order to avoid overfitting brought on by an excessive 

Table 3
Data of 6 study wells

Parameters First 
dataset

(2019-2020)

Second 
dataset 
(2021)

Number of samples 228 28

Production 
flow rate, 
STB/day

Minimum value 95.40 198.24
Maximum value 1092.50 880.16

Mean value 526.51 549.46
Standard error 270.16 226.04

Choke size, 
inch 

Minimum value 104.00 137.00
Maximum value 157.00 157.00

Mean value 140.46 149.94
Standard error 16.55 9.70

Wellhead 
pressure, 

kPag

Minimum value 2439.00 2757.00
Maximum value 3361.00 3074.00

Mean value 2942.37 2905.88
Standard error 150.51 79.33

Gas liquid 
ratio, 

SCF/STB

Minimum value 140.97 417.58
Maximum value 875.70 890.66

Mean value 514.89 615.23
Standard error 138.24 144.68

Basic
 sediment 

and 
water, %

Minimum value 75.27 82.00
Maximum value 99.44 96.00

Mean value 90.05 89.23
Standard error 5.51 4.44

Injected 
gas-lift rate, 
MMSCFd

Minimum value 1.46 1.80
Maximum value 4.00 4.00

Mean value 2.83 3.27
Standard error 0.54 0.94

Injected 
gas-lift

 pressure, 
kPag

Minimum value 9275.80 9865.00
Maximum value 12085.00 11283.00

Mean value 10755.62 10630.09
Standard error 575.65 486.83
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number of neurons in the hidden layer. Table 4 provide the 
results obtained from different models employing varying 
number of neurons in the hidden layer. When comparing 
R2 and Root Mean Square Error (RMSE) values in table 2 
between these models, it is clear that as the number of 
neurons in hidden layer increases from 4 to 7, the model’s 
accuracy tends to steadily improve. However, when the 

number of neurons in hidden layer is increased further from 
7 to 10, the results are not particularly noteworthy and even 
exhibit evidence of declining accuracy (10-neuron model). 
Thereby, the authors assert that ANN used for predicting 
the flow rate of gas-lift wells at the HST field should employ 
8 neurons in hidden layer to simplify the model while still 
maintaining high accuracy in forecasting.

Fig. 2. Correlation coefficient R2 between production parameters and flow rate
ANN model development for forecasting oil production flow rates

Table 4
Summary the results of R2 and RMSE 

from different ANN models

№

R2 RMSE
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4 0.948 0.939 0.933 52.412 66.387 61.712
5 0.953 0.944 0.941 48.324 58.365 63.923
6 0.958 0.941 0.954 43.774 54.123 57.673
7 0.961 0.951 0.954 32.623 46.212 51.598
8 0.964 0.953 0.957 32.612 44.198 45.743
9 0.963 0.954 0.959 32.324 45.586 46.894
10 0.961 0.949 0.951 31.854 45.286 46.412
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Fig.3. Structure of ANN
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Results and discussions
To assess how successful the resulting ANN models 

are, the authors compared the prediction accuracy with the 
traditional method (The multivariate regression method) 
on the same dataset. This method is expressed through 
equation 5: 

(5)1 64 2 3 4

5 6

&l wh

Glift Glift

Q x D x P x GLR x BS W
x Q x P y

= + + + +
+ + +

where: x1, x2, x3, x4, x5, x6, and y – empirical parameters 
(table 5). 

The correlation coefficients when predicting flow rate 
using the multivariate regression method and the ANN model 
with the actual flow rate values are presented in figure 4.

Figure 4 demonstrates that the ANN model’s prediction 
accuracy is higher than that of the multivariate regression 
model. Although the ANN model provides very high 
accuracy results when using the dataset (2019-2020), however, 
to confirm the effectiveness and superiority of this model for 
future forecasts or for other wells, the authors decided to use 
this model to predict the second dataset (2021) includes 28 
points (fig. 5, 6).

Although the production history of wells HST5 and 
HST6 in 2021 has not been used in the training process but 
the history matching results between the forecast results 
by the ANN model and the actual data still demonstrate a 
high match, and the future flow rate forecast curve tends 
to align with the actual data. This highlights the potential 
effectiveness and versatility of the ANN model for predicting 
oil production flow rate beyond the training dataset.

Table 5
Coefficients of Equation 5

Parameters Coefficients
Intercept (y) 1463.79

x1 4.278
x2 0.144
x3 0.313
x4 -25.717
x5 66.628
x6 -0.0027

y = 0.7834x + 106.91
R² = 0.8844
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Fig. 4. Coefficient correlation R2 of predicted values from ANN model and 
Multivariate regression model compared to actual values
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Fig. 5. Comparison between the results of 
the ANN model (predicted Q) and the actual 

test data (actual Q) of well HST5

Fig. 6. Comparison between the results of 
the ANN model (predicted Q) and the actual 

test data (actual Q) well HST6
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Conclusions
In this study, we addressed ANN method to predict oil production flow rate of gas lift for real data of HST 

Field. From the results obtained, it can be concluded that: 
•	 The developed ANN model with a backpropagation algorithm including 8 neurons at the hidden layer 

gives flow rate prediction results with high accuracy compared to the reality (R2 = 96% and a low RMSE 
of 32.612 bbl/d);

•	 The built ANN model not only accurately predicts the oil production flow rate of each well, but also 
accurately reflects the changing trend of the production flow rate over time. This proves that ANN 
model accurately represents the relationship between production parameters and flow rate. Therefore, 
the ANN model has been promised as an effective tool in production flow rate forecasting in oilfields;

•	 Forecasting the oil production flow rate at HST field is critical for monitoring the condition of the 
wells and developing timely intervention plans to maintain and ensure output. Furthermore, the ANN 
model also assists in determining reasonable production parameters to adjust flow, maintain output, 
and improve enhanced oil recovery;

•	 The authors propose changing the values of production parameters (choke size, gas injection rate, gas 
injection pressure…) at the same time to determine the optimal parameters to achieve desired flow rate 
within the range of values obtained from actual production data. These datasets are then fed back into 
the built ANN model. Production parameters are determined when the average production flow rate 
of the wells reaches the values set out. 

•	 To enhance the precision of the ANN model, additional datasets from previous years, along with 
updated data, are required for further training.

This work was supported by Hanoi University of Mining and Geology under grant number T22-15.

References
1. Tangren, R. F., Dodge, C. H., Seifert, H. S. (1949). Compressibility effects in two-phase flow. Journal of Applied Physics, 

20(7), 637-645.
2. Gilbert, W. E. (1954). Flowing and gas-lift well performance. API Drilling Production Practice, 13, 126-157.
3. Achong, I. B. (1961). Revised bean performance formula for lake Maracaibo wells. Shell Internal Report.
4. Baxendell, P. B. (1958). Producing wells on casing flow-an analysis of flowing pressure gradients. Petroleum 

Transactions, 213, 202-206.
5. Ros, N. C. J. (1960). An analysis of critical simultaneous gas/liquid flow through a restriction and its application to flow 

metering. Applied Scientific Research, 9, 374-389. 
6. Al-Attar, H. H., Abdul-Majeed, G. H. (1988). Revised bean performance equation for East Baghdad oil wells. SPE 

Production Engineering, 3, 127-131. 
7. Al-Attar, H. H. (2008). Performance of wellhead chokes during subcritical flow of gas condensates. Journal of Petroleum 

Science and Engineering, 60(3-4), 205-212. 
8. Beiranvand, M. S., Mohammadmoradi, P., Aminshahidy, B., et al. (2012). New multiphase choke correlations for a high 

flow rate Iranian oil field. Mechanical Sciences, 3(1), 43-47. 
9. Espinoza, R. (2015, September). In digital oil field powered with new empirical equations for oil rate prediction. SPE-

176750-MS. In: SPE Middle East Intelligent Oil and Gas Conference and Exhibition. Society of Petroleum Engineers.
10. Ghorbani, H., Wood, D. A., Moghadasi, J., et al. (2018). Predicting liquid flow-rate performance through wellhead chokes 

with genetic and solver optimizers: an oil field case study. Journal of Petroleum Exploration and Production Technology, 9(3), 1-19.  
11. Gorjaei, R. G., Songolzadeh, R., Torkaman, M., et al. (2015). A novel PSO-LSSVM model for predicting liquid rate of 

two-phase flow through wellhead chokes. Journal of Natural Gas Science & Engineering, 24, 228-237. 
12. AlAjmi, M. D., Alarifi, S. A., Mahsoon, A. H. (2015, March). In improving multiphase choke performance prediction 

and well production test validation using artificial intelligence: a new milestone. SPE-173394-MS. In: SPE Digital Energy 
Conference and Exhibition. Society of Petroleum Engineers.

13. Choubineh, A., Ghorbani, H., Wood, D. A., et al. (2017). Improved predictions of wellhead choke liquid critical-flow 
rates: Modelling based on hybrid neural network training learning-based optimization. Fuel, 207, 547-560.  

14. Khan, M. R., Tariq, Z., Abdulraheem, A. (2018, April). In utilizing state of the art computational intelligence to 
estimate oil flow rate in artificial lift wells. SPE-192321-MS. In: SPE Kingdom of Saudi Arabia Annual Technical Symposium and 
Exhibition. Society of Petroleum Engineers. 

15. Barjouei, H.S., Ghorbani, H., Mohamadian, N., Wood, D.A., Davoodi, S., Moghadasi, J., Saberi, H. (2021). Prediction 
performance advantages of deep machine learning algorithms for two-phase flow rates through wellhead chokes. Journal of 
Petroleum Exploration and Production Technology, 11, 1233-1261. 

16. Ibrahim, A. F., Al-Dhaif, R., Elkatatny, S., Al Shehri, D. (2021). Applications of artificial intelligence to predict oil rate 
for high gas-oil ratio and water-cut wells. ACS Omega, 6(30), 19484-19493.

17. Azim, R. A. (2022). A new correlation for calculating wellhead oil flow rate using artificial neural network. Artificial 
Intelligence in Geosciences, 3, 1-7. 

Nguyen Tien Hung et al. / SOCAR Proceedings  No.4 (2023) 065-071



71

18. Somorotin, A. V., Martyushev, D. A., Stepanenko, I. B. (2023) Application of machine learning methods to forecast the 
rate of horizontal wells. SOCAR Proceedings, SI1, 70-77. 

19. Kaleem, W., Tewari, S., Fogat, M., Martyushev, D. A. (2023) A hybrid machine learning approach based study of 
production forecasting and factors influencing the multiphase flow through surface chokes. Petroleum, In Press. https://doi.
org/10.1016/j.petlm.2023.06.001

20. Tran, D. T., Le, T. H., Tran, X. Q., et al. (2020). Application of machine learning algorithm to forecast production for 
fracture basement formation, central arch, Bach Ho field. PetroVietnam Journal, 12, 37-46. 

21. Nguyen, V. H., Le, P. N. (2019). Development of production prediction models for oil and gas wells. PetroVietnam 
Journal, 8, 14-20. 

22. Tran, D. T., Dinh, D. H, Tran, X. Q., et al. (2019) Research on applied logistic growth model to forecast production for 
Lower Miocene, Bach Ho field. PetroVietnam Journal, 9, 16-22.  

23. Marfo, S. A., Kporxah, C. (2020). Predicting oil production flow rate using artificial neural network and decline curve 
analytical methods. In: Proceedings of 6th UMaT Biennial International Mining and Mineral Conference. Tarkwa, Ghana. 

24. Tripathy, S. S., Saxena, R. K., Gupta, P. K. (2013). Comparison of statistical methods for outlier detection in proficiency 
testing data on analysis of lead in aqueous solution. American Journal of Theoretical and Applied Statistics, 2(6), 233-242.

Прогнозирование дебитов добывающих скважин с использованием 
искусственной нейронной сети – на примере месторождения HST
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Реферат

Прогнозирование дебита нефти является важнейшим аспектом операций по добыче углеводоро-
дов. В настоящее время, прогнозирование дебита часто оценивается по теоретическим или эмпириче-
ским моделям. Однако, теоретические и эмпирические модели имеют ограничения. В этом исследо-
вании применяется искусственная нейронная сеть (ИНС) для прогнозирования дебита скважин. Было 
рассмотрено 256 наборов данных, собранных из шести скважин на месторождении HST Кыулонгского 
бассейна. Прогнозируемые результаты, полученные с помощью модели ИНС с восемью нейронами 
и алгоритмом обратного распространения ошибки, достигли высокой предсказуемости с высоким 
коэффициентом корреляции 0.964 и низким среднеквадратическим значением 32.612 баррелей в 
сутки. Таким образом, разработанные модели ИНС могут стать эффективным инструментом прогно-
зирования дебита добычи на нефтяных месторождениях.  

  
Ключевые слова: искусственная нейронная сеть; алгоритм обратного распространения ошибки; 

прогнозирование дебита; метод многомерной регрессии; газлифт.                       

Süni neyron şəbəkəsindən istifadə edərək hasilat quyularının 
debitlərinin proqnozlaşdırılması – HST yatağının nümunəsində

 
Nquyen Tiyen Xunq, Nquyen Min Xoa, Vu Xonq Zıonq 
Hanoy Mədən və Geologiya Universiteti, Hanoy, Vyetnam

Xülasə

Neft debitinin proqnozlaşdırılması karbohidrogen hasilatı əməliyyatlarının ən vacib aspektidir. Hal-
hazırda, debit proqnozu çox vaxt nəzəri və ya empirik modellərlə qiymətləndirilir. Lakin nəzəri və empirik 
modellərin məhdudiyyətləri var. Bu tədqiqatda quyuların debitini proqnozlaşdırmaq üçün süni neyron 
şəbəkəsi (SNŞ) tətbiq olunur. Kıulong hövzəsinin HST yatağındakı altı quyudan toplanan 256 məlumat dəsti 
nəzərdən keçirilmişdir. Səkkiz neyron və səhvin əks yayılması alqoritmi olan SNŞ modeli ilə əldə edilən 
proqnozlaşdırılan nəticələr yüksək korrelyasiya əmsalı 0.964 və aşağı orta kvadratik qiyməti günə 32.612 barel 
olan yüksək proqnozlaşdırmaya nail olmuşdur. Beləliklə, işlənmiş SNŞ modelləri neft yataqlarında debitin 
proqnozlaşdırılması üçün effektiv vasitə ola bilər. 

Açar sözlər: süni neyron şəbəkəsi; səhvin geriyə yayılması alqoritmi; debitin proqnozlaşdırılması; çox-
ölçülü reqressiya metodu; qazlift.
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