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Abstract
The radon release prediction from radioactive-bearing mines during mineral processing and mining is an essential target. A 
simple one-hidden-layer artificial neural network (ANN) model was designed with low computation cost to train, reference 
and get optimum effectiveness in comparison with two-hidden-layer ANN, random forest and support vector machine models 
which was applied for Sin Quyen copper deposit. The result showed with values of MAPE = 1.12(%), RMSE = 2.79(Bq/m3), 
MABE = 2.10(%), R2 = 0.990, r = 0.99, for training part; MAPE = 1.12(%), RMSE = 2.79(Bq/m3), MABE = 2.09(%), R2 = 0.995, 
r = 0.997 for testing part. The gamma dose and distance were significantly more effective variables for the radon prediction 
than direction, coordinate, and uranium concentration factors.
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Introduction

The modern environment is being severely polluted by 
toxic natural components, recent tectonic activities, min-
ing of mineral resources and other human activities [1–4]. 
One of the toxic natural components are radionuclides such 
as 222Rn, 220Rn, 210Po, 210Pb, 226Ra, 228Ra, 238U, 40K and 

232Th. Humans are continuously exposed to natural radia-
tion worldwide, moreover, are subjected to health risks when 
exposed to high levels of natural radiation in the long term 
[5, 6], especially where mines containing high concentra-
tions of radionuclides are located. For example, the 222Rn 
(radon) activity concentration was reported to be as high as 
920 Bq/m3 in the air surrounding the rare earth mines Nam 
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Xe and Dong Pao in North Vietnam [7]; those of 238U, 40K 
and 232Th in soils at a uranium mine in the west of Namibia 
were reported to be up to 1752, 1300 and 1866 Bq/kg, 
respectively [8]; while those of 238U and 232Th could be up to 
6,000 and 24,000 Bq/kg in beach sands at Madena in Mada-
gascar [9, 10]. 222Rn is a noble gas with the longest half-life 
of all naturally occurring radioactive gases, namely 3.8 days, 
and a progeny in the 238U decay chain. When released into 
the atmosphere in confined spaces such as houses, caves and 
mines, the internal radiation exposures reported are high 
[7, 11–13]. Radon is well-known as one of the most carci-
nogenic and radiotoxic radionuclides. The alpha particles 
emitted from radon are responsible for a significant amount 
of human exposure to ionizing radiation, consisting of about 
52% of the global average annual effective dose from natu-
ral radiation of 2.4 mSv [14]. Radon has been associated 
with epidemiological evidence of lung cancer for individuals 
exposed to high doses [12].

Radon studies are attractive to many scientists worldwide, 
e.g. for monitoring, dispersion modelling, predicting and 
surveying hypothetical models of radon [7, 15–23]. Several 
studies, including geogenic radon potential mapping studies 
[24–27], have applied ANNs, machine learning, decision 
tree models or probabilistic and deep learning algorithms 
based on radon monitoring and observing anomalies in 
radon time series [28–30]. Although Van Hao et al. (2021) 
constructed an ANN model containing two-hidden-layers 
with promising results and low prediction errors [5], an addi-
tional step was required to reduce the amount of data prior 
to training the ANN model, potentially leading to overfitting 
due to its complex structure.

In this paper, an attempt is made to improve the efficiency 
of the ANN model method to predict radon release. The 
model uses a simple one-hidden-layer structure to reduce the 
computational costs of training and reference with a higher 
degree of accuracy but lower prediction errors. The devel-
opment and optimization of the proposed model was based 
on three main steps: (1) dataset collection and analysis; (2) 
testing and training models to optimize an ANN model and 
model predictive capability; (3) evaluating the model (model 
comparison) and sensitivity analysis. The study attempts 
to apply and optimize the machine learning method with 
a simple one-hidden-layer ANN to predict radon release 
from areas with high levels of background radiation. The 
Sin Quyen deposit in North Vietnam is used as a case study 
(Fig. 1). This method could be faster and more accurate 
as well as reduce computational costs for monitoring and 
predicting radon contamination. Furthermore, a methodol-
ogy to manage radioactive contamination, make a radiation 
risk assessment, protect human health as well as promote 
sustainable socioeconomic development during the min-
ing and mineral processing of radionuclide-bearing natural 
resources in the vicinity of areas exhibiting high levels of 

natural background radiation in addition to highly radioac-
tive material is proposed.

Materials and method

Dataset

The dataset is comprised of more than 1 million data points 
which consist of radon concentrations (Bq/m3) and five input 
variables, namely X,Y coordinates (m), gamma dose rate 
(μSv/h), distance (m), direction (degree) and uranium con-
centration (ppm). The data was mainly collected during the 
years of 2013–2014 and 2021. The uranium concentration 
at/or in the vicinity of the deposit reflects the radon emitted 
from ore/soil/rock which is released as well as distributed to 
the radon measuring points. The uranium data were meas-
ured and surveyed using a gamma spectrometer (Gamma 
Surveyor of GF Instruments) over a 3 × 3 m grid. Uranium 
concentrations were measured over an area of 350 × 1250 m 
at the Sin Quyen mining site denoted by the red rectangle 
(Fig. 1). The Sin Quyen deposit has been exploited since 
2006 with several million tons of the more than 50-million-
ton copper ore reserve extracted annually [31, 32]. The radon 
concentration was cumulatively measured over three months 
in 21 dwellings surrounding the mine using a CR-39 detector 
denoted by the pink polygon (radon test area) in the Fig. 1. 
The CR-39 detector for measuring the cumulative radon con-
centration in dwellings is very useful and high precise in 
comparison with other methods for air radon measurement 
of this methodology. The radon may have originated from 
local and foreign sources, namely the Sin Quyen deposit, 
mining and processing activities. The radon measured by the 
CR-39 detector could reflect, measure and show the approxi-
mate cumulative average value over three months. This value 
was the most suitable to calculate the effective dose originat-
ing from radon as well as perhaps avoid influential factors 
such as the weather, meteorology (rain, humidity, wind, tem-
perature and pressure), topography and geomorphology. The 
gamma dose rate was also measured at similar points with 
radon measurement. The input data concerning the gamma 
dose rate included other technical highlights reflecting the 
local background radon level and the contribution local 
influential factors make regarding radon. The other input 
variables of X,Y coordinates (m), distance (m) and direc-
tion (degree) were recorded by a GPS and calculated. The 
statistical histograms of the input variables are shown in 
Fig. 2. The linear relationship between each pair of input 
and output variables is also determined using the heat map 
in Fig. 3. The darker the color, the more negative the cor-
relation between the variables is and vice versa. Clearly, the 
radon concentration exhibits a weak correlation with other 
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variables, suggesting a non-linear relationship between the 
given input and output data. 

Since the scaling and distribution of input data are mutu-
ally different to each other, they are scaled between 0 and 1 
using Eq. (1):

where x (x1, …, xn) denotes the set of measured values and 
zi represents the i-th normalized data.

Artificial neural network

Machine learning is widely used in many fields such as when 
studying geological hazards, climate change and remote 
sensing as well as assessing environmental pollution [6, 
33–38]. The ANN functions as a human brain consisting of 
billions of highly connected neurons or nodes [39, 40]. Each 
neuron takes input signals from other neurons and sends the 
output signals to others. Even though usually an ANN is a 
complex, layered structure consisting of both an input and 

(1)zi =
xi −min(x)

max(x) −min(x)

output layer with multiple hidden layers, an ANN with only 
one-hidden-layer is sufficient to approximate any continu-
ous function uniformly [41]. In this study, the radon con-
centration is considered to be a function of six independent 
parameters in the ANN model. The proposed architecture 
of the ANN by denoting the optimum number of neurons in 
the hidden layer as S is illustrated in Fig. 4. The next section 
deals with the determination of S in detail:

The input vector of the network in Fig. 4 can be assumed 
to be vector P in Eq. (2):

Each element pi of the input vector P is connected to each 
neuron nj in a hidden layer through the weight wij. The total 
weight of this neuron is comprised of the input layer and 
bias bj as shown in Eq. 3 before the sum is passed through a 
transfer function fh to produce the output aj given in Eqs. 4 
and 5, respectively.

(2)P = (p1, p2, p3, p4, p5, p6)

(3)sj =

6∑

i=1

wijpi + bj j = 1, 2, ..S,

Fig. 1  A map of the study area. The area denoted by a red rectangle is where uranium measurements were made in the Sin Quyen deposit (modi-
fied from [5])
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In the output layer, the output neuron again produces a 
product Yt which is the total of the connected weight wjt 

(4)fh(x) =
1 − e−2x

1 + e−2x

(5)aj = fh(sj) j = 1, 2, ... S,

and bias bt passing through the transfer function fo. This 
operation is presented in Eqs. (6)–(8):

(6)st =

S∑

j=1

wjtaj + bt t = 1,

Fig. 2  Histograms with the statistical values of gamma dose rate (a), distance (b), direction (c), uranium (d) and radon concentrations (e)
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The training error between the predicted output (Yt) and 
the measured data (yt) is determined by Eq. (9) where T 
denotes the number of training data points:

The error gradient for the output layer is measured by 
Eq. (10):

The backpropagation algorithm is used to adjust the 
weights and biases of the ANN to minimize the objective 
function in Eq. (9). The functions for adjusting the weights 
and biases between the hidden and output layers are given 
by Eqs. (11) and (12), respectively:

Equations  (13) and (14) are used to update the 
weights and biases between the input and hidden layers, 
respectively:

(7)fo(x) =
1

1 + e−x

(8)Yt = fo(st) t = 1,

(9)MSE =
1

T

T∑

t=1

(yt − Yt)
2

(10)�t =
(
Yt − yt

)
fo�(st)

(11)wjt(k + 1) = wjt(k) + �
(
yt − Yt

)
Yt(1 − Yt)aj

(12)bt(k + 1) = bt(k) + �
(
yt − Yt

)
Yt(1 − Yt)

 where α and β (0 < α, β < 1) are the learning rates between 
the layers with k constants for the kth adjustment. The learn-
ing rates represent the rate of network convergence.

MATLAB software was used to establish the proposed 
ANN. In the first epoch of the training process, weights (wij, 
wjt) and biases (bj, bt) were randomly initialized. The net-
works were trained using the Levenberg–Marquardt algo-
rithm (Moré, 1978) for many cycles (epochs) until the net-
work reached a stable MSE value (Eq. (9)).

To quantify and compare the accuracy of the proposed 
models, five common metrics, including, namely the root 
mean square error (RMSE) (Eq. (15)), mean absolute per-
centage error (MAPE) (Eq. (16)), mean absolute bias error 
(MABE) (Eq. (17)), correlation coefficient (r) (Eq. (18)) and 
coefficient of determination (R2) (Eq. (19)) were used:

(13)

wij(k + 1) = wij(k) + �

[
1∑

t=1

(
yt − Yt

)
Yt(1 − Yt)wjt

]

aj(1 − aj)pi

(14)

bj(k + 1) = bj(k) + �

[
1∑

t=1

(
yt − Yt

)
Yt(1 − Yt)wjt

]

aj(1 − aj)

(15)RMSE =

√√√
√ 1

T

T∑

t=1

(
yt − Yt

)2

Fig. 3  Correlation matrix of 
input and output variables
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(16)MAPE =
1

T

T∑

t=1

||yt − Yt
||

yt
× 100

(17)MABE =

T∑

t=1

||yt − Yt
||

T

(18)r =

T∑

t=1

�
yt − yt

��
Yt − Yt

�

�
T∑

t=1

�
yt − yt

�2 T∑

t=1

�
Yt − Yt

�2

where yt and Yt denote the measured and predicted radon 
values, respectively; yt and Yt represent the average meas-
ured and predicted radon values, respectively; and T stands 
for the number of training data points.

RMSE represents the differences between the predicted 
radon values determined by the models and the measured 
ones. In general, a lower RMSE is preferable. MAPE is a 
statistical measure to accurately assess the proposed ANN 
models and its minimal value indicates that the model is 
highly accurate. MABE is another metric to estimate how 
close the predicted radon values are to the measured ones 
and when it is low, the model is highly accurate. The correla-
tion coefficient r (0 ≤ r ≤ 1) is used to quantify the correlation 

(19)R2 = 1 −

T∑

t=1

�
yt − Yt

�2

T∑

t=1

�
yt − yt

�2

Fig. 4  ANN architecture of 6-N-1
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between the model and observations. If r = 1, an exact linear 
relationship between the predicted and measured values was 
determined. Finally, the coefficient of determination displays 
information about the variation in the predicted radon values 
of the model and when close to 1, the prediction is reliable.

ANN training for radon prediction

The ANN training process follows the flowchart presented 
in Fig. 5. The first step involves data collection and analysis 
as described in Section ‘Dataset’, while the second one con-
cerns data partitioning. 80% of the database is used for train-
ing, while the remainder is used for validation. The third step 
consists of training where a one-hidden-layer ANN model 
is optimized and applied to study optimization of the ANN 
structure. The predictive capacity of the model is evaluated 
in the fourth step using the test dataset and various stand-
ard metrics (RMSE, MAPE, MABE, r and  R2) to optimize 
the configuration of the model by mainly determining the 
optimum number of hidden neurons. The fifth step com-
pares the proposed model with some benchmark machine 
learning models such as the two-hidden-layer ANN model, 
Support Vector Machine (SVM) and Random Forest (RF) to 

evaluate its prediction efficiency. Finally, a sensitivity analy-
sis is performed to determine the features that have the most 
significant impact on the predictions of the proposed model.

Results and discussion

Optimizing the ANN structure

The proposed ANN used only one-hidden-layer, as men-
tioned in Section ‘Artificial neural network’. This section 
deals with the number of neurons S in the hidden layer. To 
the best of our knowledge, no accepted procedure or formula 
has been published in the literature to determine the opti-
mum number of hidden neurons. Based on Kolmogorov’s 
theorem, Hecht-Nielsen [42] proposed that 2n + 1 (n denotes 
the number of predictor parameters) should determine the 
maximum number of neurons in the one-hidden-layer ANN. 
According to this suggestion, the maximum number of hid-
den neurons in this study was 13 (n = 6) (Table 1), while the 
minimum number was 2.

MATLAB software initializes the ANNs using random 
weights and biases. The ANN trained the model ten times for 

Fig. 5  Flowchart of ANN train-
ing for radon prediction
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Table 1  Performance of ANN 
models with different numbers 
of neurons in the hidden layer

Model No Number of hid-
den neurons

RMSE (Bq/m3) MAPE(%) MABE(%) r R2

Training
1 2 31.1 12.7 23.6 0.579 0.336
2 3 21.5 9.01 17.0 0.826 0.683
3 4 18.1 7.47 14.1 0.880 0.775
4 5 16.0 6.78 12.8 0.907 0.823
5 6 12.4 4.06 7.44 0.946 0.894
6 7 11.3 3.72 6.92 0.952 0.906
7 8 10.7 3.86 7.20 0.958 0.917
8 9 7.77 3.26 6.14 0.976 0.952
9 10 6.97 2.54 4.97 0.980 0.960

10 11 2.96 1.12 2.03 0.991 0.982
11 12 3.03 1.15 2.17 0.994 0.988
12 13 2.79 1.12 2.10 0.995 0.990

Testing
1 2 31.1 12.6 23.5 0.580 0.336
2 3 21.5 9.01 17.0 0.826 0.682
3 4 18.1 7.48 14.1 0.880 0.774
4 5 16.0 6.76 12.8 0.908 0.824
5 6 12.4 4.06 7.43 0.946 0.894
6 7 11.3 3.71 6.89 0.955 0.913
7 8 10.7 3.85 7.18 0.960 0.921
8 9 7.74 3.25 6.12 0.979 0.959
9 10 6.94 2.53 4.94 0.983 0.967

10 11 2.97 1.12 2.03 0.997 0.994
11 12 3.02 1.14 2.17 0.997 0.994
12 13 2.79 1.12 2.09 0.997 0.995

Fig. 6  MSE of different ANN models in the training and test dataset versus the number of training epochs
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each of the ANN configurations (number of hidden neurons) 
to achieve the optimum results. The training and evaluation 
MSEs of ANN models with different numbers of hidden 
neurons are illustrated in Fig. 6. 13 hidden neurons were 
used in Model 12 yielding the best MSE value at epoch 300 
(Table 1). In general, the performances of the ANN models 
with regard to training and test data are similar, demonstrat-
ing that the models did not memorize the training data but 
learned the actual relationship between the value points.

The performances of the ANN models with the metrics 
RMSE, MAPE, MABE, r and  R2, which were calculated 
using Eqs. (15)–(19), are presented in Table 1 and Fig. 7. 
The best performances—RMSE of less than 5 Bq/m3, MAPE 
and MABE of less than 3% as well as excellent r and R2 
values in excess of 99%—are presented in Models 10–12. 
Although a slight difference in the performance of the three 
models was observed, Model 12 exhibited the best perfor-
mance with the highest  R2 value. RMSE, MAPE, MABE and 
r on the test dataset were equal to 2.791, 1.117, 2.094 and 
0.997, respectively. The scatter plots of the predicted radon 
values by the ANN models for the training and test datasets 
are also depicted in Appendix 1.

The performances of Model 12 along with the other ones 
are compared using the Taylor diagram in Fig. 8 [43]. The 
main advantage of this diagram is that the performances of 
the models in the groups according to their RMSE, standard 
deviation and correlation coefficient are shown. The distance 
of each model from the observed point denoted by black tri-
angles plotted on the horizontal axis quantifies how closely 

that particular model matches the measurements. It can be 
seen that Models 1–9 exhibited the worst performance since 
their data points are scattered over a great distance from the 
observed point. Generally speaking, Models 10–12 corre-
lated well with the observations, exhibiting the same RMSE, 
high pattern correlation and standard deviation illustrated by 
the dashed line at radial distance 0.246. A slightly higher 
degree of correlation and RMSE was observed in Model 12. 
All results hereafter refer to Model 12.

Predictive capability of the proposed ANN model

The predictive capacity of the proposed ANN model using 
the configuration selected is presented in this section. The 
density plots on the right-hand side of Fig. 9 compare the 
probability density of the measured and predicted radon val-
ues for the test, training and whole datasets. The cumulative 
distributions of the three datasets are also compared on the 
left-hand side of Fig. 9. A highly significant correlation was 
observed between the measured and predicted values. Most 
deviations occurred when a model predicted the radon value 
to be approximately 200 Bq/m3, moreover, the shapes of 
the predicted distribution for the three datasets are similar, 
indicating the generalized capability of the proposed ANN 
model with regard to the new dataset.

Another meaningful predictive capacity is the prediction 
error per quantile generated by the proposed ANN model. 
In Fig. 9, the quantiles over equal ranges from 10 to 90% are 
plotted to evaluate the deviation between their measured and 

Fig. 7  Performance graph for the 12 investigated models
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predicted values. In general, the expected quantile values are 
similar to those measured, demonstrating the capability of 
the proposed model with regard to radon prediction locally. 
A detailed evaluation is given in Table 2 in which the error 
(E) is computed for each quantile, the deviations of which 
are highest in the 10, 20, 60 and 90% quantiles. Furthermore, 
the average deviation for the test dataset is slightly larger 
than for the training and whole datasets (Fig. 10).

Finally, the proposed model in terms of predicting the 
radon values at 21 dwellings according to the specific ura-
nium measurement points from the test dataset is examined 
in Fig. 11. It can be seen that the predicted radon values 
closely resemble the measured ones. Obviously, the pro-
posed model in this study can be employed for estimating 
radon dispersion with a high degree of accuracy.

Comparison of the models

To illustrate its prediction efficiency, the proposed ANN 
model was compared with the previous benchmark 
machine learning models, including the two-hidden-layer 
ANN model with 20 neurons [5]; Support Vector Machine 
(SVM) and Random Forest (RF). In order to develop the 
SVM model, the radial basis function kernel was deployed 
to train the model, moreover, two parameters, namely cost 
(C) and sigma (δ), were tuned to control its accuracy. For 
the RF model, the minimum leaf size (m) and the number of 
trees (nt) were chosen to evaluate its performance. A “trial 
and error” procedure was conducted by experimenting with 
C, δ, m and nt in various ways to determine the optimum 
parameters for both models. Based on the RMSE values, the 

best SVM and RF models were defined when C = 51.623, 
δ = 0.024 as well as nt = 800 and 4, respectively.

As is shown in Table 3, the proposed ANN model out-
performs the others producing a lower RMSE and MAPE 
as well as a higher r and R2. In contrast, the SVM model 
yielded the poorest performance in terms of both the training 
and test dataset. It can be seen that by increasing the number 
of hidden layers, as is the case in the ANN model with two 
hidden layers, the prediction accuracy is reduced and overfit-
ting results when the performance of the test dataset is better 
than the training one.

Sensitivity analysis

The proposed model predicts the radon concentration val-
ues based on the distance along the X & Y axes, direction, 
gamma dose rate and uranium concentration. This section 
attempts to determine which features influence the pre-
dictions the most. For this purpose, a simple and popular 
method, namely Permutation Importance [44], is imple-
mented as follows:

(1) Obtain the trained ANN model;
(2) Shuffle the values in a single feature column and make 

predictions using the generated dataset. The predicted and 
measured values are used to calculate how much the loss 
RMSE was affected by shuffling and estimate the importance 
of the shuffled features.

(3) Put the data back into its original order and repeat step 
(2) with the next feature.

Due to the random nature of the shuffling, step (2) was 
repeated five times to obtain an average result. According to 

Fig. 8  Taylor diagram compar-
ing the performances of Models 
1–12
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the results, the gamma dose rate as well as distance are the 
most critical and correlated features when predicting radon 
values, followed by the uranium concentration, the coordinates 
of the uranium measurement along the x and y axes as well 
as direction.

Conclusions

Radon is one of the most toxic radioactive gases pre-
senting radiological hazards to humans. In this study, 

Fig. 9  Density (right) and cumulative distribution (left) plots between the measured and predicted radon values for the test, training and whole 
dataset
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a predictive model of radon release was built using a 
large dataset at the Sin Quyen deposit. After optimizing 
its structure and evaluating its predictive capability as 
well as conducting a comparison and sensitivity analy-
sis, the proposed model was constructed using a simple 
one-hidden-layer ANN requiring lower computational 
costs for training and referencing, which can be trained 
without needing to reduce the amount of input data. 
The model could also reduce overfitting as the training 
(RMSE = 2.793) and testing errors (RMSE = 2.791) are 
rather similar. The proposed model is not only a sim-
ple modelling approach but also an accurate prediction 

model yielding small errors as far as both the training and 
test dataset is concerned. A highly significant correlation 
and low deviation were observed between the measured 
and predicted values. The predicted values for the train-
ing, test and whole datasets suggest that the proposed 
model generalized the unseen data well. In comparison 
with other machine learning models of two-hidden-layer 
ANNs, Support Vector Machines (SVM) and Random 
Forests (RF), the proposed model is advantageous given 
that it predicts more accurately. Permutation Importance 
was performed on the underlying mechanism of the pro-
posed model, revealing the gamma dose rate and distance 

Table 2  Comparison of the 
measured and predicted radon 
values for the test, training and 
whole datasets in each quantile

* M = measured (Bq/m3); P = predicted (Bq/m3); E = error (Bq/m3)

Quantile (%) Testing Training All

M P E M P E M P E

10 138 135.9  − 2.07 138 135.6  − 2.41 138 135.6  − 2.34
20 145 142.1  − 2.93 145 142.1  − 2.93 145 142.1  − 2.93
30 151 150.8  − 0.19 151 150.7  − 0.33 151 150.7  − 0.29
40 165 165.3 0.29 165 165.3 0.26 165 165.3 0.27
50 191 190.2  − 0.81 191 190.1  − 0.87 191 190.1  − 0.86
60 193 195.3 2.31 193 195.3 2.28 193 195.3 2.29
70 200 200.5 0.51 200 200.5 0.50 200 200.5 0.50
80 207 207.3 0.25 207 207.2 0.22 207 207.3 0.23
90 214 217.7 3.66 214 217.6 3.65 214 217.6 3.65

Average 0.11 Average 0.04 Average 0.06

Fig. 10  Quantile of the measured and predicted radon values for the test, training and whole datasets
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as the strongest predictors of radon release when com-
pared to the parameters of uranium concentration, ura-
nium measurement coordinates and direction. Although 
the proposed model with a simple one-hidden-layer ANN 

optimizes and is more accurate, it could be improved in 
further studies by carrying out real-time monitoring of 
multiple inputs of dataset with different parameters as 
well as a radon survey when using this proposed model.

Fig. 11  Examples of predicting the radon dispersion at 21 dwellings according to uranium concentration measurements

Table 3  Performance of some 
benchmark machine learning 
models applied using the 
present dataset

Performance Proposed ANN Two-hidden-layers 
ANN

SVM RF

Training Testing Training Testing Training Testing Training Testing

RMSE (Bq/m3) 2.79 2.79 8.69 9.13 12.0 13.1 6.65 9.61
MAPE (%) 1.12 1.12 2.02 2.03 5.28 7.03 2.21 3.22
r 0.995 0.997 0.974 0.970 0.830 0.824 0.987 0.970
R2 0.990 0.995 0.949 0.942 0.812 0.805 0.974 0.941
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Appendix 1 Measured versus predicted 
Radon values resulted from 12 ANN models.
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