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A B S T R A C T   

An effective approach is proposed for fabrication of ZnO/Ag nanocomposite for surface enhanced Raman scat-
tering application by combining hydrothermal assisted with galvanic effect and sputtering process. The sput-
tering process is applied to distribute Ag on the surface of ZnO nanostructures. The morphology, structure, 
elemental composition and optical properties of the samples were studied. The most suitable sputtering condition 
was identified to achieve the highest Raman enhancement. The optimum sputtering time of 70 s provides strong 
Raman signal of methylene blue, and demonstrates the potential of using the ZnO/Ag nanoflowers as sensitive 
surface enhanced Raman substrates.   

1. Introduction 

ZnO is one of the most well studied materials so far due to its 
attractive properties such as wide direct bandgap of 3.37 eV at room 
temperature, chemical and mechanical stability, and piezo electric ef-
fect, etc. These valuable and advanced properties of ZnO is further 
enhanced when the material is prepared in a various nano-forms such as 
nanoparticles [1–3], nanowires [4–6], nanorods [7–10], nanodisks 
[11,12], nano whiskers [13,14], tetra-pods [15,16] and more. These 
ZnO materials with different morphologies and structures offer a range 
of applications in electronics, opto-electronics, biomedicine, environ-
ment, etc. 

Surface enhanced Raman scattering (SERS) has become an attractive 
method for detection of pollutants at low concentration [17–19]. Pre-
vious studies have demonstrated that Ag–ZnO [20–22] or Au–ZnO 
[9,23–26] hybrid nanostructures are active surface enhanced Raman 
scattering (SERS) substrates. However, the synthesis process of hybrid 
ZnO 1D nanostructures and noble metal nanostructures is complex and 
time consuming. In this paper, we introduce a facile method for fabri-
cating sensitive SERS substrates based on Ag/ZnO nanoflowers in a short 

time without further treatment. ZnO nanoflowers were prepared by a 
hydrothermal process assisted with galvanic effect to improve the 
growth rate and density of ZnO nanostructures. By optimizing 
morphology of ZnO nanostructures and the sputtering time of silver, 
methylene blue (MB) at low concentration of 10-9 M was easily detected 
by Raman measurement with a short acquisition time. 

2. Experiment 

ZnO nanorods were prepared by galvanic effect assisted hydrother-
mal method. In a typical process, printed circuit board (PCBs) were 
thoroughly cleaned with distilled water, ethanol and acetone. The sub-
strates were sonicated in HCl 5 % to remove the cupric oxide layer on the 
surface and then rinsed again with distilled water and dried by using 
nitrogen gun. The PCBs was covered with aluminum foil with an open 
area at the center. A galvanic cell structure between copper layer on 
PCBs and aluminum help to enhance the growth of ZnO nanorods. The 
as-prepared PCBs substrates were transferred to the hydrothermal re-
action. The hydrothermal synthesis of ZnO nanorods was performed by 
suspending the as-produced ZnO wafers in a mixture of equimolar 
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solution of zinc nitrate hexahydrate (Zn(NO3)2⋅6H2O) and hexamethy-
lenetetramine (C6H12N4) under continuous stirring. The growth tem-
perature and time were set at 90 ◦C and 5 h, respectively. 

After the growth process, the samples were rinsed with distilled 
water and dried. Structure of the products was studied by Xray diffrac-
tometer PANanalytical with monochromatic wavelength λ = 1.54056 Å 
of Cu-Kα radiation. The surface morphology of the samples was inves-
tigated using scanning electron microscope (NanoSEM Fei 450). 
Elemental composition of the samples was studied by using Energy 
Dispersive X-ray spectrometer integrated into the Scanning Electron 
Microscope. 

Methylene Blue was used as Raman probe to study the Surface 
enhanced Raman scattering activity of the samples. Raman spectra were 
collected on Horiba Labram HR800 micro Raman system with excitation 
wavelength line 632.8 nm of He - Ne laser. The laser power was fixed at 
0.5 mW on the surface samples in all measurements to prevent laser 
induced heating in SERS experiment. 

3. Results and discussion 

We first investigated the effect of zinc nitrate concentration on the 
morphology and structures of ZnO nanostructures produced by hydro-
thermal assisted with galvanic effect. Fig. 1 shows SEM images of ZnO 
nanostructures prepared by hydrothermal assisted with galvanic effect 
at different zinc nitrate concentrations of 20, 40, 50 and 80 mM. 

The concentration of zinc salt in the precursor solution has a clear 
effect on the growth of ZnO nanoflowers. At concentrations of 20 mM 
and 40 mM, the obtained nanoproducts are formed at low density. At a 
concentration of 50 mM, ZnO nanoflowers grew more uniformly. 
Increasing of the zinc salt concentration to 80 mM transforms the flower- 
like ZnO nanostructures into thick rods with diameter of about 1 μm. 
The results can be understood that at high concentration, the crystal 
growth rate is higher and leads to formation of bigger rods. The fact that 
these small diameter nanorods tends to merge together to form larger 
rods can be understood as these structures possess smaller surface en-
ergy. However, these structures possess lower specific surface area and 

might limit the efficiency of Raman enhancement. Taking this effect into 
account, the sample prepared with precursor concentration of 50 mM 
was studied further for SERS application. It can be seen that precursor 
concentration of 50 mM offers homogenous products of nanoflowers. 
Fig. 1c shows that ZnO nanorods grow radially from a single core to form 
flower structure. The obtained nanoproducts are uniform in both size 
and shape. The results clearly show the advantages of galvanic tech-
nique on the growth of uniform ZnO nanostructures, which is critical to 
the reproducibility of Raman signal on SERS substrate based on the as- 
prepared ZnO nanoproducts. 

The X-ray diffraction (XRD) studies were carried out to analyze the 
crystal structure and purity of the ZnO nanoflower as a function of the 

Fig. 1. SEM images of ZnO nanoflowers prepared with different precursor concentrations: 20 mM (a), 40 mM (b), 50 mM (c), 80 mM (d).  

Fig. 2. XRD diffraction patterns of ZnO nanoproducts prepared with different 
concentration of precursor concentrations. 
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synthesis conditions. XRD patterns of the obtained ZnO nanostructures 
are shown in Fig. 2. The XRD patterns show clear diffraction peaks at 
31.55◦; 34.41◦; 36.25◦; 47.44◦; 56.66◦; 63.11◦; 68.16◦, which can be 
identified as the reflection from (100), (002), (101), (102), (110), 
(103), (112) planes of hexagonal wurtzite structure of ZnO (JCPDS 79- 
0207). The high intensity of these peaks along with absence of peaks 
related to impurities in the patterns imply that the obtained ZnO ma-
terials showed excellent crystallinity. The lattice parameters and crys-
tallite sizes of the ZnO nanoproducts estimated by using the Scherrer 
equation are given in Table 1. The estimated lattice parameters of all the 
samples are in good agreement with those reported for ZnO materials 
[27,28]. XRD analysis of the as-synthesized ZnO nanoflowers at different 
zinc salt concentrations showed an increased in peak intensities, 
showing that the zinc salt concentration is an important factor in 
enhancing the crystallinity of the samples. The preferred growth 
orientation was not observed in the XRD patterns of the prepared sam-
ples. This result can be explained as the ZnO nanorods spread out in 
random directions to form ZnO nanoflowers. 

Fig. 3 shows a typical EDS spectrum of ZnO nanoflowers obtained 
with precursor concentration of 50 mM. The EDS data reconfirms the 
purity of the products as no other element besides Zn, O, and Cu could be 
observed. It should be noted that the signal of Cu element comes from 
the PCBs substrate used in this research. 

The Raman spectra of the as-grown ZnO nanoproducts prepared with 
different concentration of precursors are displayed in Fig. 4. Raman 
peaks at 99, 202; 330; 376; 437 cm− 1 corresponds to the vibration 
modes E2low; 2E2 (low); E2H-E2L; A1(TO) and E2high, respectively [29,30]. 
The two most prominent peaks at 99 and 437 cm− 1 are related to the 
vibration of oxygen and zinc lattices, respectively [10,30]. The 
appearance of peaks such as 215 and 333 cm− 1 as well as high back-
ground associated with internal defects such as oxygen vacancies, zinc 
interstitial and others [31] in the spectrum of samples prepared at 
concentrations 20 and 80 mM showed that the crystal quality was not as 
good as the samples prepared at 50 mM concentrations. The results 

suggest that the sample obtained with precursor concentration of 50 mM 
is of highest uniform and quality, which is suitable for SERS application 
and was further investigated. 

The obtained ZnO nanoflowers were then sputtered with Ag. SEM 
image of the sample is displayed in Fig. 5a. The image shows that Ag is 
evenly distributed on the surface of ZnO nanoflowers. EDS spectrum of 
ZnO/Ag sample in Fig. 5b shows clear trace of Ag element. The result 
was reconfirmed by the XRD diffraction pattern (Fig. 5c). As shown in 
Fig. 5c, the presence of cubic phase of metallic Ag (JCPDF = 893722) is 
clearly visible at 38.19◦; 45.9◦; 66.89◦; 76.98◦ corresponding to the 
reflection from (111), (200), (220), (311) planes. 

Subsequently, we evaluated SERS activity of ZnO/Ag nanoflowers, 
using Methylene Blue as Raman probe. Fig. 6 shows SERS spectra of MB 
adsorbed on ZnO/Ag nanorods prepared with different sputtering times. 
The most prominent peaks around 1621 cm− 1 can be attributed to C–C 
ring stretching, bands above 1396 cm− 1 to the CH in plane deformation, 
the bands at 1042 cm− 1 to CH in-plane bending modes [32]. The highest 
enhancement and uniformity were achieved for the sample prepared 
with sputtering time of 70 s. This is explained because, at the Ag sput-
tering time of less than 70 s, the density of Ag nanoparticles is low. 
However, if the sputtering time is increased to 140 s, it is possible to 

Table 1 
Lattice parameters and crystallite size of the produced ZnO nanostructures with 
different precursor concentrations.   

Lattice parameters 
Precursor concentration a (Å) b (Å) c (Å) 

20 mM  3.251  3.251  5.210 
40 mM  3.252  3.252  5.207 
50 mM  3.250  3.250  5.210 
80 mM  3.250  3.250  5.200  

Fig. 3. EDS spectrum of ZnO nanoflowers prepared with zinc salt concentration of 50 mM.  

Fig. 4. Raman spectra of samples prepared with different precursor 
concentrations. 
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create large islands and even continuous layer, limiting the formation of 
“hot spots”. 

Raman spectra of MB collected at 30 different points on the ZnO/Ag 

nanoflower substrates (Fig. 7a) were collected. The data showed that 
relative standard deviation (RSD) estimated for the peak at 1621 cm− 1 

was only 8.4 % (Fig. 7b). The low RSD of the prepared substrates sug-
gested that ZnO/Ag nanoflowers can be used as a reliable SERS substrate 
to detect substances of low concentration. Fig. 7c shows Raman spectra 
of MB with concentration from 10-6 to 10-10 M on ZnO/Ag nanoflowers. 
It can be seen that the Raman intensity increases monotonically with MB 
concentration. Characteristic peaks of MB were observed clearly for 
concentration down to 10-9 M. However, SERS signal of MB almost 
diminished at concentration of 10-10 M. The results indicate the high 
sensitivity of the prepared SERS substrates. 

The superiority of SERS substrates based on ZnO/Ag nanoflowers can 
be ascribed to several simultaneous phenomena. Firstly, the local plas-
mon resonance in Ag nanoparticles in charge of electromagnetic 
enhancement of Raman signal is significantly intensified due to the 
increased density of hot spots distributed on the surface of ZnO nano-
flowers. This is made possible thanks to high surface area of nano-
materials. Secondly, hetero-junction between metal nanostructures and 
semiconductor nanomaterials further enhances electromagnetic field at 
the surface of metallic nanomaterials where Raman probes are located 
[10,26]. Furthermore, chemical enhancement via charge transfer be-
tween ZnO semiconductor and MB as well as between Ag nanoparticles 
and MB is also facilitated and contributes to the total enhancement of 
Raman signal [25]. 

4. Conclusion 

The ZnO/Ag nanoflowers were successfully prepared by galvanic 

Fig. 5. SEM image (a); EDS spectrum (b) and XRD pattern of ZnO/Ag nanoflower prepared with sputtering time of 70 s.  

Fig. 6. Raman spectra of MB 10-8 M measured on ZnO/Ag prepared with 
different sputtering time: 10 s, 35 s, 70 s, 140 s. 
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effect assisted hydrothermal method in combination with sputtering 
technique. Galvanic effects show beneficial effect on the growth of ZnO 
nanoflowers in term of higher density and more uniform morphology. 
The optimum sputtering time of 70 s offers high quality SERS substrate 
of high uniformity and sensitivity. The as-prepared structures are sen-
sitive SERS substrates which was demonstrated by the detection of MB at 
low concentration of 10-9 M. 
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